JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for GEO-TECTONICS Archives


GEO-TECTONICS Archives

GEO-TECTONICS Archives


GEO-TECTONICS@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

GEO-TECTONICS Home

GEO-TECTONICS Home

GEO-TECTONICS  June 2001

GEO-TECTONICS June 2001

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

Re: stress/Carmichael

From:

Dugald Carmichael <[log in to unmask]>

Reply-To:

Tectonics & structural geology discussion list <[log in to unmask]>

Date:

Wed, 20 Jun 2001 20:20:54 -0400

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (91 lines)

At 03:45 PM 2001/06/20 +0200, Falk Koenemann wrote:
>...
>... Assume shape of V is spherical.
>Assume: f = 5, f/A = P is scale-independent.
>Assume that f/A and U/V are equivalent for the case r = 1.
>Calculate  U/V and f as V approaches zero at constant P.
>...[table of numbers omitted]
>Hence U/V is scale-dependent. This is physically impossible.

Agreed - there must be some mistake. The calculation seems to ignore two
necessary conditions. In order for dU/dV to be equal to P (actually to
negative P if we assume compressive P is positive), the change in volume of
the system (dV) must be carried out (1) at constant mass and (2) at
constant entropy, so that no other variation in U (except mechanical work
PdV) is simultaneously permitted.

>Furthermore, as V vanishes, so does f, but f vanishes faster than r.

Certainly "stress at a point" has no meaning in a real solid. A continuum
differs from a real solid in being strictly homogeneous even at the
subatomic scale. By the same token, "pressure at a point" and "temperature
at a point" would be meaningless; P and T are properties of macroscopic
systems. P or stress = f/A where A refers to the external surface of a
system containing a  finite quantity of "statistically homogeneous" matter.

>Assume: U/V = 5 is scale-independent. Calculate f and f/A.
>From the divergence theorem it follows that f and r are proportional if V is
>allowed to approach zero at constant P.
>...[table of numbers omitted]
>Hence f/A approaches infinity as V approaches zero.
>It follows that f/A and U/V are not equivalent if A is a closed surface.

But P could not remain constant during compression of a real system at
constant mass and entropy.

>2. Measurability. Some standard unit volume must be assumed to which the
>measurements refer. This may be the volume of some unit mass, or a unit
volume
>in the standard state. Then V is no longer a variable, and then f/A works.

I would contend that P = f/A works for any thermodynamic system at
equilibrium or during any reversible process, but -P = dU/dV works only for
systems at constant mass and entropy.

>Potential theory says: the shape can be arbitrary if the system contains n
>discrete bodies such that the surface of the system does not pass through
>mass. ...

Thus potential theory joins continuum theory in making stipulations that
cut down on complexity. :-)

>The shape of the system is not arbitrary if rotational/shear forces can do
>mechanical work. ...

Agreed. The forces applied to the outer surface of the system, whatever its
shape, must be mechanically balanced so as not to cause either linear or
angular acceleration of the system. This is the condition that restricts
the symmetry of stress to be not less than orthorhombic.

>If we consider a thermodynamic system within a solid, ie. within a larger
>volume that is continuously filled with mass, we get one more problem: ...
>system and surrounding are permanently bonded to one another. This
>point is of utmost importance for the equilibrium conditions; however it can
>only be considered if the existence of bonds is indeed taken into account,
>which is not done in continuum mechanics.

Thermodynamics deals routinely with this type of system, taking account
neither of bonds nor of strength of materials. The prevailing theory of
metasomatic zoning assumes constant P during reactions that predicate
finite changes of volume; hence it treats rocks as if they have zero
strength. But a continuum is resistant to deformation, and hence continuum
mechanics generalizes P (an isotropic scalar) into stress (a second-rank
tensor with orthorhombic symmetry). Seems to me this is an important step
towards taking account of the existence of bonds. Further steps are clearly
desireable.

>...
>Thus I concede that the shape of the system may be a cube, but it is
certainly
>not arbitrary. And whether it is permitted to be a cube is a question that
>touches the rotational equilibrium condition f x r.

Let's face it - forces are just things we invent to explain what we
observe; they are strictly empirical. The whole trick is to keep the forces
as simple as possible - hence the unit cube.

Dugald M Carmichael                    Phone/V-mail: 613-533-6182
Dept of Geological Sciences and Geological Engineering
Queen's University                              FAX: 613-533-6592
Kingston  ON  K7L3N6             E-mail: [log in to unmask]

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001
April 2001
March 2001
February 2001
January 2001
December 2000
November 2000
October 2000
September 2000
August 2000
July 2000
June 2000
May 2000
April 2000
March 2000
February 2000
January 2000
December 1999
November 1999
October 1999
September 1999
August 1999
July 1999
June 1999
May 1999
April 1999
March 1999
February 1999
January 1999
December 1998
November 1998
October 1998
September 1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager