JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for CCP4BB Archives


CCP4BB Archives

CCP4BB Archives


CCP4BB@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

CCP4BB Home

CCP4BB Home

CCP4BB  July 2017

CCP4BB July 2017

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

Re: Fine Phi Slicing

From:

CHAVAS Leonard <[log in to unmask]>

Reply-To:

CHAVAS Leonard <[log in to unmask]>

Date:

Fri, 14 Jul 2017 12:10:06 +0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (136 lines)

Attenuation... cut the beam with primary slits! We do not use attenuators, only for getting very very low when performing energy scans. Else, cutting the flux at the source is somehow much more reliable. Not mentioning scattering coming from the attenuators as well...

Cheers, leo

-
Leonard Chavas
- 
Synchrotron SOLEIL
Proxima-I
L'Orme des Merisiers
Saint-Aubin - BP 48
91192 Gif-sur-Yvette Cedex
France
- 
Phone:  +33 169 359 746
Mobile: +33 644 321 614
E-mail: [log in to unmask]
-

> On 14 Jul 2017, at 13:02, Keller, Jacob <[log in to unmask]> wrote:
> 
> Hi Graeme,
> 
> I see your point about the blind region and also the tile lines. But 2-theta would have the advantage of also shifting the low-res spots to entirely new pixels, which would be harder through rotation. Also, wouldn't rotating about the beam axis shift the spots to variable degrees across rotation space, with some angles (+/- 90 deg) negligibly shifted?
> 
> Further, does it give anyone pause: Graeme makes a subtle implication that most samples die before collecting 360 degrees, which I think may be true. What can be done about this tragic lack of attenuation? One possibility is to model the radiation damage in refinement, but wouldn't it make a lot more sense to have a lot of good attenuators installed by default (or use sealed-tube sources!).
> 
> JPK
> 
> 
> 
> -----Original Message-----
> From: [log in to unmask] [mailto:[log in to unmask]] 
> Sent: Friday, July 14, 2017 1:37 AM
> To: Keller, Jacob <[log in to unmask]>
> Cc: [log in to unmask]
> Subject: Re: [ccp4bb] Fine Phi Slicing
> 
> Jacob
> 
> If you have a complete 360 deg data set and your sample is still alive, and you have a multi-axis gonio, I would recommend rotating the crystal about the beam (ideally by ~ maximum scattering 2-theta angle) and collecting again. This would record your blind region as well as moving the reflections to different pixels, and (as a bonus) also will move reflections out from the tile join regions into somewhere they can be measured, which would not happen for small 2-theta shift.
> 
> See http://scripts.iucr.org/cgi-bin/paper?BA0020 Figure 16 as excellent illustration of this.
> 
> Biggest risk with this is getting *moving* shadows on the data on the second run, as an effective 45-50 degree chi shift (say) will usually be a pretty wide opening angle for a kappa gonio. XDS and DIALS both have mechanisms to deal with this, and automated processing packages are able to apply these given a reasonable understanding of the beamline.
> 
> Also saves building 2-theta axes which can handle 92 kg ;o)
> 
> Cheers Graeme
> 
> On 13 Jul 2017, at 21:00, Keller, Jacob <[log in to unmask]<mailto:[log in to unmask]>> wrote:
> 
> I thought there was a new paper from the Pilatus people saying fine slicing is worth it even beyond the original 1/2 mosaicity rule?
> 
> I would think, actually, more gains would made by doing light exposures at, say, 1/3 mosaicity, collecting 360 deg, then shifting the detector in 2theta by a degree or two to shift uniformly the spots to new pixels, maybe accompanied by a kappa change. One would have to remember about the two-theta when processing, however!
> 
> JPK
> 
> -----Original Message-----
> From: CCP4 bulletin board [mailto:[log in to unmask]] On Behalf Of Gerd Rosenbaum
> Sent: Thursday, July 13, 2017 3:40 PM
> To: [log in to unmask]<mailto:[log in to unmask]>
> Subject: Re: [ccp4bb] weird diffraction pattern
> 
> Dear Gerard,
> 
>   my "sound like a sales person" was meant as poking a little fun - nothing serious, of course.
> 
> I and our users like our not-so-new-anymore Pilatus3 6M. It's a great detector in many ways. But, there is a lot of hype that this detector solves all-problem, for instance fine slicing that is claimed to be only possible with a pixel array detector. People get carried away and use
> 0.01 degree slices even as the mosaicity of their sample is, say, 0.3 degree. Slicing beyond 1/3 of the mosaicity will gain you very little - only more frames, more processing time.
> 
> This discourse is already drifting away from the original topic of the thread so I will comment on the other arguments  you made like resolution in a private e-mail.
> 
> Best regards,
> 
> Gerd
> 
> On 13.07.2017 14:00, Gerard Bricogne wrote:
> Dear Gerd,
> 
>     I can assure you that I have no shares in Dectris nor any commecial connections with them. What I do have is a lot of still vivid memories of CCD images, with their wooly point-spread function that was affected by fine-grained spatial variability as well as by irredicible inaccuracies in the geometric corrections required to try and undo the distortions introduced by the fiber-optic taper. By comparison the pixel-array detectors have a very regular structure, so that slight deviations from exact registering of the modules can be calibrated with high accuracy, making it possible to get very small residuals between calculated and observed spot positions. That, I certainly never saw with CCD images.
> 
>     I do think that asking for the image width was a highly pertinent question in this case, that had not been asked. As a specialist you might know how to use a CCD to good effect in fine-slicing mode, but it is amazing how many people there are still out there who are told to use 0.5 or even 1.0 degree image widths.
> 
>     Compensating the poor PSF of a CCD by fine slicing in the angular dimension is a tall order. With a Pilatus at 350mm from the crystal, the angular separation between 174-micron pixels is 0.5 milliradian.
> To achieve that separation in the angular (rotation) dimension, the equivalent image width would have to be 0.03 degree. For an EIGER the numbers become 75 microns, hence 0.21 milliradian i.e. 0.012 degree.
> 
>     Hence my advice, untainted by any commercial agenda :-) .
> 
> 
>     With best wishes,
> 
>          Gerard.
> 
> --
> On Thu, Jul 13, 2017 at 01:25:08PM -0500, Gerd Rosenbaum wrote:
> Dear Gerard,
> 
> you sound like a sales person for Dectris. Fine slicing is perfectly fine with CCD detectors - it takes a bit longer because of the step scan instead of continuous scan. The read noise issue is often overstated compared to the sample induced scatter background. If for fine slicing at 0.05 degree or less the diffraction peaks go too close to the read noise make a longer exposure - signal goes up, ratio signal to sample-induced-BG less, as for any fine slicing, same read noise.
> 
> It would be helpful to analyze the dense spot packing along layer lines if we knew the wavelength and the sample-to-detector distance (assuming this is a 300 mm detector) and the rotation width - as you pointed out. That would help to distinguish between multiple crystals (my guess) and lattice translocation disorder. Fine slicing is definitely needed to figure out what the diffraction pattern at 120 degree could tell you in terms of strong anisotropy .
> 
> Best regard.
> 
> Gerd
> 
> On 13.07.2017 08:20, Gerard Bricogne wrote:
> Dear Tang,
> 
>     I noticed that your diffraction images seem to have been recorded on a 3x3 CCD detector. With this type of detector, fine slicing is often discouraged (because of the readout noise), and yet with the two long cell axes you have, any form of thick (or only
> semi-fine) slicing would result in spot overlaps.
> 
>     What, then, was your image width? Would you have access to a beamline with a Pilatus detector so that you could collect fine-sliced data?
> 
>     I would tend to agree with Herman that your crystals might be cursed with lattice translocation disorder (LTD), but you might as well try and put every chance of surviving this on your side by making sure that you collect fine-sliced data. LTD plus thick slicing would give you random data along the streaky direction. Use an image width of at most 0.1 degree (0.05 would be better) on a Pilatus, and use XDS to process your images.
> 
> 
>     Good luck!
>       Gerard
> 
> --
> On Thu, Jul 13, 2017 at 01:21:02PM +0100, Tang Chenjun wrote:
> Hi David,
> Thanks for your comments. Although the spots become streaky in certain directions, I have processed the data in HKL3000 and imosflm, which suggested the C2221 space group (66.59, 246.95 and 210.17). The Rmerge(0.14), completeness(94.8%), redundancy(4.6) are OK. When I tried to run Balbes with the solved native structure, the molecular replacement solution was poor. So I ran Balbes with the split domains of the native structure. Although the solutions were also poor, I found the MR score of one solution above 35. On the basis of this solution, I tried to run Buccaneer and the Rfree could be 0.46. Unfortunately, there are four molecules in the asymmetric unit and it is to hard for me to reduce the Rfree further.
> 
> All best,
> 
> Chenjun Tang
> 
> 
> --
> This e-mail and any attachments may contain confidential, copyright and or privileged material, and are for the use of the intended addressee only. If you are not the intended addressee or an authorised recipient of the addressee please notify us of receipt by returning the e-mail and do not use, copy, retain, distribute or disclose the information in or attached to the e-mail.
> Any opinions expressed within this e-mail are those of the individual and not necessarily of Diamond Light Source Ltd. 
> Diamond Light Source Ltd. cannot guarantee that this e-mail or any attachments are free from viruses and we cannot accept liability for any damage which you may sustain as a result of software viruses which may be transmitted in or with the message.
> Diamond Light Source Limited (company no. 4375679). Registered in England and Wales with its registered office at Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager