JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for ALLSTAT Archives


ALLSTAT Archives

ALLSTAT Archives


allstat@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

ALLSTAT Home

ALLSTAT Home

ALLSTAT  October 2014

ALLSTAT October 2014

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

joint RSS Highland group / St Andrews meeting, 26/11, 2:00

From:

Janine Illian <[log in to unmask]>

Reply-To:

Janine Illian <[log in to unmask]>

Date:

Thu, 30 Oct 2014 15:31:13 +0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (30 lines)

The joint RSS Highland group / St Andrews meeting takes place in St Andrews (lecture theatre C, Maths building, North Haugh) on Wednesday 26th November 2014

Programme:
2.00pm -2.05pm
Welcome

2.05pm – 2.55pm
Mark Girolami (University of Warwick)
“Quantifying epistemic uncertainty in ODE and PDE solutions using Gaussian measures and Feynman-Kac path integrals”
2.55pm – 3.30pm
Coffee Break

3.30pm -4.20pm
Natalia Bochkina (University of Edinburgh) 
“Statistical inference in possibly misspecified nonregular models”
http://www.st-andrews.ac.uk/~statistics/seminars.html

Abstracts:
Mark Girolami (University of Warwick)
Diaconis and O'Hagan originally set out a programme of research suggesting the evaluation of a functional can be viewed as an inference problem. This perspective naturally leads to construction of a probability measure describing the epistemic uncertainty associated with the evaluation of functions solving for systems of Ordinary Differential Equations (ODE) or a Partial Differential Equation (PDE). By defining a joint Gaussian Measure on the Hilbert space of functions and their derivatives appearing in an ODE or PDE a stochastic process can be constructed. Realisations of this process, conditional upon the ODE or PDE, can be sampled from the associated measure defining "Global" ODE/PDE solutions conditional on a discrete mesh. The sampled realisations are consistent estimates of the function satisfying the ODE or PDE system and the associated measure quantifies our uncertainty in these solutions given a specific discrete mesh. Likewise an unbiased estimate of the "Local" solutions of certain classes of PDEs, along with the associated probability measure, can be obtained by appealing to the Feynman-Kac identities and 'Bayesian Quadrature' which has advantages over the construction of a Global solution for inverse problems. In this talk I will describe the quantification of uncertainty using the methodology above and illustrate with various examples of ODEs and PDEs in specific inverse problems.

Natalia Bochkina (University of Edinburgh) 
Finite dimensional statistical models are called nonregular if it is possible to construct an estimator with the rate of convergence that is faster than the parametric root-n rate. I will give an overview of such models with the corresponding rates of convergence in the frequentist setting under the assumption that they are well-specified. In a Bayesian approach, I will consider a special case where the “true” value of the parameter for a well-specified model, or the parameter corresponding to the best approximating model from the considered parametric family for a misspecified model, occurs on the boundary of the parameter space. I will show that in this case the posterior distribution (a) asymptotically concentrates around the ``true’’ value of the parameter (or the best approximating value under a misspecified model), (b) has not only Gaussian components as in the case of regular models (the Bernstein–von Mises theorem) but also Gamma distribution components whose form depends on the behaviour of the prior distribution near the boundary, and (c) has a faster rate of convergence in the directions of the Gamma distribution components. One implication of this result is that for some models, there appears to be no lower bound on efficiency of estimating the unknown parameter if it is on the boundary of the parameter space. I will discuss how this result can be used for identifying misspecification in regular models. The results will be illustrated on a problem from emission tomography. This is joint work with Peter Green (University of Bristol).

You may leave the list at any time by sending the command

SIGNOFF allstat

to [log in to unmask], leaving the subject line blank.

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager