JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for CPHC-CONF Archives


CPHC-CONF Archives

CPHC-CONF Archives


cphc-conf@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

CPHC-CONF Home

CPHC-CONF Home

CPHC-CONF  April 2014

CPHC-CONF April 2014

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

[SenticNet] CFP: ICML14 Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM)

From:

feeds <[log in to unmask]>

Reply-To:

feeds <[log in to unmask]>

Date:

Tue, 15 Apr 2014 07:09:40 -0500

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (120 lines)

Apologies for cross-posting,

Submissions are invited for the 3rd Workshop on Issues of Sentiment Discovery
and Opinion Mining (WISDOM), an ICML14 workshop exploring the new frontiers of
big data computing for opinion mining through machine-learning techniques and
sentiment learning methods. For more information, please visit:
http://sentic.net/wisdom

RATIONALE
The distillation of knowledge from social media is an extremely difficult task
as the content of today's Web, while perfectly suitable for human consumption,
remains hardly accessible to machines. The opportunity to capture the opinions
of the general public about social events, political movements, company
strategies, marketing campaigns, and product preferences has raised growing
interest both within the scientific community, leading to many exciting open
challenges, as well as in the business world, due to the remarkable benefits to
be had from marketing and financial market prediction.

Statistical NLP has been the mainstream NLP research direction since late 1990s.
It relies on language models based on popular machine-learning algorithms such
as maximum-likelihood, expectation maximization, conditional random fields, and
support vector machines. By feeding a large training corpus of annotated texts
to a machine-learning algorithm, it is possible for the system to not only learn
the valence of keywords, but also to take into account the valence of other
arbitrary keywords, punctuation, and word co-occurrence frequencies. However,
standard statistical methods are generally semantically weak as they merely
focus on lexical co-occurrence elements with little predictive value
individually.

Endogenous NLP, instead, involves the use of machine-learning techniques to
perform semantic analysis of a corpus by building structures that approximate
concepts from a large set of documents. It does not involve prior semantic
understanding of documents; instead, it relies only on the endogenous knowledge
of these (rather than on external knowledge bases). The advantages of this
approach over the knowledge engineering approach are effectiveness, considerable
savings in terms of expert manpower, and straightforward portability to
different domains. Endogenous NLP includes methods based either on lexical
semantics, which focuses on the meanings of individual words (e.g., LSA, LDA,
and MapReduce), or compositional semantics, which looks at the meanings of
sentences and longer utterances (e.g., HMM, association rule learning, and
probabilistic generative models).

TOPICS
WISDOM aims to provide an international forum for researchers in the field of
machine learning for opinion mining and sentiment analysis to share information
on their latest investigations in social information retrieval and their
applications both in academic research areas and industrial sectors. The broader
context of the workshop comprehends opinion mining, social media marketing,
information retrieval, and natural language processing. Topics of interest
include but are not limited to:
• Endogenous NLP for sentiment analysis
• Sentiment learning algorithms
• Semantic multi-dimensional scaling for sentiment analysis
• Big social data analysis
• Opinion retrieval, extraction, classification, tracking and summarization
• Domain adaptation for sentiment classification
• Time evolving sentiment analysis
• Emotion detection
• Concept-level sentiment analysis
• Topic modeling for aspect-based opinion mining
• Multimodal sentiment analysis
• Sentiment pattern mining
• Affective knowledge acquisition for sentiment analysis
• Biologically-inspired opinion mining
• Content-, concept-, and context-based sentiment analysis

SPEAKER
Rui Xia is currently an assistant professor at School of Computer Science and
Engineering, Nanjing University of Science and Technology, China. His research
interests include machine learning, natural language processing, text mining and
sentiment analysis. He received the Ph.D. degree from the Institute of
Automation, Chinese Academy of Sciences in 2011. He has published several
refereed conference papers in the areas of artificial intelligence and natural
language processing, including IJCAI, AAAI, ACL, COLING, etc. He served on the
program commitee member of several international conferences and workshops
including IJCAI, COLING, WWW Workshop on MABSDA, KDD Workshop on WISDOM and ICDM
Workshop on SENTIRE. He is a member of ACM, ACL and CCF, and he is an operating
committee member of YSSNLP.

KEYNOTE
One one hand, most of the existing domain adaptation studies in the field of NLP
belong to the feature-based adaptation, while the research of instance-based
adaptation is very scarce. One the other hand, due to the explosive growth of
the Internet online reviews, we can easily collect a large amount of labeled
reviews from different domains. But only some of them are beneficial for
training a desired target-domain sentiment classifier. Therefore, it is
important for us to identify those samples that are the most relevant to the
target domain and use them as training data. To address this problem, we propose
two instance-based domain adpatation methods for NLP applications. The first one
is called PUIS and PUIW, which conduct instance adaptation based on instance
selection and instance weighting via PU learning. The second one is called
in-target-domain logistic approximation (ILA), where we conduct instance
apdatation by a joint logistic approximation model. Both of methods achieve
sound performance in high-dimentional NLP tasks such as cross-domain text
categorization and sentiment classification.

SUBMISSIONS AND PROCEEDINGS
Authors are required to follow Springer LNCS Proceedings Template and to submit
their papers through EasyChair. The paper length is limited to 12 pages,
including references, diagrams, and appendices, if any. As per ICML tradition,
reviews are double-blind, and author names and affiliations should not be
listed. Each submitted paper will be evaluated by three PC members with respect
to its novelty, significance, technical soundness, presentation, and
experiments. Accepted papers will be published in Springer LNCS Proceedings.
Selected, expanded versions of papers presented at the workshop will be invited
to a forthcoming Special Issue of Cognitive Computation on opinion mining and
sentiment analysis.

TIMEFRAME
• May 11th, 2014: Submission deadline
• May 25th, 2014: Notification of acceptance
• June 1st, 2014: Final manuscripts due
• June 25th, 2014: Workshop date

ORGANIZERS
• Yunqing Xia, Tsinghua University (China)
• Erik Cambria, Nanyang Technological University (Singapore)
• Yongzheng Zhang, LinkedIn Inc. (USA)
• Newton Howard, MIT Media Laboratory (USA)

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager