JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for ALLSTAT Archives


ALLSTAT Archives

ALLSTAT Archives


allstat@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

ALLSTAT Home

ALLSTAT Home

ALLSTAT  December 2008

ALLSTAT December 2008

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

QUERY:Valid use of Mann-Whitney Test - RESPONSES

From:

"Henderson, Robin" <[log in to unmask]>

Reply-To:

Henderson, Robin

Date:

Wed, 17 Dec 2008 09:28:48 -0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (144 lines)

Dear Allstat

Sincere thanks to everyone who responded.  I deliberately simulated data from two normal populations with the same variance with n1 = 5 and n2 = 10.  The ratio of the larger IQR to the smaller IQR exceeded 2 in around one in three cases.  Thus, in a scenario where a Mann-Whitney test would be appropriate (albeit inferior to a t-test), the guideline would "advise" against its use.  This led me doubt its validity and post the query.  Responses are given below.

Stephen Senn
I suspect that the guideline is not very good. However, it is 
probably to do with heteroscedasticity and you have programmed 
homoscedasticty into your simulation.

It is well-known that the two-sample  t-test is not robust if the 
population variances are different unless the samples sizes are the 
same. If the smaller sample has the larger variance there is a 
problem. I suspect that what is being done here is to give some 
guidance to deal with possible differences in variances but I also 
suspect that it is a pretty useless rule of thumb.

It might be worth looking at Gerald van Belle's 
http://www.vanbelle.org/ book to see if there is a mention .

Nick Longford
I have, and ignored it, for the good of the science.

Paul Wilson
I have never heard of this restriction on the Mann-Whitney.
Please let me know what the general opinion of your respondents is. I
would hazard a guess that whoever penned the "guideline" was trying to
be clever and "transfer" the guideline that a t-test should not be used
if the standard deviation of one sample is more than twice that of the
other, but I could be wrong!

Allan White
From a theoretical perspective, I can see why this recommendation was made.
The Mann-Whitney test is a member of the class of permutation tests. This
class of tests has the property that, under the null hypothesis, all the
rearrangements of the data performed by the test must be equally likely.
This condition is met if, and only if, the data from the different groups
is drawn from the same error distribution. (I mean by this that the
distributions of scores within each group/condition should not differ in
any respect, except that of location). In the scenario where the spread
differs obviously (and substantially) between the groups, this condition is
clearly violated and the test degenerates into one that merely tests for
significant differences (OF ANY SORT) between the groups/conditions. Thus,
under these circumstances, the test ceases to be a simple test for differences
in location (medians).

Roger Newson
I have not seen this guideline as such. However, I have long been aware
that the Mann-Whitney U-statistic, and the associated confidence
interval for the Hodges-Lehmann median difference, are robust to
non-Normality and non-robust to unequal variability. I have developed a
package (somersd) in the Stata statistical language to calculate
confidence intervals for rank statistics that are robust to unequal
variability. The theory is written up in Newson (2002), Newson (2006a)
and Newson (2006b), and also in some manuals distributed with the
package. All of these can be downloaded from my website (see my
signature below). If you have Stata, then you can download the package
by typing in Stata

ssc describe somersd
ssc install somersd, replace

I have done some simulations, and submitted the results for publication
in Computational Statistics and Data Analysis, on the performance, under
a wide range of scenarios, of various confidence intervals for median
differences (my package, the Lehmann formula, and the equal-variance and
unequal-variance t-tests. The message of these simulations is that the
method implemented in the somersd package is robust to non-Normality and
to unequal variability, at the price of being non-robust to tiny sample
numbers, under which conditions the confidence intervals may extend from
minus infinity to plus infinity. This is because, under those
conditions, if we are not allowed to assume Normality and/or equal
variability, then the median difference really could be anywhere.

Chris Lloyd
Top of my head - MW is appropriate for a SHIFT model. For testing, the
null hypothesis is identical distributions i.e. shift zero. I did some
simulations years ago that convinced me that it was not robust to scale
differences - the size of the test can be pretty badly compromised,
especially when one population is contaminated with skew (holding the
medians equal).

But the twice-scale rule. Never heard of it.

Lisa Yelland
I have not come across this guideline. However I have read a paper* which looks
at the performance of the Mann-Whitney test in a range of scenarios using
simulations and shows that it performs poorly when the variances in the two
groups are unequal.

I am curious about the simulation you did. Firstly, if the data are normal then
the t-test would be preferable to the Mann-Whitney test. Secondly, the guideline
you mentioned relates to unequal inter-quartile ranges and yet you simulated
data with equal variances (perhaps this was a typo?). I think it would be more
relevant to simulate non-normal data with a range of differences in the
inter-quartile range between groups to judge whether the guideline is
appropriate (depending on how much time you want to spend investigating this!).

* Skovlund E & Fenstad G (2001). Should we always choose a nonparametric test
when comparing two apparently nonnormal distributions?. Journal of Clinical
Epidemiology; 54:86-92.

Martin Bland
This is nonsense, as the Mann Whitney test can be used for ordinal 
data.  The notion of interquartile range involves subtraction, so can 
apply only to interval data.  However, there is a condition that if you 
want to use the test as testing the null hypothesis that the medians are 
the same, the two distributions must differ only in location.  This 
clearly applies to interval data only as ordinal data do not have a 
shape.  Under these circumstances the test also tests the null 
hypothesis that the means are equal.  As the standard deviations must be 
identical, you might at well do a t test and get a confidence interval.

Dorothy Middleton
In theory, the bootstrap is the only technique that should be used to
compare the means of two populations that have quite different variances
(that is, the Behrens-Fisher problem).  Student's t, a permutation test
using the original observations, and the permutation using ranks
(Mann-Whitney, Wilcoxon) are all likely to yield inexact significance
levels.  Still simulations have shown that permutation tests are almost
exact even when the variance of one population is twice that of the
other.  See http://statisticsonline.info/application.htm.


Best Wishes

Robin

G Robin Henderson
Audit Coordinator
Scottish National Stroke Audit
Royal Infirmary of Edinburgh
0131 242 6934



*****************************************************************
The information contained in this message may be confidential or 
legally privileged and is intended for the addressee only. If you 
have received this message in error or there are any problems 
please notify the originator immediately. The unauthorised use, 
disclosure, copying or alteration of this message is 
strictly forbidden.
*****************************************************************

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager