JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for EVOLUTIONARY-COMPUTING Archives


EVOLUTIONARY-COMPUTING Archives

EVOLUTIONARY-COMPUTING Archives


EVOLUTIONARY-COMPUTING@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

EVOLUTIONARY-COMPUTING Home

EVOLUTIONARY-COMPUTING Home

EVOLUTIONARY-COMPUTING  January 2019

EVOLUTIONARY-COMPUTING January 2019

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

Two weeks to deadline - Special Issue GPEM: Integrating Numerical Optimization Methods with Genetic Programming

From:

Anna I Esparcia Alcazar <[log in to unmask]>

Reply-To:

Anna I Esparcia Alcazar <[log in to unmask]>

Date:

Mon, 7 Jan 2019 17:46:25 +0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (57 lines)

*** TWO WEEKS TO THE DEADLINE ***


CFP: Integrating Numerical Optimization Methods with Genetic Programming

Special Issue of Genetic Programming and Evolvable Machines

 [Full CFP on the Journal's Springer site]

Guest Editors

·  Anna I Esparcia-Alcázar
Universitat Politècnica de València, Spain: [log in to unmask]

·  Leonardo Trujillo
Instituto Tecnológico de Tijuana, Mexico: [log in to unmask]

About this Issue

This special issue focuses on integrating numerical optimization methods with Genetic Programming (GP) in order to improve the evolutionary search. In traditional GP the search space is the space of all possible syntactic expressions that can be generated from the set of functions and terminals, which depends upon the type of program representation used. The search operators modify individuals at the level of syntax, and, given that syntactic expressions tend to be fragile, their effect on behavior is usually non-local and difficult to predict. This has lead researchers to explore other search operators or program representations.

One possibility is to use numerical optimization methods as a local search process. In fact, the representation and adaptation (i.e. learning) of real-valued parameters in GP is still an open issue in GP at large, where most of the work has focused on what Koza termed ephemeral random constants and some effort has been devoted to adapting them [1]. Although more advanced approaches such as adaptive node gains were proposed over two decades ago [2] and their uptake has produced some success [3] [4], it has been relatively limited [5]. This area is particularly relevant in modern machine learning, where powerful computing platforms like GPUs are highly optimized for performing such tasks. Numerical optimization can also be used to tune hyper-parameters or to derive surrogate models on-line.

This special issue intends to explore new representations, algorithms and methodologies that can enhance GP systems by exploiting numerical optimization techniques to improve convergence, reduce computation cost and achieve state-of-the- art performance in real-world machine learning challenges [6], and in particular in Deep Learning, a field in which Genetic Programming is becoming increasingly successful [7].

Scope
Novel representations that are amenable to numerical and local search methods
Search approaches for real-valued parameters or meta-parameters in GP individuals
New search operators that can exploit both syntactic and numerical search
Implementations that improve search efficiency and reduce training times
Techniques that are optimized for High Performance Computing platforms, such as GPUs and FPGAs
 Important Dates
Submission deadline: January 20, 2019 
Notification of first review: May 2, 2019 
Resubmission: June 3, 2019
Final acceptance notification: August 2, 2019

Submissions and Review Procedures

Special Issues are handled in the normal way via the online Editorial Manager system found at https://genp.edmgr.com. Please choose the article type “Integrating Numerical Optimization Methods with Genetic Programming.” Special Issue articles should fulfil all the standard requirements of any GPEM article. Authors should note that the same criteria apply to articles in Special Issues as to regular articles. Special Issue articles must not consist of overviews of the authors' previously published work, e.g. peer- reviewed articles, book chapters, official reports, etc.


All papers will undergo the same rigorous GPEM review process. Please refer to the GPEM website for detailed instructions on paper submission: http://www.springer.com/10710

References
[1] L. M. Howard and D. J. D'Angelo, "The GA-P: a genetic algorithm and genetic programming hybrid," in IEEE Expert, vol. 10, no. 3, pp. 11-15, Jun 1995. doi: http://dx.doi.org/10.1109/64.393137
[2] Esparcia-Alcázar A.I., Sharman K.C. (1996) Genetic programming techniques that evolve recurrent neural network architectures for signal processing, Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop, pages 139-148 DOI: http://dx.doi.org/10.1109/NNSP.1996.548344
[3] Maarten Keijzer. 2004. Scaled Symbolic Regression. Genetic Programming and Evolvable Machines 5, 3 (September 2004), 259-269. DOI: http://dx.doi.org/10.1023/B:GENP.0000030195.77571.f9
[4] Emigdio Z-Flores, Leonardo Trujillo, Oliver Schütze, and Pierrick Legrand. 2015. A Local Search Approach to Genetic Programming for Binary Classification. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO '15), Sara Silva (Ed.). ACM, New York, NY, USA, 1151-1158. DOI: http://dx.doi.org/10.1145/2739480.2754797
[5] Leonardo Trujillo, Emigdio Z-Flores, Perla S. Juárez Smith, Pierrick Legrand, Sara Silva, Mauro Castelli, Leonardo Vanneschi, Oliver Schütze and Luis Muñoz. Local Search is Underused in Genetic Programming. In Rick Riolo et al. editors, Genetic Programming Theory and Practice XIV, Ann Arbor, USA, 2017. Springer.
[6] Numerical and Evolutionary Optimization Workshop: http://neo.cinvestav.mx/NEO2018/
[7] Risto Miikkulainen, Evolving Multitask Neural Network Structure, Metalearning Symposium at NIPS 2017, http://metalearning-symposium.ml/files/miikkulainen.pdf 

########################################################################

To unsubscribe from the EVOLUTIONARY-COMPUTING list, click the following link:
https://www.jiscmail.ac.uk/cgi-bin/webadmin?SUBED1=EVOLUTIONARY-COMPUTING&A=1

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001
April 2001
March 2001
February 2001
January 2001
December 2000
November 2000
October 2000
September 2000
August 2000
July 2000
June 2000
May 2000
April 2000
March 2000
February 2000
January 2000
December 1999
November 1999
October 1999
September 1999
August 1999
July 1999
June 1999
May 1999
April 1999
March 1999
February 1999
January 1999
December 1998
November 1998
October 1998
September 1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager