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 Entropy and spatial geometry
 Michael Batty, University of Reading

 Summary. The concept of entropy as used in explaining locational phenomena is briefly
 reviewed and it is suggested that the design of a zoning system for measuring such pheno
 mena is a non-trivial matter. An aggregation procedure based on entropy-maximizing is
 suggested and applied to the Reading sub-region, and the resulting geometries are con
 trasted with certain idealized schemes.

 In the last decade, several researchers have suggested that the concept of entropy
 is a relevant statistic for measuring the spatial distribution of various geographic
 phenomena. For example, Leopold and Langbein (1962) use a measure of
 entropy in deriving the fact that the most probable longitudinal profile of rivers
 has a negative-exponential form. Curry (1964) has shown that the rank-size
 distribution of cities can be explained by considerations involving the definition
 of entropy, and more recently, Wilson (1970) has developed a procedure for
 maximizing a function of entropy which can be used to describe a host of
 locational phenomena ranging from distributions of trip-making behaviour to
 distributions of population. Furthermore, Mogridge (1972), in an excellent
 review of the concept, demonstrates that entropy ' is of great, indeed essential,
 use in understanding economic and spatial systems'.

 Yet in all of this work, the spatial dimension in which the various phenomena
 are recorded and statistics computed is implicit rather than explicit. There is
 little concern for the way in which space is partitioned, for most of these entropy

 models appear to be based on the assumption that distributions are measured
 on spaces partitioned into equal areas or intervals. However, this assumption
 is not necessarily the most appropriate; geographers have long recognized that
 different and often conflicting statistical patterns can be interpreted from similar
 distributions measured on different areal systems. Although this problem has
 been quite widely studied in recent years under various guises such as that of
 spatial auto-correlation, there has been very'little research into the design of
 optimal spatial systems for geographical analysis or for locational planning.
 For example, Neft (1966) in his classic book on spatial analysis, hardly broaches
 the problem which is surprising in view of its importance.

 It is the purpose of this paper to investigate briefly the geometry of spatial
 systems in relation to the measurement of locational phenomena using the
 statistic of entropy. It is likely that there are ideal geometries associated with
 different spatial statistics, and in this paper, a geometry consistent with the
 definition of entropy will be outlined from both empirical and theoretical
 standpoints. In this quest, it is useful to begin by briefly reviewing the use of
 entropy in locational analysis.

 The discrete entropy of spatial distribution

 The definition of entropy most widely used in geographic research is due to
 Shannon (Shannon and Weaver, 1949) and it is also referred to as a measure
 of information or uncertainty. This measure can be written as

 H(r) =- Ypilnp1 (i)
 i
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 Entropy and spatial geometry 231

 where pi is the probability of the phenomena occurring in ri. The summation is
 taken over all the discrete intervals notated by i and it is clear that equation (1)
 is normalized so that Xp = 1. The problem of choosing an appropriate interval

 length, r1, can best be illustrated using the entropy-maximizing procedure due
 to Wilson (1970). Wilson maximizes equation (1) where pi is defined as a proba
 bility of location, subject to various constraints on the location and cost of
 locating some activity. In general, the solution to this problem implies that
 activity is located around some centre according to some decreasing monotonic
 function of travel cost or distance such as a negative-exponential or inverse
 power function. This result, however, assumes that the interval size is constant.
 Broadbent (1969) has suggested that the discrete measure of probability in
 equation (1) be replaced by a probability normalized with respect to the size of
 interval or area (which may vary over the distribution). If this is done, then the
 entropy-maximizing model becomes a model for locating the density rather than
 the absolute amount of activity, and the model is consequently more general.
 Although Broadbent's innovation suggests how interval size can be incorpor

 ated into the entropy formula, interval size is still exogenous to the formulation.
 Some light can be thrown on this problem, however, by recasting the solution
 procedure. Firstly, if equation (1) is maximized subject only to the normaliza
 tion constraint, the solution implies that locational phenomena be distributed
 equally in every area or zone. This seems a sensible result, for the greatest
 amount of information is extracted from a population if each part of the popu
 lation is described in the same detail. By substituting this result into the proba
 bility formula for density, then it is clear that the probability density varies
 only with the area or interval size. If entropy is now maximized subject to the
 locational constraints, then the solution implies that the appropriate area or
 interval size around some point varies in a negative-exponential fashion. In
 summary, then, with equal size areas the activity is distributed in a negative
 exponential form, whereas with equal amounts of activity, the areal system
 varies in a negative-exponential form. If the emphasis is on describing pheno
 mena in the best possible way, then there are clear reasons for preferring a
 negative-exponential distribution of zones and this links up with the work of
 Tobler (1963) who has derived a similar result from different considerations.
 A more formal presentation of this argument will not be pursued further here
 for this would be somewhat lengthy.

 Entropy as a measure of spatial grouping
 From the previous argument, what is required is a method for aggregating areas
 into zones with equal probabilities of location. Using a method due to Theil
 (1967), equation (1) can be expressed for the case in which the original intervals
 or zones are aggregated into larger sets called Sk. Entropy now becomes the
 sum of a between-set entropy and a within-set entropy.

 H(r) -YPklnPk -Pk r. P" (n P( (2) k k LicSk P-k I 1] (2
 The first term on the right-hand side of equation (2) is between-set entropy
 whereas the second term represents the within-set entropy. Equation (2) is
 subject to the constraints I Pk,= 1, and I Pi =Pk. In terms of equation (2),

 k isSk
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 Entropy and spatial geometry 233

 an optimal zoning system is one in which between-set entropy is maximized
 (which implies that within-set entropy is minimized). A formal demonstration
 of this can be achieved by maximizing I PklnPk, subject to XPk= 1, using the

 k k
 method of Tribus (1969) or Wilson (1970). This yields the well-known result
 that Pl=P2=P3 . . . ., and this measure of grouping clearly satisfies the argu
 ment of the previous section.
 To demonstrate the use of this formula in reality, an algorithm is needed to
 solve the maximization problem. It is unlikely that this problem can be solved
 in any reasonable time using mathematical programming methods and therefore
 the hierarchical heuristic devised by Ward (1963) has been adopted. This pro
 cedure optimizes the grouping by beginning at the top of the hierarchy and
 reducing the number of groups by one at each level. The algorithm has been
 applied to grouping 63 wards and parishes in the Reading sub-region, and at
 each level in the hierarchy the between-set entropy has been maximized. The
 probabilities in equation (2) have been based on the observed distribution of
 population in the sub-region. Figure 1 shows the distribution of the basic zones
 in the sub-region, and the contiguity constraints necessary to ensure realistic
 spatial aggregation are represented as a planar graph. In Figure 2, the different
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 Figure 2. Levels of spatial clustering.
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 234 Entropy and spatial geometry

 levels of aggregation which maxinmize between-set entropy are displayed by a
 tree-like graph.

 An idealized geometry of spatial systems
 In contrast to the real geometry of the space which is heavily influenced by the
 basic zoning system, it is possible to construct an idealized but simplified geo
 metry for a given number of zones. Assuming that the probabilities of location
 can be represented in some radially symmetric fashion around a pole using a
 mathematically tractable function, then zones can be constructed which have
 equal probabilities of location. As an example, the probability of population

 5t ZONES U ZINES 32 ZONES

 21 ZONES 14 ZONES 24 ZONES APPLIED tN A S CEOTAE IDEAL SYSTEM

 Figure 3. Real and idealized zoning systems.
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 Entropy and spatial geometry 235

 location is often represented using a negative-exponential density. In polar
 co-ordinates, this probability is

 p(r, 0) = A exp (-Ar) (3)
 where A is the normalizing factor, 0 is the angular variation and r is the distance

 from the pole. The factor A can be evaluated from
 rR '2 z

 Y FA exp (-Ar) r dO dr= 1 (4)

 R is the radius of the region and i is a parameter of the distribution which has
 an approximate value of 2/R where A is the mean travel distance to the pole
 (Angel and Hyman, 1971). The discrete probability Pi can be calculated from

 r 2 (02
 Pi -| A exp (-Ar)r d6dr (5)

 where 0 < rl <r2 AR and 0?01 <02 42xr.
 In a system of n zones with equal probabilities in each zone, equation (5)

 can be evaluated for pi== 1/n. For different n, equation (5) has been solved in
 two stages, first by finding annuli of equal probability starting from r1=O and
 second by dividing the radially symmetric system into equal sized sectors. This
 is only one possible method for solving equation (5) and therefore the idealized
 system is somewhat arbitrary. Nevertheless, interesting contrasts are provided
 at each level between the realistic aggregation of zones computed by Ward's
 algorithm and the idealized system. In Figure 3, the real and ideal geometries
 are compared and it is clear that the real geometry is markedly constrained by
 the original zoning. The last diagram on Figure 3 shows one possible ideal
 zoning system of 24 zones and 5 centres which approximate the size and location
 of the centres at Reading, Wokingham, Henley, Pangbourne and Burghfield.
 This zoning system was constructed from the successive application of equation
 (5) to each centre followed by iteration and adjustment. In this case, the corres
 pondence between the real and ideal systems is much closer.

 In conclusion, it appears that the use of the concept of entropy in explaining
 geographic phenomena can help in designing spatial patterns relevant to the
 distribution of such phenomena. Such measures of entropy also suggest ways
 in which zones can be aggregated and the resulting patterns can then be com
 pared with an idealized geometry. This concept leads to a promising method
 of describing and constructing spatial geometries and it seems that the measure
 of entropy could be further developed to test the efficiency of different zoning
 systems.
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 Agricultural Geography Study Group
 Suggestions have been made from time to time that the Group should broaden its
 interests to include all aspects of the use of rural resources. It is clear to the Committee
 that, while there is a considerable number of members with an interest in agricultural
 geography, there are not sufficient actively engaged in research in this field to sustain
 a satisfactory programme of meetings. Furthermore, the nature of agriculture is
 changing, particularly in developed countries. The wider impact of urbanization,
 especially the growth of outdoor recreation, the problems posed for the countryside
 by technical developments in agriculture and the withdrawal of land from agricultural
 use in problem rural areas are obvious examples. It is proposed to discuss this issue
 at the business meeting to be held during the annual conference at Birmingham;
 members who are unable to attend and other members of the Institute who would be
 interested in such a widening of the Group's interests and have views they wish to
 express should write to the Group's secretary, Dr J. Henderson, Dept. of Geography,
 University College Swansea, before 31 December, 1972.
 It is intended to devote the Group's discussion following the business meeting to

 an examination of the use of agricultural census data in geographical research; it will
 be introduced with a paper by E. K. Anderson and J. T. Coppock, University of
 Edinburgh, on the progress of the Type of Farming research project, now in its final
 year.

 J. T. Coppock

 Proposed Biogeography Research Group
 A number of geographers interested in biogeography have been considering the possi
 bility of setting up a formal Group with this special focus, possibly within the IBG.

 Within the general field we would wish to include not only pure biogeography and
 ecology, but possibly also conservation, soil science, land resource and recreation
 studies, and land use ecology.

 The heads of university departments of geography have already been circulated and
 have provided the names of many members of the Institute who embrace these interests.
 Those whose names have been received will already have received notice of the proposed
 Symposium to be held at the Annual Conference in Birmingham in January 1973,
 at which it is hoped to inaugurate such a Biogeography Group. Any members who have
 not so far received a notice and who are interested in the formation of such a group are
 asked to write to: Dr R. P. Moss, Department of Geography, The University, PO
 Box 363, Birmingham, B15 2TT. They will then be sent the relevant notices.
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