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Abstract

A major problem in information theory concems the derivation of
a continuous measure of entropy from the discrete measure. Many analysts
have shown that Shannon’s treatment of this problem is incomplete, but
few have gone on to rework his analysis. In this paper, it is suggested
that a new measure of discrete entropy which incorporates interval size
explicitly is required; such a measure is fundamental to geography and
this statistic has been called spatial entropy. The use of the measure
is first illustrated by application to one- and two-dimensional aggregation
problems, and then the implications of this statistic for Wilson’s entropy-
maximizing method are traced. Theil’s aggregation statistic is reinterpret-
ed in spatial terms, and finally, some heuristics are suggested for the
design of real and idealized spatial systems in which entropy is at a
maximum.

INTRODUCTION

In the physical sciences, there are few concepts which have more
widespread applicability than the concept of entropy. Entropy appears
to have that elusive but irresistible quality of generality which tempts
researchers from very different fields to use the idea in defining the
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structure and behavior of their various systems of interest. Yet such
widespread applicability is not without its problems. Georgescu-Roegen
[ 15], writing on the application of the entropy law to economic systems,
states that the meaning of entropy “varies substantially, at times even
within the same domain of intellectual endeavour,” and he continues
by suggesting that the terminology of the concept “is probably the most
unfortunate in the history of science.”

The difficulties over the definition of entropy seem to originate from
the fact that at one extreme, the concept is the basis of the second
law of thermodynamics, which states that the entropy of a physical
system must always increase, whereas at the other extreme, the concept
is used in defining the amount of information contained in a probability
distribution. In fact, there is a somewhat tortuous route linking these
two interpretations through arguments involving statistical physics. Yet
the implications of the concept are still difficult to trace in any definitive
sense [20].

The last decade has seen several applications of the concept in
geographical studies, and these applications can be conveniently divided
into those concerned with the wider implications of entropy in a
thermodynamic sense and those applications concerned with entropy
from an information theory viewpoint. Leopold and Langbein [22] use
entropy in deriving the most probable profile of a river system, whereas
Curry [12] derives the rank-size frequency distribution of settlements
from an application of the concept. There are, however, many more
geographical applications in the context of information theory. For
example, Chapman [9], Semple and Golledge [29], and Gurevich [17]
use the concept to measure the amount of information in spatial probabil-
ity distributions. Berry and Schwind [6] have followed Theil [32] in
analyzing migration flows using an algebra of entropy based upon the
algebra of probability. Curry [13, 14] has tentatively suggested that
the entropy statistic may be of use in exploring spatial series, and Wilson
[(36] has laid a new foundation for geographical model-building by
using the concept in analogy to problems in statistical mechanics.

There are already some useful reviews of the concept in geographical
analysis. Anderson [1], Marchand [24], and Medvedkov [25] provide
interesting summaries of the idea, and Mogridge [ 26] reviews the concept
indepth in both spatial and economic contexts. However, running through
much of this work is an impression of uncertainty and unfamiliarity
with the concept which occasionally manifests itself in misinterpretations
of the properties and terminology of the entropy law [ 10]. In this paper,
the definition and implications of a spatial entropy will be developed
from the information theory standpoint first developed by Shannon [30]
and Wiener [35], and the terminology used is that which is generally
accepted in the field of communication theory.

The first part of this paper will deal with the mathematics and derivation
of a formula for spatial entropy, which will then be applied to some
simple spatial aggregation problems. The entropy-maximizing model used
by Wilson [36] in geographical analysis is reinterpreted in the light
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of the new formula, and this suggests certain design principles for the
partitioning of spatial systems. In particular, the emphasis in this paper
will be focused upon using spatial entropy to define cutoff points for
boundary definition, to define a requisite number of zones for the analysis
of spatial systems, and to explore questions concerning the optimal
geometry of partitioned spatial systems.

THE MATHEMATICS OF ENTROPY

The amount of entropy in a probability distribution is also known
as the information content of that distribution. Information is defined
in terms of the prior probabilities of certain events occurring; the greater
the prior uncertainty of such an occurrence, the greater the information
gained if such an event occurs. Criteria for defining an information
statistic suggest that the measure would vary from zero to infinity and
that the measure would be additive between independent events. Hartley
[19] was the first to define the entropy of a particular event, but it
was Shannon [30] who first derived the general formula for measuring
the amount of entropy in any set of probabilities. Shannon’s well-known
formula can be written as

H=Zp(1n(%‘)=—2p‘lnp“ 98]

E p{ = 1’ (2)

where p, represents the probability of event i occurring and the summation
is over the range i = 1, 2, ..., n unless stated otherwise. In com-
munications theory, the logarithms are taken to the base 2 whereas in
this paper, the logarithms are natural logarithms to the base e.

Shannon also presented a formula for measuring the amount of
information in a probability density which he suggested was the continu-
ous form of equation (1).

H= - [p(x) 1n p(x) dx, (3)
Sp(x)dx=1. 4@

The integrations in equations (3) and (4) are implicit over the whole
range. It is of interest to note that in Wiener’s definition of information
(35], the sign is the reverse of Shannon’s and this early difference
has undoubtedly been responsible for some of the ensuing confusion
in the last two decades. However, the most important problem in both
Shannon’s and Wiener’s work is the fact that equation (3) cannot be
derived from equation (1) by letting the interval size in equation (1)
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tend to zero and passing to the limit. Shannon’s analogy between discrete
and continuous entropy lacks rigor. Furthermore, in problems where
interval size is important, as in geographical studies, such lack of rigor
is immensely disturbing.

Several researchers have been quick to point out the incorrectness
of deriving equation (3) from equation (1). Woodward [37], in a useful
book, develops a neat interpretation of the two formulas, and Jaynes
[21] discusses the problem of discrete versus continuous entropies in
some depth. To demonstrate that equation (1) does not converge to
equation (3), consider that p, in equation (1) is replaced by p(x), Ax,
where Ax, is the interval size. Then following Goldman [16],

H= lim - 2 p(x), Ax, In(p(x),Ax,). (5)

Ax 0 i

Expanding equation (5) gives

H= lim - 2 p(x), In(p(x),) Ax, + lim - 2 p(x), 1n(Ax,) Ax,. (6)

A x—0 i Ax;—0 &

Equation (6) converges to

H= —fp(x) 1n p(x)dx — lim 2 p(x), In(Ax,)Ax,. (D

Axy—0

If it is assumed that Ax, are equal for all i, then the second term on
the right-hand side of equation (7) can be simplified and equation (7)
becomes

H=—fp(x) 1n p(x)dx — lim 1n Ax. 8
Ax—0

Equation (8) demonstrates that the discrete entropy of equation (1)
increases without bound for the case in which the Ax,’s are equal. This
argument can be easily generalized to the case where each Az, is different.

Rearranging equation (7) and substituting the right-hand side of

equation (1) for H, we can write the continuous entropy of equation
(3) as

~Ip(x) Inp(x)dx= -3 pInp, + lim ¥ p(x),1n(Ax,)Ax, (9)
{ Ax—0 i

Since p(x), Ax, = p,, equation (9) becomes

=J p(x) 1n p(x)dx = —2 p,Inp,+ lim 2 p.In(Ax). (10)
[] Ax—0
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It is clear from (10) that the continuous entropy has been derived as
the difference between the discrete entropy of equation (1) and a term
reflecting the relationship between the set of probabilities and their
intervals of measurement. Thus the formula for spatial entropy in which
Ax, represents the spatial interval size is written as

= lim — P
H= lim 2‘ P, ln(Ax‘ ) (11)

Ax;—0

Equation (11) is the most important in this paper, for it is the basis
of much of the spatial analysis which follows from its application to
geographical problems.

It is suggested here that equation (11) is more useful in spatial analysis
than equation (1) because the effects of partitioning a spatial system
in different ways can be compared in absolute terms using equation
(11). Furthermore, the spatial entropy statistic can be used in comparisons
between different regions. There are several other possible entropy
statistics which can be defined in discrete or continuous terms, and
in the following section, two important alternative statistics are described.

SPATIAL ENTROPY STATISTICS

A well-known alternative measure of entropy is based on the concept
of redundancy in communications theory. The redundancy Z involves
measuring the ratio of actual entropy to the maximum entropy of a
system and subtracting this ratio from 1. This measure is defined as

H
H

max

Z=1- (12)

Using the discrete entropy formula to measure H as in equation (1)
and noting that the maximum entropy of equation (1) can easily be
shown to be 1n n, we can rewrite equation (12) as

z n,lnp,

z=1+—‘1—,oszsl. (13)
nn

As the number of intervals n changes, the value of equation (13) changes,
and comparisons between different systems are therefore difficult where

! Professor Curry’s intriguiel:!g use of the entropy statistic to measure variation in a
map which has been subjected to M-fold averaging by cascading {14) could be made
more general by the use of equation (11). Thus it might be possible to account for irregular
shapes and sizes of zones in averagir.lf and the information exhibited by different maps
with different numbers of zones could be compared directly.
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this measure of discrete redundancy is used.

However, with the continuous entropy in equation (11) as a measure
of H, comparisons are meaningful. Assuming that the interval size Ax,
is defined as A/n where A is the area of the system and n is the number
of zones, we can write the redundancy as

lnn+2p‘lnp{
{

Z= g 14
InA (14)

Equation (14) converges to a limiting value for Z as n increases. Another
useful statistic is based on the concept of information gain, which has
been studied in some depth by Theil [ 32]. Information gain I is defined
as

I=H, , - H (15)
The most important characteristic of equation (15) is that it converges

to the same value for both discrete and continuous entropies. Information
gain is calculated from equation (1) as

I=1nn+ p,Inp,. (16)
i {
]

Information gain is now calculated from equation (11) as
I=1nA+ > p, 1n(ﬂ),
1 Ax,

=1lnn+ 2 pinp, (17)
i

Equations (16) and (17) demonstrate the fact that the statistics for
redundancy and information gain are related by

I H,.-H
Z= = . (18)
H H

max max

The effect of changing the interval size Ax, can be assessed using
such statistics. For example, equation (11) provides a discrete approxi-
mation to equation (8) for given Ax,, and a measure of information
loss can be calculated by comparing such approximations with their
continuous forms. Mathematically, the problem involves approximating
an integral by a finite sum and in a geographical context, such interpreta-
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tions are helpful in partitioning a spatial system into zones. Criteria
for zoning can be fixed in terms of a difference € between the integral
and its finite sum, and such criteria could involve the choice of Ax,
by finding Ax, which satisfy

—Ip(x) 1n p(x)dx + 2 P, ln(AL;)
i

<eg. (19)

To demonstrate the application of this technique, some simple problems
of spatial aggregation will be introduced. Such problems involve firstly
the definition of regional boundaries and secondly the number of zones
which provide an acceptable description of continuously variable spatial
phenomena. A simple one-dimensional aggregation will be first intro-
duced, followed by a more complex two-dimensional aggregation prob-
lem.2 The data used in these examples are based upon the 1966 Census
of Population for the Reading region.

ONE-DIMENSIONAL AGGREGATION PROBLEMS

A simple one-dimensional probability distribution based upon the
well-known population density function [8] has been used as a basis
for this analysis. The density equation is

p(r) = Ke™ ™, (20)
where p(r) is the probability of location at distance r from the origin

0, A is a parameter of the density function, and K is a normalizing
constant defined from

R R
J. p(r)dr= I Ke >dr=1. (21)
0 0
Note that R is the boundary of the region. K is evaluated as
A
K=———m— 22
1= ") (22)

The parameter A is related to the mean travel distance R to the origin
0 and is calculated from

2The subsequent analysis is of theoretical rather than practical significance, for the
analysis has been restricted to monocentric radially symmetric systems. An extension
to multicentric systems is mathematically cumbersome although essential if the results
of this section are to have any practical import. Future research will be concentrated
on this problem.
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- R
R=f Ke~*r dr,
(1]
1

e R

The value of A can be found’by solving (23) iteratively for given R
If R = o, then A = 1/R, and this value for \ serves as a useful first
approximation in the iterative scheme.

The problem of choosing a value for R which is the regional boundary
can be approached by considering the difference between the entropy
for R = ® and the entropy for finite R. Then for any R, the entropy
is calculated as

R
H= -1 p(r)1np(r)dr,
(1]

R
= - (1—’;._7‘)"' e (1nk —Ar— 1n(l — e ))dr.  (24)
- 1]

Equation (24) simplifies to

Xe*"R
H=—1n)\+l—ﬁ+ln(l—e'“‘). (25)

When R = o, it is clear that H= —~1n\ + 1, and therefore the difference
in entropy H(e) between R and = is easily evaluated as

H(e) = - f " p(®) 1n p() dr

R

Ae*RR
- . In(1- &R, (26)
- @

In Figure 1, equations (25) and (26) are plotted against different values
of R. With 0.05 as an acceptable value for the ratio of equations (26)
to (25), it is clear from the graph that the radius of a region centered
on the origin 0 would be in the order of about 25 minutes travel time.
Different ratios would lead to different radii, and this analysis could
be thus used to determine the boundaries of any monocentric region.
To illustrate the problem of describing a probability distribution using
the discrete and continuous entropy statistics, equation (1) is first plotted
against the number of intervals n as in Figure 2. A better illustration
of the fact that the discrete entropy increases without bound as n increases,
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which has already been deduced, is provided in Figure 3, where the
entropy is plotted against the logarithm of the number of zones. It is
also clear from Figure 3 that for large n, the increase in entropy tends
to be linearly related to the logarithm of the number of zones.

The effect of increasing the number of zones (or equivalently reducing
the interval size Ax,) on the discrete approximation to continuous entropy
given in equation (11) is plotted in Figure 4.3 It is apparent from this
graph that with a radius R set at 40 minutes travel time, about 10 zones
ensure that the discrete entropy is within 2 percent of the value for
the continuous entropy. Although a one-dimensional region is highly
unrealistic, some insight into the number of zones required in a two-
dimensional region is provided by squaring this number of zones. This
gives as a first approximation 100 zones, which is certainly in excess
of the number of zones used recently in building operational urban
models of this region [3]. However, a more realistic number of zones
can only be calculated when the more complex two-dimensional problem
is considered; the next section outlines such an analysis.

Two-DIMENSIONAL AGGREGATION PROBLEMS

A two-dimensional probability distribution based on the population
density model [8, 23], is used as the basis for extending this analysis.
This distribution measures the probability of locating at a given distance
r from the origin O in a radially symmetric density field of the type
developed by Angel and Hyman [2]. Location in the model is defined
by polar coordinates where 0 is the angle of variation and ris the distance
from the pole. The density function is

p(r,8) = Ke™™, (27)

where \ is a parameter and K is a normalizing constant which ensures
that

2n R
f j p(r,0)rdodr=1. (28)
0o Jo
K is evaluated from equation (28) as
A
K= (29)

1
o (T 1- e M) - e‘“‘R)

3Comparing Figures 3 and 4, it is apparent that in Figure 3 for a given number of
zones, discrete entropy decreases as the regional boundary increases, while in Figure
4, there is a reverse effect. This difference is due to the way in which Ax, is measured
in the discrete approximation to the continuous case.
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The parameter A, as in the one-dimensional function, is related to the
mean travel distance R to the pole which is

2% R
R= f J' Ke™r? dodr. (30)
o [¢]
Evaluating equation (30) gives
- 2 —AR 2R 2
R=K2w {— -2 (R2+—+—)}. (31)
A® A A2

A value for A can be found by iteration of equation (31) with a first
approximation for A calculated from

2n =
R= f I Ke 12 dodr = 2 . (32)
1] [1] A

As a digression, in comparing equation (32) with equation (23), it is
interesting to note that for a one-dimensional system, A = 1/ R, whereas
for a two-dimensional system, A = 2/R.

As in the previous analysis, the first stage in determining a value
for R involves relating the entropy for finite R to the entropy in which
R = =, The entropy H is defined as

2 R
H= —f f p(1,0) In p(r,0) r dodr
[¢] 0

R
= —K2-n-f e »(InK- Ar)rdr
(1]

R

R
-K2xn anf e Mrdr+ hK21'rf e~ 2 dr. (33)
0

o

The entropy H in equation (33) is evaluated as

1
H=-1ln\+ 1n2% + ln(x(l —e M)~ e"‘“R)

2 2R 2
(2-nomn(me + 22, 2))
+ A A A

(Al(l - e—)\R) - e-ARR)

(34)

If R=othen H= -2 In\ + 2 + In 2w, and therefore the error
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term H(e) can easily be deduced by subtracting equation (34) from
the value of entropy when R = », The equation for H(e) has similar
terms to equation (34) and has therefore been omitted because of its
somewhat cumbersome nature.

In Figure 5, the entropy from equation (34) and the entropy error
H(e) are plotted against different values for R. With 0.05 as the ratio
of H(e) to the entropy where R = «, the graph suggests that this ratio
is met when the radius of the region is about 15 minutes travel time.
This radius is smaller than the one-dimensional radius for obvious
reasons, but this value gives a useful indication of the cut-off point
for defining the regional boundary. Equation (11) has been calculated
for various values of Ax, in the quest to determine the optimum number
of zones for describing the population density field and this graph is
shown as Figure 6. As in the previous analysis, a 2 percent difference
between equation (3) and equation (11) is reached when the region
is partitioned into about 100 zones with a radius R equal to 20 minutes
travel time. This value is close to the value of R calculated for the
one-dimensional case, which is encouraging.*

4 At present, some research is being carried out into the differences in computing equation
{11) usin poiar or Cartesian coordinates. A measure of this difference can be derive
analytically using the continuous form of entropy by finding the transformation between

the coordinate systems [ 16, 33].
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The same type of analysis can be carried out using the redundancy
and information-gain statistics. Figures 7 and 8 show that plots of
redundancy Z from equation (14) and information gain I from equation
(17) behave similarly and converge to limiting values as the number
of zones n is increased. However, the rate of convergence of both these
statistics is slower than the convergence of equation (11), and the 2
percent criteria used above suggest that number of zones required would
be nearer to 500 than to 100. Precise theoretical criteria are somewhat
arbitrary to determine, but a summary of the pertinent features of this
analysis is given in Table 1 in terms of specific limits. Having described
a procedure establishing rules for boundary definition and zone size,
it is now necessary to take the analysis further by exploring the implica-
tions of this work for geographical model-building.

A REINTERPRETATION OF THE ENTROPY-MAXIMIZING MODEL

One of the most important conceptual and technical advances in
theoretical geography and model-building in recent years is the applica-
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TABLE 1

VALUES FOR THE ONE- AND Two-DIMENSIONAL ENTROPY STATISTICS IN A MONOCENTRIC
REGION wiTH A RADIUS OF 20 MINUTES TRAVEL TIME

Entropy Statistic Actual Value Limiting Value

One-dimensional

continuous entropy 2.8332 2.9773
One-dimensional approximation

to continuous entropy 2.7303 2.7271
Two-dimensional

continuous entropy 6.1594 6.4062
Two-dimensional approximation

to continuous entropy 6.2677 6.3064
Two-dimensional approximation

to continuous redundancy 0.1341 0.1451
Two-dimensional

information gain 0.9598 1.0711

NoOTE: The onc-dimensional statistics are based on 10 zones; the two-dimensional statistics are based on 100 zones.

tion of entropy-maximizing models used in statistical mechanics to the
modelling of spatial phenomena. Although this approach was suggested
as far back as 1959 by Cohen [11], Wilson [36] has been mainly
responsible for developing the idea in a geographical context. To
introduce the technique, consider a problem of finding the set of
probabilities for locating population in a bounded region. This location
problem will be subject to constraints of which the two most important
are likely to be

> =1, (35)

> p.r=HR (36)
i

Note that here r, is a measure of location cost at i and R is the mean
location cost in the system. In the context of the population density
models introduced previously, r, could be the travel cost between origin
0 and location i. By maximizing equation (1) subject to equations (35)
and (36), Wilson [36] shows that the probability of locating in any
iis given by

e—)‘r.

py=——. (37

S

i

The model of equation (37) has been derived by Wilson for locating
a wide variety of spatial phenomena ranging from trip-making activities
to population.

However, the effect of zone size or shape is subsumed within the
logic of this model, and at best one can only assume that zone size
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is unimportant in the model if the zones are all of equal size. It is
possible to build zone size explicitly into the model if the spatial entropy
function, rather than the discrete entropy function, is maximized. The
spatial entropy function for fixed Ax, is repeated here for convenience.

H= —2‘: P, ln(ALx“)' (38)

To maximize equation (38) subject to the constraints in equations (35)
and (36), first construct a Lagrangean L where the undetermined multi-
pliers « and A refer to the constraint equations (35) and (36) respectively.

--Sr, 1,,(%") - .,(2‘ P, - 1) - x(}; pri- ﬁ). (39)

Differentiating equation (39) with respect to p, and setting the result
equal to zero gives the first-order conditions for a maximum.

oL
—=-Inp,+Inlx,—a—- Ar,=0. (40)
iy,

Rearranging equation (40) and taking antilogs makes clear that
Py = Az (41)

To find the value of «, substitute equation (41) into equation (35). Then

Sp=eY dre =1, (42)
i ]

and from equation (42),

1
e s —m (43)
Dax e
i
The probability location model can now be written as
Ax,e
p = — (44)

EAx,e'“'
i

and equation (44) demonstrates that zone size Ax, has explicitly entered
the model. Wilson’s result in equation (37) can easily be derived from
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equation (44) by assuming that Ax, = Ax, = ... = Ax_. A derivation
similar to the above analysis has been made by Broadbent [7] in
constructing a maximum-entropy model dealing with trip density rather
than trip distribution, and it is also worth noting that Cohen [11] briefly
discussed the influence of zone size in such models.5

Although a maximum entropy model incorporating zone size has been
derived, zone size is still exogenous to the model. It should, however,
be possible to explore the question of zone size and shape in order
to assess the effect of varying size and shape on the model’s conceptual
and technical form. For example, several location theorists have suggested
that zones should be constructed so that there are equal amounts of
activity, rather than equal areas in each zone. This conclusion has been
reached in problems concerned with political districting [ 18], and this
fact demonstrates that theorists intuitively feel that optimum zoning
systems are those in which populations are described in equal terms.
If, therefore, the probabilities of location are assumed to be equal in
each zone, the maximum entropy model can be recast so that some
insight is obtained into zone shape. In equation (44), assume that the
value of p, is set equal to 1/n in each zone. Then

Ax.e ™"

—Ar
ZAx e
i

1_-
n

(45)

From equation (45),

(z Ax,e” "") et
£

Ax, = : (46)
n

Equation (46) could be used as the basis for some iterative scheme
for fixing zone sizes which give equal location probabilities. At equilib-
rium, equation (46) suggests that such zone sizes would vary directly
with the exponential distribution of location costs. In fact, in a later
section of this paper, a continuous form of equation (46) is used in
constructing an idealized zoning system. It is also interesting that Tobler
[33] has suggested a class of map transformations based on equal-area
projections for translating the variations in spatial phenomena into
geometric terms. The model above in equation (46) involves a similar
concept of geometric distortion.

$Bussiere and Snickars [8] derive equation (44) using an entropy maximizing scheme
based on the continuous entropy of equation (3). However, zone size is implicit in their
;nodel and can only be defined by making the appropriate integrations between given
imits.
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ENTROPY-MAXIMIZING CLUSTER ANALYSIS

In problems of spatial aggregation and regionalization, one of the
most important criteria involves aggregating activities in such a way
that the heterogeneity of the system is preserved as far as possible.
Various clustering schemes which incorporate this notion have been
used in geographical studies [31]. A particularly attractive aggregation
procedure has been suggested by Theil [32], and this scheme is based
upon Shannon’s discrete entropy measure given in equation (1). This
entropy function can be expressed as the sum of a between-set entropy
and a within-set entropy

Py Py
H=-MP,1inP,— > P ( —ln—), (47)
2 N , Zk , gk Pk Pk
where P .= 2 P, (48)
1Sk

and SP=Y>np=1 (49)
k k

€S

Equation (47) is constant for any aggregation of the spatial units notated
by {into larger sets S,. The first term on the right-hand side of equation
(47) is the measure of between-set entropy whereas the second term
is the within-set entropy. On aggregating the basic spatial units into
sets S,, it can easily be shown that the between-set entropy is monotoni-
cally-decreasing as the size of sets S, increases and that the within-set
entropy is monotonically-increasing. The proof of this assertion has been
formally demonstrated by Ya Nutenko [38] and here it is sufficient
merely to indicate the main lines of his proof. Consider an initial
aggregation of the spatial units into n + 1 sets where the set §_, | contains
a single spatial unit. On the next level of aggregation, set S, and set
S,.., are combined to form set S, The difference J between the entropy
of the new m sets and the old n+1 sets is written as

]=’§pk1nP,‘—iPklnPk. (50)
k=1 k=1
Equation (50) can be simplified to
J=P, 1nP +P,  InP, —-P, InP,, (51)
which in turn can be expressed solely in terms of the first n+1 sets.

]=PnlnPn+Pn+l lnPn+l_(Pn+Pn+l>ln(Pn+Pn+l)' (52)
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Grouping like terms in equation (52) gives
J=P(QnP,-1In(P,+P,,))+P,,,(InP,,,
—1n(P,+ P,,,)). (53)

As equation (53) is clearly negative, the proof is complete and can easily
be extended to demonstrate the increasing value of within-set entropy
at higher levels of aggregation.

In using equation (47) as a basis for aggregation, it is suggested that
the grouping procedure should maximize between-set entropy, which
in turn implies that within-set entropy is minimized. Maximizing be-
tween-set entropy subject to the probability constraint in equation (49)
leads to a solution in which the location probabilities in each set are
equal. This result is completely consistent with the suggestion of the
previous section that an optimum zoning system in terms of the smallest
information loss is one in which all location probabilities are equal.
In fact, equation (47) has already been used by the author [4] in
aggregating zones in the Reading region.

The theme of this paper however suggests that the discrete entropy
function should be replaced by a spatial entropy function which is
the discrete equivalent of the continuous function. Therefore, it is
necessary to explore whether or not the discrete aggregation formula
of equation (47) can be replaced by a continuous equivalent, thus bringing
zone size explicitly into the aggregation procedure. First, expand equation
(11) as follows:

H= —2‘ p,Inp + 2‘ p,1n Ax,. (54)

Then, the second term on the right-hand side of equation (54) is rewritten
as

Ep,lnAx‘=ZkZp‘ln Ax,,
i

Sy

=S, S L 1nax, (55)
k

€Sy " k

The term 1n Ax, in equation (55) can be written as

A
InAx, = ln-L + lnz Ax,, (56)

2 Ax‘ ieSi
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and since AX, = 2, ¢, Ax,, equation (55) can be expressed as

z‘p‘lnAx‘ ZPk(Z Pk( :X lnAXk))

{eSy

Ax,

P
=2kpk(2?;1nAxk)+;PklnAXk (57

{eSx

The first term on the right-hand side of equation (54) can be expanded
as equation (47), and adding equations (47) and (57) produces the spatial
form of Theil’s aggregation formula.

H=—szlnPk-*rEPklnAXk—sz(z—& 1nﬂ)
k k k 1eSk Pk Pk
Ax
+3P ( ‘),
2 > 5 p, " ax,

€Sk
= -3 Poin( )zp (zgk (%%)) (58)

Maximizing the first term on the right-hand side of equation (58) subject
to the usual probability constraints leads to

L= _ZPk ln( Py )- a(sz - 1) (59)

dL
— =~1InP, + InAX, - a=0. (60)
P,

Equation (60) implies that the probabilities of location P, are determined
according to the geometry of the system. In algebraic terms

AX,
> AX,
k

The spatial entropy function in equation (58) has been used in
aggregating zones in the Reading area where the population has been
used to determine the probabilities of location. The data is recorded
in 130-kilometer grid squares [5], and the method of aggregation is
based on the hierarchical heuristic devised by Ward [34]. At each level
of the hierarchy, between-set entropy is maximized by computing the

(61)

P, =
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Fic. 9. A dendrogram summarizing hierarchical aggregation-clustering based on Theil’s formula and Ward’s algorithm,
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measure for every possible aggregation of single spatial units to their
spatially adjacent sets. There are also fairly severe limitations on the
process imposed by the contiguity constraints. In Figure 9, the hierar-
chical aggregation scheme is illustrated by a dendrogram; and in Figure
10, the initial partition of the town into 130-kilometer squares is depicted
together with the aggregated solution containing 20 sets. It is clear from
both Figures 9 and 10 that although the method might optimize the
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entropy measure at each level in the hierarchy, the overall solution at
any level is probably suboptimal. This is a limitation of Ward’s algorithm
which is particularly serious in problems of spatial aggregation; and
in the quest to find optimal solutions to this zoning problem, a simple
algorithm which can be applied at any level of the hierarchy, has been
developed.

THE DEsIGN OF MAXIMUM ENTROPY SPATIAL SYSTEMS

An algorithm designed to minimize the within-set entropy given by
equation (58) is illustrated by the flow chart in Figure 11. At any particular
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level of aggregation, the algorithm operates by attempting to improve
a basic feasible solution in a trial-and-error fashion. First, the within-set
entropy of the basic feasible solution is calculated and the contribution
of each zone to this entropy is ranked. Then, a search is initiated to
discover the greatest difference in entropies between any two zones;
if these two zones are contiguous and if the zone with the largest entropy
belongs to a set of two or more zones, then a new set is formed by
combining these two. If such combination is impossible, then the search
continues to discover the next highest difference in entropies and so
on.

When a new set has been formed, it is necessary to find out whether
or not the new solution produces a lower within-set entropy. If not,
the search is continued as above; but if the entropy is lower, the solution
is accepted and the zones are ranked as before. The process is continued
by searching for an improvement in the new solution which minimizes
within-set entropy. The graph in Figure 12 shows the improvement
in the minimum value for within-set entropy set against the cumulative
number of solutions defined and tested by the heuristic. After about
1,500 solutions further improvement becomes much more difficult to
achieve, and to all intents and purposes, this suggests that the procedure
has converged. Figure 12 also presents a graph which shows that the
average number of solutions required to produce a new solution is fairly
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constant. In Figure 13, the basic feasible solution and the final solution
are presented; and in comparing this solution with the solution in Figure
10, it is clear that this algorithm is considerably more efficient than
the cluster analysis in producing a near optimal solution. It is possible
that there are heuristics or formal programming procedures such as some
of those suggested by Scott [28] which are better suited to this kind
of minimization problem; such methods are at present being considered.
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Fic. 13. The initial and final basic feasible solutions.
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Of particular interest is the relationship between this algorithm and
the transformation algorithm used by Rushton [27]. Rushton’s procedure
is applied to a system of central places which are systematically distorted
due to varying population density, and it appears that this algorithm
could be applied to the problem considered here.

Apart from the design of realistic spatial systems by aggregating basic
spatial units, it is possible to design idealized systems using the concept
of maximum entropy. For example, consider a radially symmetric mono-
centric population density field where it is required to partition the
field into zones in which location probabilities are equal. Clearly there
are many solutions to this problem [33], although fairly realistic proce-
dures can be defined. Using the density field previously specified in
equations (27) to (29), and noting that p, = 1/n where n is the number
of zones, an inner zone of radius R, can be calculated from

1 27 R,
p,=—= f Ke ~*r dodr. (62)
n

[¢] 4]

R, can be found by using the following iterative scheme derived from

equation (62)
2wK 27K 1 -
1n N = In = P +1n7+Rl

R(lm+ 1) = N . (63)

Having found R,, it is possible to define other zones which are segments
of annuli around the pole of the system, by attempting to meet a condition
that the radial distance of the segment be as close as possible to the
circumferential distance. In general, on iteration (k) of this procedure,
the probability of locating in the annulus (k) is

R k-1

“errdr— 3 p(j). (64)

] i=1

p(k) = K21rj

A trial value for R, can be based on previous distance measures, and
the number of zones N which would be partitioned in the annulus
is calculated as

N = integer [ np(k)]. (65)
Then the circumference of the segment d can be calculated as

d= 21;5". (66)

If |d - (R, = R,_))| > ¢, then dN is substituted for R, and equations
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(64) to (66) are recalculated until the number N is unchanged or until
the difference € is reached.

The actual distance R{™*" is found by substituting N/n for p, in
equation (63) and solving for R{"*? by iteration. In this way, a solution
can be built up progressively by moving from the pole to the boundary
of the field. Because of difficulties in meeting the distance condition
exactly, this method may overshoot the boundary and finish with too
many zones or with a peculiarly shaped final set of zones. To avoid
such problems, if the final value of N computed on any iteration of
the procedure is greater than the number of zones required to complete
the solution, this value of N is disregarded and a value for N which
completes the solution is fixed. It is possible that the solution might
be easier to achieve if the procedure were operated in a reverse fashion,
from the boundary to the pole. In such a case, the probability p(k)
for the annulus on iteration k would be calculated from

Ry_)

p(K)= K21rf e >rdr

Ry

K2 1 1
= _X"_T'[e “MR, (Rk + T) - e_knk_l (R k—1 + K)]. (67)

The number of zones N and the distance d could be found in a manner
similar to the above procedure, and iteration on equation (67) would
take place until N is unchanged or until € is met. The final value for
R, is found by fixing p(k) as N/n and finding R, from equation (67).
Overshoot is less likely to occur using this method, but the final value
for N might have to be disregarded and arbitrarily fixed if overshoot
does occur. In Figure 14, the form of an idealized zoning system based
on the Reading data is presented, thus illustrating the problem of
overshoot. Comparing Figures 13 and 14, some correspondence between
the real and idealized systems is evident.

CoNcLUSIONS AND FURTHER RESEARCH

If there is any message in this paper, it is that space is not a trivial
matter in geographical analysis. This may appear to be somewhat naive
but it is astonishing how much analysis, especially in the field of urban
modelling, either treats space implicitly rather than explicitly or ignores
its influence altogether. Much of the statistical analysis in recent years,
such as that concerned with spatial regression and with spatial spectra
[13, 14], has confronted the influence of space directly, and the time
now seems ripe to begin to synthesize much of this material into a
coherent body of analysis. It is possible that a fruitful area of synthesis
is in the context of the aggregation problem, and it appears that some



Michael Batty /| 29
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Fic. 14. The construction of idealized spatial geometries.

of the ideas explored here may be of interest, if not of use, in this
area.

The problem of treating phenomena discretely or continuously has
never been formally treated in theoretical geography, yet this area appears
extremely promising from the work of Tobler [ 33], and it may be possible
to extend some of the design methods for spatial systems using such
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work. Furthermore, more research is required in problems of regionaliza-
tion and the statistical implications of such analysis, which has largely
been neglected to date. It is hoped to extend some of the ideas of this
paper and to assess their relevance in the context of mainstream spatial
analysis in the quest to synthesize the concept of entropy with more
well-defined and widely applied methods of spatial analysis.
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