
STIR

Software for Tomographic
Image Reconstruction

User’s Guide
Version 4.0

K. Thielemans
Hammersmith Imanet Ltd; Algorithms and Software Consulting Ltd; University College London

Ch. Tsoumpas
Hammersmith Imanet Ltd; Imperial College London; King’s College London

D. Sauge, C. Labbé, C. Morel
Hopital Cantonal Genève

M. Jacobson
Technion University

A. Zverovich
Brunel University

T. Beisel
Univ. of Paderborn

C. Falcón
Univ. of Barcelona

License

This file is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

Parts of this file are licensed under the PARAPET license. See STIR/LICENSE.txt for details.

1

Contents

1 Introduction 2

2 A general note on documentation in STIR 2

3 Installation 2
3.1 Installing source files . 3
3.2 Installing external software . 3

3.2.1 BOOST . 3
3.2.2 C++ Compiler . 3
3.2.3 Enabling ECAT 7 support . 3
3.2.4 Enabling GE RDF and VOLPET support 4

3.3 Building . 4
3.3.1 Using CMake . 4

3.3.1.1 CMake configuration variables . 4
3.3.2 Operating system specifics . 5

3.3.2.1 Mac OS . 5
3.3.2.2 All Unix/Linux flavours . 6
3.3.2.3 Cygwin on Windows . 6

3.4 Running tests . 6

4 Running STIR programs 7
4.1 Conventions . 7
4.2 Error handling etc . 8
4.3 Running programs using MPI . 8
4.4 Running programs using OPENMP . 8
4.5 File formats . 8

4.5.1 Interfile . 9
4.5.2 Siemens interfile-like . 9
4.5.3 VOLPET sinograms . 9
4.5.4 ECAT6 and ECAT7 data . 9
4.5.5 Image IO using the AVW library . 9
4.5.6 Image IO using the ITK library . 10
4.5.7 SimSET files . 10
4.5.8 ROOT files as output by OpenGATE . 10

4.6 List mode processing . 11
4.6.1 lm to projdata . 11
4.6.2 lm to projdata bootstrap . 11
4.6.3 lm fansums . 11
4.6.4 list lm events . 12
4.6.5 list lm countrates . 12

4.7 Rebinning algorithms . 12
4.7.1 SSRB . 12
4.7.2 FORE . 13

4.8 Image reconstruction programs . 13
4.8.1 Iterative algorithms . 13

4.8.1.1 Running OSMAPOSL on static projection data 13
4.8.1.2 Notes and technical issues regarding the selection of parameters . . 18

2

4.8.1.3 Extra parameters the MPI version 18
4.8.1.4 OSSPS . 19
4.8.1.5 Using list mode data as input . 19
4.8.1.6 Parametric image estimation algorithms 20
4.8.1.7 HKEM . 20

4.8.2 Filtered back projection (FBP2D) . 22
4.8.3 3D Reprojection Algorithm (FBP3DRP) . 23

4.9 Scatter Correction . 23
4.9.1 Data Initialisation . 23
4.9.2 SSS . 24
4.9.3 Iterative loop (if necessary) . 25
4.9.4 Limitations . 26

4.10 Parametric Image Construction using kinetic modelling 26
4.11 Motion Correction . 27

4.11.1 Data Preparation . 28
4.11.1.1 Coordinate system for motion vectors: 29

4.11.2 Motion Correction . 29
4.11.2.1 RTA . 29
4.11.2.2 MCIR . 29

4.11.3 Regularisation and Noise . 30
4.11.4 Further Extensions for the Future . 30
4.11.5 Realistic Datasets and other info . 30

4.12 Utilities . 30
4.12.1 Displaying and performing operations on data 30

4.12.1.1 list image info . 31
4.12.1.2 stir write pgm . 31
4.12.1.3 manip image . 31
4.12.1.4 manip projdata . 31
4.12.1.5 display projdata . 31
4.12.1.6 list projdata info . 31
4.12.1.7 create projdata template . 32
4.12.1.8 extract segments . 32
4.12.1.9 stir math . 32
4.12.1.10 generate image . 33
4.12.1.11 zoom image . 33
4.12.1.12 get time frame info . 33
4.12.1.13 list ROI values . 33
4.12.1.14 extract dynamic images . 33

4.12.2 Converting data . 33
4.12.2.1 conv to ecat6 . 34
4.12.2.2 conv to ecat7 . 34
4.12.2.3 ifheaders for ecat7: ECAT7 support for reading 34
4.12.2.4 ecat swap corners . 34
4.12.2.5 copy ecat7 header . 35
4.12.2.6 conv AVW . 35
4.12.2.7 conv GATE projdata to interfile 35
4.12.2.8 conv gipl to interfile and conv interfile to gipl 35

4.12.3 Filtering image data . 36

3

4.12.4 Comparing files . 36
4.12.5 Precorrecting (or uncorrecting) projection data 36
4.12.6 Generating Poisson noise . 37
4.12.7 Motion related utilities . 38

4.12.7.1 warp image . 38
4.12.7.2 warp and accumulate gated images 38
4.12.7.3 zeropad planes . 38
4.12.7.4 shift image origin . 38
4.12.7.5 shift image . 38

4.12.8 Using projectors . 38
4.12.8.1 Utilities for forward or back-projection 38
4.12.8.2 Utilities for testing . 38

4.12.9 Interfacing with SimSET . 38
4.13 User-selectable components . 38

4.13.1 Available output file formats . 39
4.13.1.1 Common parameters . 39
4.13.1.2 Interfile . 39
4.13.1.3 ITK . 40
4.13.1.4 ECAT6 . 40
4.13.1.5 ECAT7 . 40

4.13.2 Available filters or data processors . 40
4.13.2.1 Separable Convolution . 41
4.13.2.2 Separable Cartesian Metz . 41
4.13.2.3 Separable Gaussian Filter . 42
4.13.2.4 Median . 43
4.13.2.5 Truncate To Cylindrical FOV . 43
4.13.2.6 Threshold Min To Small Positive Value 43
4.13.2.7 Chained Data Processor . 43

4.13.3 Incorporating prior information . 43
4.13.3.1 FilterRootPrior . 44
4.13.3.2 Quadratic . 44
4.13.3.3 PLS . 45

4.13.4 Selecting different projector pairs . 45
4.13.4.1 Matrix . 45
4.13.4.2 Separate Projectors . 46

4.13.5 Selecting a forward projector . 46
4.13.5.1 Matrix . 46
4.13.5.2 Ray Tracing . 46
4.13.5.3 Pre Smoothing . 46

4.13.6 Selecting a back projector . 47
4.13.6.1 Matrix . 47
4.13.6.2 Interpolation . 47
4.13.6.3 Post Smoothing . 47

4.13.7 Selecting a projection matrix . 47
4.13.7.1 Common parameters to all projection matrices 48
4.13.7.2 Ray Tracing . 48
4.13.7.3 Interpolation . 49
4.13.7.4 SPECT UB . 49

4

4.13.7.5 From File . 51
4.13.8 Selecting a bin normalisation procedure . 52

4.13.8.1 From Projdata . 52
4.13.8.2 From ECAT7 . 52
4.13.8.3 From Attenuation Image . 52
4.13.8.4 Chained . 53

4.13.9 Available shapes . 53
4.13.9.1 Box3D . 53
4.13.9.2 Ellipsoid . 53
4.13.9.3 Ellipsoidal Cylinder . 54
4.13.9.4 Discretised Shape3D . 54

4.14 Display . 54
4.14.1 X Windows display . 54
4.14.2 PGM display . 54
4.14.3 MathLink display . 55

5 B-spline interpolation in STIR 55

6 Directories in the STIR tree 55

7 Future developments and Support 55

8 References 56

1 Introduction

The objective of this document is to give practical information about the use of the object-oriented
library for 3D Reconstruction of PET and SPECT data, called STIR. The most recent version of
this document (and the library) can be found on
http://stir.sourceforge.net.

This library was originally developed by the PARAPET project (funded by the European Union
during 1997-2000), extended by Hammersmith Imanet and made into an Open Source project.
The current library has different license restrictions than the original PARAPET distribution. De-
tails on licensing are to be found during the registration process, and the file STIR/LICENSE.txt
that comes with the distribution.

See the publications section of the STIR website for information on which reference to use for
STIR. You will want to read [Thi12], see [Fus13] for SPECT additions since STIR 3.0 (for STIR
1.x, use [Lab99a], [Lab99b]).

This guide attempts to give end users an overview of all the functionality in STIR. It mainly
provides procedures for downloading and installing the necessary gnu g++ compiler tools and the
STIR reconstruction building blocks. Then a brief explanation is given about how to run recon-
struction algorithms as well as additional utilities. A description of the reconstruction building
block library can be found on our web site (section documentation). A short (but very out-dated)
review of analytic and iterative reconstruction methods is available in [PAR1.3] (available on the
STIR web-site).

5

http://stir.sourceforge.net

2 A general note on documentation in STIR

Although we attempt to keep all documentation up-to-date, we recommend to read documentation
in the following order:

• general overview documents, such as this User’s Guide

• the STIR Wiki

• online generated documentation (produced by doxygen). This is produced from comments
and (partly) code in the source files.

• check the source itself if in any doubt.

Many questions have already been answered via the mailing lists. See the web-site on how to
search these.

Any comments on documentation, and especially contributions are always welcome. Please use
the stir-users mailing list.

3 Installation

This section describes how to install STIR. It is complemented by information on the STIR Wiki

with information for specific systems etc.

3.1 Installing source files

Download the source at the STIR site:

http://stir.sourceforge.net

(Section Registered Users). Alternatively, if you are feeling adventurous, you can get the most-
recent developer version (no guarantees!) of STIR from
https://github.com/UCL/STIR.
Download the source files in the zip format. You can then use unzip from
http://www.info-zip.org/pub/infozip/. Extract using
> unzip -a file.zip

The -a option makes sure that files are extracted using the end-of-line convention appropriate
for your system. Note that other programs that can handle zip files (such as WinZip) should work
as well, although you might have problems with the EOL convention.

Note that you can put the distribution in any location (it does not have to be your home
directory).

The result is a STIR directory and subdirectories, described in the annex section.

3.2 Installing external software

STIR relies on some external software and a few external libraries which enable certain function-
ality. On most systems, you should be able to get these using your package manager. Please check
the Wiki for most up-to-date information.

6

http://sourceforge.net/apps/mediawiki/stir
http://sourceforge.net/stir
http://stir.sourceforge.net
https://github.com/UCL/STIR
http://www.info-zip.org/pub/infozip/

3.2.1 BOOST

The only required external library is the well-respected boost library. If it is not installed on your
system, you can download it from http://www.boost.org. Currently STIR only uses the include
files from boost (so you do not need to build the boost libraries). However, you will need to tell
your compiler where to find the boost/ directory with all the include files (see section 3.3.1).

3.2.2 C++ Compiler

In order to compile and run the STIR programs, you will need a compiler and associated tools.
These days, any compiler should work. See the STIR Wiki for more specific information of which
compilers we have tried. We would love to hear from any attempts of using another compiler.

3.2.3 Enabling ECAT 7 support

Older CTI (Siemens) scanners use a file format called ECATTM. At present, STIR uses parts of
the Louvain la Neuve ecat library (called LLN in the rest of this document).1 The library might
still be available on ftp://ftp.topo.ucl.ac.be/pub/ecat. It is also available for GATE users.

You have to download that library and issue ’make –f Makefile.unix’ (or ’make –f Make-
file.cygwin’ if you are using CYGWIN on Windows) in the new ecat directory first. Please get a
recent version of this library (dated 20 July 2004 or later) as Merence Sibomana has introduced
various bug fixes, some of which solve problems that you would otherwise experience when using
STIR and ECAT7 files.

3.2.4 Enabling GE RDF and VOLPET support

We have software that reads VOLPET and RDF data for all GE scanners, but this can currently
not be distributed due to licensing restrictions. If you have the GE PET Toolbox proprietary
package you can ask Kris Thielemans for VOLPET and RDF support in STIR.

3.3 Building

Since version 2.2, STIR contains files to build STIR using the platform-independent CMake. This
is now the only to build STIR as it is easier for configuration and finding system dependencies.

3.3.1 Using CMake

Normal build procedure on Linux/Unix would be something like2

> cd /somewhere/nice/STIRbuild/Release

> cmake-gui /somewhere/else/STIR&

This will bring up a basic interface where you might to have to choose your preferred build
system (i.e. make on Linux/Unix) and do an initial configuration. Then you specify build variables.
You can press Configure to do additional configurations, possibly repeatedly and finally Generate

for generating your build files3. After this step, you will have to run your build system (e.g. on
Linux etc, type make, then make test, then make install). A helpful note: You can specify
just to make a single “target”, using make <target>. All executable names are targets that make
just the required executable (e.g., make FBP2D). A useful target for developers is to just make the

1STIR versions 1.? came with specific files for ECAT6 support without the need for the LLN library. However, due to license
restrictions this is now no longer the case.

2Point CMake to the main STIR directory, not STIR/src.
3 When using ccmake as opposed to cmake-gui, the key presses are: c to do additional configurations, g for generating your build

files, q to quit

7

http://www.boost.org
http://sourceforge.net/stir
ftp://ftp.topo.ucl.ac.be/pub/ecat
"http://www.cmake.org"

tests, using make BUILD TESTS. So make BUILD TESTS && make test would build and then run
the tests.

On Windows or MacOSX, the procedure is essentially the same, except that you will likely have
to specify more locations. When using Visual Studio, XCode or other IDEs as your build system,
you do not need to specify the Build Type, as you will be able to select that in your IDE.

More information on using CMake is on the STIR Wiki.

3.3.1.1 CMake configuration variables

GRAPHICS Possible values: X, PGM, MATHLINK, NONE. X (default) uses basic X
windows graphics, PGM writes the graphics to a .pgm file, MATHLINK uses
the (external) MathLink library which could be used to send data directly to
Mathematica, NONE switches off all graphics. See also section 4.14.1.

STIR MPI Toggles between ON, OFF. Enable parallel processing using MPI.
STIR contains code for running OSMAPOSL and OSSPS in parallel-mode. See
section 4.3 for information on how to run programs using MPI. 4.5

STIR OPENMP Toggles between ON, OFF. Enable threaded processing using OPENMP. 6

See section 4.4 for information on how to run programs using OPENMP.
STIR LOCAL Specify location of directory with your own extensions to STIR. See the de-

veloper’s guide.
STIR ENABLE EXPERIMENTALToggles between ON, OFF. Enable to use experimental features in STIR.

You can also (optionally) specify locations of some external libraries for additional IO capabil-
ities of STIR.

• LLN files for ECAT support via LLN INCLUDE DIRS and LLN LIBRARIES.

• AVWTM (a commercial library7 via AVW ROOT DIR. See section 4.12.2.4 for usage.

• ITK DIR, use IO from ITK, a large open source library. Specifying this enables NRRD,
MetaIO and Nifti IO.

• CERN ROOT files used by GEANT and GATE.

• GE RDFTM support via RDF INCLUDE DIRS and RDF LIBRARIES (requires the GE proprietary
PET Toolbox).

Note that you can use e.g. DISABLE LLN MATRIX to not use the LLN ECAT library, even
if cmake found it.

Here are some standard CMake variables that might be useful.

• set CMAKE BUILD TYPE to Release (default), Debug or RelWithDebug. (This is ignored
when using Visual Studio or XCode).

4In fact, any algorithm that uses PoissonLogLikelihoodWithLinearModelForMeanAndProjData. This functionality was contributed
mainly by Tobias Beisel, Univ. of Paderborn). You need a version of the MPI library to get this to work. We have tested this using
OpenMPI 1.4.2 and 1.4.5

5 When using MPI, you can set a compiler define STIR MPI TIMINGS=1 to enable additional timings for all send/receive pairs (see
distributed functions.h in include/stir/recon buildblock. This should only be used for testing purposes as it can slow down
STIR dramatically.

6Since version 2.0, STIR contains preliminary code for running FBP2D in threaded mode (contribution by Tobias Beisel, Univ. of
Paderborn). You need a compiler that supports OPENMP. Note however, that this code doesn’t presently result in a decent speed-up of
FBP2D.

7See www.mayo.edu/bir/Software/AVW/AVW1.html.

8

http://www.itk.org
http://www.open-mpi.org/
http://www.mayo.edu/bir/Software/AVW/AVW1.html

• CMAKE INSTALL PREFIX specifies where the final installation has to occur. CMake pro-
vides normally a default in a system location, but you could set it for instance to ./install

to put the files inside your build directory.

• CMAKE CXX STANDARD can be used to tell CMake to add flags to your compiler to use
a particular version of the C++ standard (if it supports it). It is now recommended to set
this to 11. This is necessary e.g. for ROOT 6 support. Other possible values are 98, 14 and
17 (not tested yet).

When building the Python code, and you have multiple versions of Python installed, it is often
necessary to specify the correct Python executable that you want, together with the libraries.
You can use the PYTHON EXECUTABLE variable for this. If you specify the full path to the actual
executable, this should be sufficient. If not, set PYTHON LIBRARY as well.

There are various other variables that can be set, some of which are only visible if you toggled
the display of Advanced variables on. They should only be set by advanced users, or if a package
cannot be found. For example, if CMake cannot find boost, you will have to set BOOST ROOT.

3.3.2 Operating system specifics

3.3.2.1 Mac OS

The lln library does not compile on Mac OS.

3.3.2.2 All Unix/Linux flavours

If you want to use the X windows display routines, CMake should work out-of-the-box if you
have suitable libraries installed, see the wiki for required packages.

X development libraries

If you experience compilation or linking problems mentioning X11, you have to check if the X
development libraries are installed on your system. You can check this by doing
> find /usr -name Xlib.h -print

If this file is not found, you’ll have to install these libraries somehow.

X display depth

STIR version 1.0 required that your Xserver worked in 8bit mode (or Pseudocolor mode in X
terminology). This is no longer necessary. However, if you are experiencing problems with the
display, you could try 8bit mode anyway.

3.3.2.3 Cygwin on Windows

Cygwin is a must-have if you are using Windows but would like to have nearly everything that
Linux/Unix has to offer (at least from a user’s point of view). Check out http://cygwin.com.

9

Using X windows on cygwin

• Install the Xorg-x11 packages using the cygwin setup utility (you need the devel package).

• install ncurses-devel if you don’t have it yet (use the cygwin Net setup).

• make sure that /usr/X11R6/bin is in your PATH (necessary for DLLs)

You can start the Xorg X server by executing the startxwin.sh script (you might want to modify
this a bit to suit your taste).

Other decent X servers should work as well (Kris Thielemans used Exceed at some point).

3.4 Running tests

We highly recommend running test programs after building. There are currently two sets of
tests. The first set tests various components of STIR. This process is described on the Wiki, but
briefly can be run using make BUILD TESTS && make test. The second set of tests is available
via the STIR web-site, where we we provide test reconstructions as part of the recon test pack,
with an automated procedure to see if you can reproduce the correct results. You really should
download this and run it.

Note that if you are using a non-standard scanner, you might want to run one reconstruction
on your data with the debug version of the reconstruction program, to see if everything works
as intended. You’ll probably want to choose a small value for the ‘maximum absolute segment
number to process’ parameter in your reconstruction (see Section 4.8.1), as this will be very slow.

4 Running STIR programs

Here we describe:

• documentation and program conventions

• supported file formats

• rebinning algorithms

• reconstruction programs

• utility programs

• user-selectable components

• display properties

STIR is highly configurable and modular. It is therefore difficult to give a complete (and
readable) description of all the options in this guide. Moreover, many options are common to
many programs. For instance, a forward projector will be needed in many places, and there are
different forward projectors implemented in STIR, each with their own set of parameters. Your
best bet might be to start with some of the sample parameter files, and then come back to this
guide. In particular, section 4.13 on user-selectable components gives more detail on what options
are available and what their parameters are.

10

4.1 Conventions

When discussing command line parameters of the STIR executables, the following format is used
in this documentation (and the usage messages):
> executable name parameter1 parameter2 \
[optional parameter3 [optional parameter4 etc]]

This means that the first 2 parameters are mandatory, but a 3rd parameter can be given, or 4
parameters. A single parameter is usually given as one word, but sometimes as a string between
< >.

All parameters have to be on a single command line. This is indicated by the backslash \, as
in Unix this is the standard way of continuing a command line on the next line.

All executables are supposed to be located in the path of the command shell used.
Most STIR programs accept a single parameter on the command line, which is sometimes

optional
> executable name [parameter filename]

The parameter file is a text file which uses an Interfile-like syntax. It is composed of keywords,
corresponding to the names of the various parameters, with the values entered next to them.
Spaces and tabs are normally irrelevant. Parameters omitted from the parameter file are assigned
a default value. Comments are indicated via a semi-colon (;) at the start of the line. Do not put
a comment before the first keyword in the file.

If a parameter file is not passed to the executable, some programs will prompt the user for the
required information. For questions that ask for a number, the format is as follows:

What number do you want to enter today
[minimum, maximum, D: default]:

If a simple Carriage Return is entered, the default value is selected.
Sample parameter files for particular programs (or part of a parameter file relevant to a particu-

lar common component) are presented in subsequent sections. See also the files in STIR/samples.

4.2 Error handling etc

STIR executables tend to write a lot of information to the terminal on what is happening. Check
for lines starting with WARNING and ERROR. After an error, the executable will stop8.Information
on some of the common causes for errors is on the Wiki.

All STIR executables return a status value to signify success or failure. What value this is
depends on your Operating System. On Unix, Linux and Windows variations, success is indicated
by a status of 0, and failure by anything else. There is currently no differentiation between the
reasons for failure.

4.3 Running programs using MPI

If you have compiled with STIR MPI, you need run the executables in such a way that they know
about the availables nodes. How to do this is system/MPI version specific. The following should
work with OpenMPI on Linux:
> mpirun -np 12 --hostfile /myconf.txt OSMAPOSL mypars.par

where the host file describes your set-up, e.g. if you have 3 nodes with differing number of cores,
the host file could look like this:

8On some systems there is at the end a somewhat confusing error about exceptions thrown, but ignore that and check the ERROR
line.

11

The Hostfile for Open MPI

beo-09 slots=4

beo-10 slots=8

beo-11 slots=8

Without host file, the executables will normally be run on the host where you executed the com-
mand, which is useful for multi-processor/core machines.

MPICH would use a similar line using mpiexec.
If you have a queueing system that supports MPI such as Torque, it is better to use that

system for sorting out available resources etc. For example, to use 2 nodes with 4 processes each,
the following should work
> qsub -I -l nodes=2:ppn=4

This will open a interactive prompt on one node where you just type
> mpirun OSMAPOSL mypars.par

Of course, you can use qsub to submit a job as opposed to getting an interactive prompt.

4.4 Running programs using OPENMP

If you have compiled with OPENMP support, the executables should run as normal. The envi-
ronment variable OMP NUM THREADS can be set to the number of processes to be used for OpenMP.
Without using this, the number of threads is defined as the number of cores on your system. It
is probably useful to reduce the number of threads as currently performance is limited by the
available cache in your processor.

4.5 File formats

The STIR utility and reconstruction programs frequently need to read and write files of image
and projection data. Files formats are encountered in which data and header information are
maintained in separate files (e.g. interfile). In other formats, data files carry header information
(e.g. the native GE Advance sinogram format).

When reading a file, STIR will automatically discover its file format (independent of its name).
See section 4.13.1 for supported output file formats. In addition, utilities are available for convert-
ing ECAT6 and ECAT7 to/from interfile (see Section 4.12.2).

4.5.1 Interfile

The most comprehensively supported file format in the library is a newly proposed version of
interfile. More details about this type can be found in the ”Other info” section of the STIR
website.

• For PET projection data, we use the proposed Interfile version. You can find sample Interfile
headers in the recon test pack or by using create projdata template.

• For SPECT projection data, we use Interfile version 3.3 (with a few small changes). You can
find a sample SPECT Interfile header in the samples directory.

• For images, we use the proposed Interfile version. Currently, images have to be written as
PET data, even for SPECT.

Interfile is currently the only format supported for writing projection data (except by the
conv to ecat? utilities). Projection data files are written in pairs:
projdata filename.hs, projdata filename.s

12

http://www.clusterresources.com/products/torque-resource-manager.php

where projdata filename.hs is the header text file and projdata filename.s is the data file. Please
read section 4.13.1 for info regarding images written by STIR in Interfile.

4.5.2 Siemens interfile-like

Siemens PET/CT and PET/MR scanners use a file format that is based on the mentioned proposed
Interfile standard but with some variations. We read this since STIR 4.0, but do not write it.

4.5.3 VOLPET sinograms

The GE VOLPET sinogram format is supported for reading, but for the GE Advance only and
data files must have a single data set, maximum ring difference 11 and contain 281 bins * 256
segments * 336 views. See section 3.2.4 for enabling support for other scanners and data in the
GE RDF format.

4.5.4 ECAT6 and ECAT7 data

See section 3.2.3 for enabling support for ECAT data.
ECAT6 images can be read without conversion. However, only the first frame (ECAT matrix

1,1,1,0,0) will be read.
ECAT7 sinograms, attenuation files and images can be read without conversion. However, only

the first frame (ECAT matrix 1,1,1,0,0) will be read for static reconstruction.
Warning The calibration factor field in the main header of ECAT7 images is currently ignored.
For dynamic or gated data, conversion can be used, see 4.12.2.

4.5.5 Image IO using the AVW library

See the conv AVW utility (section 4.12.2.4).

4.5.6 Image IO using the ITK library

If you compiled STIR such that it could find the ITK library, you will be read all image formats
supported by ITK, see the ITK Wiki for some information. However, many file formats do not
specify geometric information (e.g jpg). For those that do, STIR currently timing. Except for
DICOM, orientation and offset code assumes the patient is in HFS position. Only if
DICOM is used and the correct DICOM codes are set (0018, 5100) will the orientation be correct.

Note that as DICOM files often store only a single slice, STIR attempts to find other slices
belonging to the same series. When there are multiple time frames/gates in a folder, these may
be incorrectly treated as a single volume.

4.5.7 SimSET files

There are some preliminary files to make it easier to use SimSET and STIR together in the
SimSET directory. See the README.txt in that directory for more info.

4.5.8 ROOT files as output by OpenGATE

You need to create a text file header for your ROOT file to specify the scanner (as this information
is not stored in the ROOT file). We tend to name this header something.hroot but this is not
mandatory.

13

http://www.itk.org/Wiki/ITK/File_Formats

Warning: There is currently no check if the scanner information is correct. This is dangerous
for the geometry, but can also lead to crashes if the actual number of blocks/crystals etc is larger
than what is specified in the scanner info.

We currently support only ROOT output using the CylindricalPET and ECAT systems from
GATE.

A full example is given in examples/samples/root header.hroot. Below are 2 shorter exam-
ples. If the scanner is known to stir::Scanner, you can use this

ROOT header :=

Originating system := Siemens mMR

; specify GATE output format (could be GATE_ECAT_PET as well)

GATE scanner type := GATE_Cylindrical_PET

GATE_Cylindrical_PET Parameters :=

; name of the actual ROOT file

name of data file := mysim.root

; See elsewhere for other parameters

End GATE_Cylindrical_PET Parameters :=

end ROOT header :=

Below is an example using a user-defined scanner.

ROOT header :=

Originating system := User_defined_scanner

Number of rings := 4

Number of detectors per ring := 504

Inner ring diameter (cm) := 65.6

Average depth of interaction (cm) := 0.7

Distance between rings (cm) := 0.40625

Default bin size (cm) := 0.208626

Maximum number of non-arc-corrected bins := 344

GATE scanner type := GATE_Cylindrical_PET

GATE_Cylindrical_PET Parameters :=

; name of the actual ROOT file

name of data file := mysim.root

; See elsewhere for other parameters

End GATE_Cylindrical_PET Parameters :=

end ROOT header :=

There are some unfinished classes available on the STIR web-site to read LMF format files, in
conjunction with the LMF library. However, these might be obsolete as the OpenGATE project
might be distributing files to enable STIR to read LMF format files.

4.6 List mode processing

Some scanners produce list mode data, which is essentially a list of events. STIR provides utilities
to use the list mode files, for example to convert them to sinograms. It is also possible to reconstruct

14

images directly from list mode data.
Currently supported list mode formats are specific to the ECAT HR+, ECAT EXACT 3D

and Siemens mMR scanners. We also support CERN ROOT files as output by OpenGATE (see
above).

4.6.1 lm to projdata

This utility can be used to bin (or “sort”) the list mode data into ’projection data’ (also known as
3D sinograms. This can then be processed further by other STIR utilities. It needs to be run
as follows:
> lm to projdata par filename

See STIR/samples/lm to projdata.par for an example file. Please check out the online
documentation (as generated by doxygen) for more info.

Currently, each time frame is written in a different file (as Interfile). Gating will be supported
in a future version.

4.6.2 lm to projdata bootstrap

As before, but using bootstrapping (with replication). This is useful to generate multiple realisa-
tions from a single list mode file to study variance.

You can use it as follows:
> lm to projdata bootstrap par filename seed

The seed is a positive integer (do not use 0). Specifying different seeds will give you different
noise realisations. You can use the same parameter file as for lm to projdata.

4.6.3 lm fansums

Computes fan-sums, i.e. for each detector, sum all data that are in coincidence with that detector.
Results are written as a simple text file. This could be used to check if all detectors are working
properly for instance.

4.6.4 list lm events

Allows inspecting the events in a list mode file. Run without arguments to see a usage message.

4.6.5 list lm countrates

Outputs a text file with (comma separated) colums of count-rates per time interval like

start_time_in_secs , end_time_in_secs , num_prompts , num_delayeds

Run without arguments to see a usage message.

4.7 Rebinning algorithms

In 3D PET, the name rebinning is used for the process of manipulating the 3D projection data set
to the equivalent of 2D projection data. This reduces the number of segments (see STIR Glossary)
to 1. Popular rebinning algorithms are SSRB, FORE and variations such as FOREX, and FOREJ.
Rebinning is often used before reconstruction to decrease total reconstruction time.

15

4.7.1 SSRB

The Single Slice Rebinning algorithm [Dau87] is the oldest and simplest rebinning algorithm. It
essentially ignores the obliqueness of a Line of Response and moves data to the axial position in
segment 0 such that z-resolution on the axis of the scanner is preserved.

The STIR implementation of SSRB is a generalisation that applies the same idea while still
allowing preserving some of the obliqueness. For instance, for a dataset with 9 segments, SSRB
can produce a new dataset with only 3 segments. This essentially increases the axial compression
(or span in CTI terminology), see the STIR Glossary on axial compression. In addition, SSRB
can introduce extra mashing (see the STIR Glossary) of the data, i.e. add views together.

Usage:
> SSRB output filename input projdata name \
num segments to combine [num views to combine \
[do normalisation [max in segment num to process]]]

num segments to combine has to be odd. It is used as the number of segments in the original
data to combine.

num views to combine has to be at least 1 (which is the default). It is used as the number of
views in the original data to combine.

do normalisation has to be 1 (default) or 0. When it is 1, the result is normalised, i.e. divided
by num segments to combine*num views to combine. This is appropriate for rebinning data
where normalisation has already been applied, but inappropriate otherwise.

max in segment num to process defaults to all segments. Can be used to ignore the most
oblique segments in the input data. Note that the most oblique segments that cannot be
rebinned completely will be ignored automatically. For instance, when the input data has 7
segments, and num segments to combine is 3, only 3 segments are used from the input (and
1 output segment produced), as 9 input segments would be necessary to produce 3 ’complete’
output segments.

4.7.2 FORE

The Fourier Rebinning algorithm [Def97] is probably the most popular rebinning algorithm. It is
based on an approximate formula called the “frequency-distance relationship”. FORE works better
than SSRB but starts to fail with larger acceptance angles. Also, the mathematics for FORE only
works if the data were fully precorrected before running FORE.

Usage:
> rebin projdata fore.par

The form of a typical parameter file9 is as follows:

Rebin projdata Parameters :=

rebinning type := FORE

FORE Parameters :=

input file := Your_Input_File_Name.hs

output filename prefix := Your_Output_File_Name

Smallest angular frequency := 20

Smallest transaxial frequency := 20

Index for consistency := 20

Delta max for small omega := 10

maximum absolute segment number to process := 2

9Parameter values used here are for illustration only and are not necessarily recommended.

16

FORE debug level := 0

End FORE Parameters:=

END:=

For the meaning of these parameters, check the documentation for the FourierRebinning class or read src/include/recon buildblock/FourierRebinning.h.

4.8 Image reconstruction programs

4.8.1 Iterative algorithms

Two statistical reconstruction algorithms are currently implemented:

OSMAPOSL an implementation of the OSEM-One Step Late algorithm with various additional refinements and capabili-
ties. See [Jac00] for a description of many details of the implementation.

OSSPS an implementation of the Ordered Subsets Paraboloidal Surrogate algorithm by Erdogan and Fessler, and Ahn and
Fessler [Ahn2003].

Since STIR 2.0, all iterative algorithms use a generalised objective function10 which the algorithm tries to maximise. The
result of the algorithm will obviously depends very much on the objective function used.

Currently, only Poisson-based objective functions are implemented in STIR. We have an objective function for static
projection data (aka sinograms), list mode data and parametric images from dynamic projection data (currently only using
the Patlak model).

Most parameters are shared between algorithms and objective functions. Therefore, once you understand how to run
e.g. OSEM, it should be easy to understand OSSPS etc. This guide therefore describes the case of running OSMAPOSL on
projection data in detail first. Other algorithms (and objective functions) are then described as variations on this case.

4.8.1.1 Running OSMAPOSL on static projection data

The program OSMAPOSL executes the IF-OSEM-OSL algorithm. This is a generalisation of the One Step Late
algorithm [Gre90] but allowing inter-iteration filtering and/or a prior. Note that this algorithm is in general not convergent.

OSMAPOSL allows
- the use of subsets, similar to the OSEM algorithm [Hud94]. OSMAPOSL will only work when the subsets are ap-
proximatelly balanced (i.e. the number of subsets has to be a divisor of the number of views). In fact, by default this
implementation11 assumes that the subsensitivity image is proportional to the total sensitivity image, but this can be
switched off .
- inter-update filtering (applying a filter to the image before it is multiplied with the update image) [Jac00]
- inter-iteration filtering (applying a filter after the rest of the image update is performed), sometimes called EMS [Sil90],
see also [Mus04].
- post-filtering (apply a filter after the last subiteration)
- applying the prior information in an additive or multiplicative way [Mus01]
- random permutation of the order of the subsets in each iteration

See [Jac00] for more information, and also the online documentation for the class OSMAPOSLReconstruction.
The successive image iterates of the algorithm are saved at pre-specified subiteration intervals in a sequence of image

files. The files are named with a pre-specified output file prefix with the subiteration number appended after an underscore.
As described in Section 4.1, the recommended manner of running OSMAPOSL is to pass the executable a parameter

file argument which specifies the relevant parameters of the reconstruction. Parameters omitted from the file are assigned a
default value. If a parameter file is not used, the program prompts the user for the required information.

The form of a typical parameter file12 is as follows:

OSMAPOSLParameters :=

;lines starting with semicolons are comments

objective function type:= \

PoissonLogLikelihoodWithLinearModelForMeanAndProjData

PoissonLogLikelihoodWithLinearModelForMeanAndProjData Parameters:=

; input, sensitivity and prior parameters here

input file := projection_data_filename.hs

10We call them generalised because they do not necessarily have to correspond to a function. Most algorithms only require that we
can compute some kind of gradient. As an example, the update of OSEM with the Median Root Prior (MRP) does not correspond to
the gradient of a function.

11In fact, this assumption is part of the PoissonLogLikelihoodWithLinearModel class, which is the base class of the objective function
that OSMAPOSL uses.

12Parameter values used here are for illustration only and are not recommended.

17

; use -1 to use the maximum available

maximum absolute segment number to process := 4

zero end planes of segment 0 := 1

; keywords that specify the projectors to be used

Projector pair type := Matrix

Projector Pair Using Matrix Parameters :=

; Use the PET Ray-tracing matrix.

; This needs to be changed to SPECT UB when using SPECT data

Matrix type := Ray Tracing

Ray Tracing Matrix Parameters:=

End Ray Tracing Matrix Parameters:=

End Projector Pair Using Matrix Parameters :=

; background (e.g. randoms)

additive sinogram := 0

; sensitivity related keywords

; time frame info used for dead-time calculation when using ECAT7

;time frame definition filename:=

;time frame number:= 1

; normalisation and attenuation info

; Bin Normalisation type:= None

recompute sensitivity := 1

use subset sensitivities:=1 ; recommended

; optional filename to store/read the sensitivity image

; (if use subset sensitivity is off)

;sensitivity filename:=

; optional filename to store/read the subsensitivities

; use %d where you want the subset-number (a la printf)

subset sensitivity filenames:= sens_%d.hv

; keywords for specifying the prior information

prior type := None

; next keywords can be used to specify image size, but will be removed

; they are ignored when using an initial image

zoom := 1

; use --1 for default sizes that cover the whole field of view

XY output image size (in pixels) := -1

end PoissonLogLikelihoodWithLinearModelForMeanAndProjData Parameters:=

; set output file format, if omitted a default value will be used

Output file format := Interfile

Interfile Output File Format Parameters :=

; byte order := little-endian

; number format := signed integer

; number of bytes per pixel := 2

End Interfile Output File Format Parameters :=

initial estimate:= initial_image_filename.hv

enforce initial positivity condition:=1

number of subsets:= 6

start at subset:= 0

number of subiterations:= 30

start at subiteration number:=1

output filename prefix := out_file

18

save estimates at subiteration intervals:= 2

uniformly randomise subset order:= 1

; keywords that specify the filtering that occurs after every subiteration

; warning: do not normally use together with a prior

inter-iteration filter subiteration interval := 4

inter-iteration filter type := Separable Cartesian Metz

; keywords below will depend on the filter type (see text)

separable cartesian metz filter parameters :=

x-dir filter fwhm (in mm) := 6

y-dir filter fwhm (in mm) := 6

z-dir filter fwhm (in mm) := 6

; use some sharpening here as example (not really recommended though)

x-dir filter metz power := 2

y-dir filter metz power := 2

z-dir filter metz power := 2

end separable cartesian metz filter parameters :=

; keywords that specify the filtering that occurs at the end

; of the reconstruction

post-filter type := None

; keywords that specify the filtering that occurs before

; multiplying with the update image

inter-update filter subiteration interval := 4

; would have to be filled in.

inter-update filter type := None

map model := additive

; keywords for preventing too drastic (multiplicative) updates

; below just set to their default values

maximum relative change := 3.40282e+38

minimum relative change := 0

; enabling this will write the multiplicative update images

; every sub-iteration

write update image := 0

END :=

See STIR/samples/ for example parameter files.
The following gives a brief explanation of the parameters. Where appropriate, the notation [min, max, default] is used to

specify allowable numeric ranges. Values of ∞ indicate that the largest value possible for the numeric type of the parameter
value is allowed.

Objective function related parameters (Poisson statistics)

input file The name of the file for the measured projection data.

zero end planes of segment 0 If this is set to 1, the reconstruction pretends that the projection data measured in the
extreme-most rings of the scanner (the end planes of segment 0) are zero. See also the discussion in Section 4.8.1.

time frame definition filename See Bin Normalisation type

time frame number Defaults to 1. Currently only used for finding the frame number and hence dead-time (in ECAT7).
See Bin Normalisation type.

Bin Normalisation type This keyword is used to set both normalisation factors and attenuation correction factors. See
section 4.13.8.

19

use subset sensitivities Defaults to 1 (recommended). If you set this to 0, it is assumed that all subset sensitivities are
equal, and therefore proportional to the total sensitivity. We can then save some memory by internally storing only
the total sensitivity. However, in many cases and in particular f you have non-uniform attenuation, this assumption
will generate some artefacts in the image.

recompute sensitivity Defaults to 0. If sensitivity filename or subset sensitivity filenames are specified and recomputation
is switched off, the sensitivity data will be read from file, and the Bin Normalisation type keyword will be effectively
ignored. On the other hand, if the filename is set and recomputation is switched on, the (subset) sensitivity will be
written to that filename. This parameter might be useful to avoid recomputing the sensitivity if it does not change.

sensitivity filename The sensitivity image is an important ingredient of likelihood-based reconstruction algorithms of PET
or SPET emission data 13 For each voxel, it represents the total probability of detection of an event originating in that
voxel (up to a global proportionality factor). It is computed by backprojecting projection data with all elements set
to 1.

The name of the file containing the sensitivity image. The default is to compute it from the previous keywords. You
could set it to 1, which is am image uniformly 1 over all voxels. Using this is generally a bad idea however. It is only
somewhat appropriate when using fully precorrected data in 2D PET. Even in that case, you will get an image with
the wrong scale factor.

Note that when no attenuation nor normalisation was used, the sensitivity will be computed based on geometrical
backprojection only. This only appropriate when reconstructing from pre-corrected projection data.

subset sensitivity filenames This should be used instead of sensitivity filename when using subset sensitivities. It should
provide a pattern á la printf14 to allow constructing different filenames for each subset.

Projector pair type Specifies the back/forward projector pair to be used in the reconstruction. See Section 4.13.4 for
possible values. We recommend using matching projectors (e.g. based on a single projection matrix).

additive sinogram This parameter can be used to take randoms or scatter into account. It is a constant background
term that will be added to the forward projected data in the denominator of the MAP-OSL algorithm. Please note
that currently the forward projector produces ’geometric’ data. This is because the normalisation and attenuation
coefficients can be cancelled out between the forward and backprojector. They then remain only in the sensitivity
image and the background term. This means that in effect, a normalised and attenuation corrected randoms sinogram
would have to be passed as ’additive sinogram’. By suitably adding a term to the input projection data, the Shifted
Poisson version of OSL can be run as well.

maximum absolute segment number to process Denoting the input value by num segments, this indicates that the
reconstruction will be carried out using segment numbers -num segments through +num segments of the measured
projection data. Defaults to use all segments in the input data.

prior type The type of prior information. See Section 4.13.3 for the list of possible values.

zoom The zoom factor. Defaults to 1 which gives x,y voxel size equal to the bin size of the projection data15. Larger than
1 means smaller voxel size. This parameter is ignored when an initial estimate is specified. This parameter will be
removed in a future version.

XY output image size (in pixels) Number of pixels to use in x,y direction. Default (-1) covers the whole FOV as
determined from the projection data and gives an odd number of pixels. This parameter is ignored when an initial
image is specified.
This parameter will be removed in a future version.

Algorithm settings

output filename prefix The output filename prefix. When image iterates are saved, subiteration numbers are appended
to this prefix after an underscore.

output file format type Set output file format, if omitted a default value will be used. Subsequent parameters will depend
on the type of output file format. See section 4.13.1.

initial estimate The name of the image file with which the algorithm is initialised. The default is an image which is
uniformly 1 over all voxels. The default can be specified by giving the parameter an input of 1. Using an input of 0
will use a uniformly 0 image, but this is inappropriate for OSMAPOSL.

enforce initial positivity condition If this parameter is not set to 0, the program will set all non-positive voxel values
in the initial estimate to small positive ones.

13In STIR 2.0, this is generalised to the sensitivity for any problem with Poisson statistics where the data are linear combinations of
the variables of interest.

14In fact, boost::format is used, so the pattern can be more flexible.
15This is different from the CTI convention which involves some factors like the number of elements and 128.

20

number of subsets [1, num views, 1] The number of subsets. For symmetric balancing among subsets, it is advisable to
select a number which divides evenly into num views, or even num views/4, depending on the symmetries used by the
projector.

uniformly randomise subset order When set to 1, the order of the subsets for each full iteration is randomly permuted
(uniformly).

start at subset [0, num subsets-1, 0] Specifies with which subset in the ordered subset sequence to start, where the subsets
are enumerated from 0 to num subsets-1.

number of subiterations [1,∞, 1] The number of subiterations to run.

start at subiteration number [1,∞, 1] Initializes the subiteration counter to the input value. Useful for resuming
reconstructions (for example, the continuity of output image file numbering may be preserved).

save estimates at subiteration intervals [1, num subiterations,0] Specifies at what intervals (in subiterations) the iter-
ates of the algorithm are saved. The final iteration is always saved.

inter-iteration filter subiteration interval [0, num subiterations, 0] Specifies at what intervals (in subiterations) inter-
iteration filtering is carried out. A value of 0 disables inter-iteration filtering.

inter-iteration filter type The type name of the inter-iteration filter. See Section 4.13.2 for the list of possible values.

post-filter type The type name of the post filter. See Section 4.13.2 for the list of possible values.

inter-update filter subiteration interval [0, num subiterations, 0] Specifies at what intervals (in subiterations) inter-
update filtering is carried out (see [Jac00]). A value of 0 disables inter-update filtering.
(OSMAPOSL specific)

inter-update filter type The type name of the inter-update filter. See Section 4.13.2 for the list of possible values.
(OSMAPOSL specific)

map model : additive|multiplicative The default choice additive applies the prior on the image as is, the other choice
multiplicative applies it essentially on the image times the sensitivity image. See [Mus01] for more details.
(OSMAPOSL specific)

maximum relative change [0, 3.40282e+38, 3.40282e+38] The multiplicative update image will be thresholded from above
with this value (at every subiteration except the first) i.e., before multiplying it with the old image to get the new one.
The default value does not impose any thresholding (as in strict OSMAPOSL). However, we find that when subsets
are used, a value of about 10 is beneficial.
(OSMAPOSL specific)

minimum relative change [0, 3.40282e+38, 0] The multiplicative update image will be thresholded from below with this
value (at every subiteration except the first).
(OSMAPOSL specific)

write update image [0, 1, 0] When this is set to 1, OSMAPOSL will write the multiplicative update images every sub-
iteration.
(OSMAPOSL specific)

4.8.1.2 Notes and technical issues regarding the selection of parameters

Application of filters:
In addition to the remarks in section 4.13.2 on filtering, one should note the following

(i) Inter-iteration filtering (or inter-update filtering) generally results in resolution that is object dependent and space
varying. This is probably not what you want. See [Mus04,Mus02] for more details.

(ii) If a strictly positive Metz power parameter is chosen, a non-trivial Metz filter results whose frequency response
possesses an amplifying middle frequency band. In this case, it is potentially hazardous to choose too small a corresponding
FWHM parameter. For then, the amplifying mid-band may coincide with the high frequencies of the noise components of
the image and hence strengthen these components. Empirically, we have found that good lesion detectability is obtained
by IMF-OSEM with Metz powers of 1, together with FWHMs of 40%-75% the relevant dimensions of the lesion (see also
[Jac00]).

(iii) All filtering operations in all iterative algorithms currently implemented in the library apply post-thresholding to
ensure positivity at each iteration. Future releases may allow users to vary the thresholding rule or de-activate it.

Zeroing end planes of segment 0 :
The “zero end planes of segment 0” option is made available to help users of the STIR reconstruction software overcome

a modelling difficulty created by an awkward image discretisation convention. So that images reconstructed using the STIR
software can be compared to those of other reconstruction software, the STIR library defaults to an image discretisation
scheme that has become common among most commercial analytic reconstruction software packages. In this scheme, images
are discretised on a voxel grid in which there are 2*num rings-1 transaxial slices of voxels, num rings denoting the number
of rings in the scanner. The axial extent of each slice is half that of the detector rings and the extreme-most voxel slices are

21

centered about the mid-plane of the extreme-most detector rings. A consequence of this set-up is that the voxel grid does
not cover the entire length of the scanner, but rather leaves a gap at each end of the scanner whose axial extent is half the
axial length of a detector ring.

We have discovered that this creates a problem for iterative MLE algorithms when reconstructing activity distributions
that extend into these “end gaps”. For the activity present in the gaps is surely detected by the scanner. However, the
restricted extent of the voxel grid imposes a model of the projection data statistics in which the activity in the gaps is zero.
As a result, the algorithm assigns an excess of activity to the end planes of the image grid, seemingly because they are the
next most likely origins of the annihilations in the end gaps. In turn, the reconstructed images exhibit excessively bright end
planes.

From a theoretical point of view, there is nothing “wrong” with such reconstruction results. The image observed ap-
proximates a maximum likelihood estimate consistent with the parametric model assumed. From a practical point of view,
however, it is obvious that the parametric model assumed is an inferior one, since it does not reflect the physical reality that
activity is present in the end gaps. In turn, poor quantification of the end plane activity results.

We have found that using the “zero end planes of segment 0” option can often remedy this problem. This causes the
reconstruction to pretend that the detector pairs in the extreme-most detector rings detected no counts. For the scanners
currently supported by the library, we have verified that only the measurements of these detector pairs can be influenced by
the end gap activity. By setting this option, one models the acquisition as one where the end ring detector pairs had zero
efficiency. This provides a more realistic model for the truncated projection data. Note also that the acquisition software of
some scanners (e.g. the Positron HZL/R) automatically discards the end plane data. For the same reasons, it is advisable
to use the “zero end planes of segment 0” in these cases as well.

The method of zeroing end planes, unfortunately, does not apply well to scanners whose 2D projection data includes
merged cross-planes (e.g. the GE scanners or all recent Siemens scanners). This is because the currently supported projectors
yield a relatively poor model of the detection probabilities associated with the end planes of such scanners. Excluding the
end detector pairs from the computation degrades the model still further. Consequently, some of the voxel values in the end
planes may get very large (i.e. noisy) with increasing iterations. For such scanners, we advise that users forego the “zero
end planes of segment 0” option. Doing so still yields very reasonable results in the interior part of the reconstructed image.
Moreover, future development of the STIR library’s suite of projector functions will remedy most of the problems discussed
in this section.

Finally, for phantom studies in which the activity is known to lie within the space covered by the voxel grid, the end
plane phenomenon does not arise.

4.8.1.3 Extra parameters the MPI version
When running the MPI version of OSMAPOSL on distributed memory systems, the following extra parameters can be set in
the .par files.

enable distributed caching (default: 0) Enables/disables the caching algorithm to save some communication overhead
(according to Tobias Beisel’s tests, this makes only makes a difference with very large files).

enable distributed tests (default : 0) Tests to check whether the distributed functions work. This is of no use if you’re
not developing new code for the parallel version. It could be thrown out of the code at some point.

enable message timings (default : 0) Prints timings of send and receive operations, to see where the time gets lost. Could
be used for later optimization.

message timings threshold (default : 1.0) Defines a threshold of the above timings, so that not all messages are timed,
but those which consume a serious amount of time.

enable rpc timings (default : 0) Measures the total time and the average slave time spend on RPC process related viewgrams gradient()
function. Gives some indication of how much time you save by calculating in parallel.

See [Bei08] for some info on performance.

4.8.1.4 OSSPS

Algorithm description
OSSPS is a relaxed preconditioned sub-gradient descent algorithm:

λnew = λ+ ζD∇Ψ

with λ the parameters to be estimated, Ψ the objective function, D a dagional matrix (the preconditioner) and ζ an
iteration-dependent number called the relaxation parameter (see below).

D depends on Ψ. The data-dependent term in the preconditioner suggested in Ahn and Fessler turns out to be equal
to the product of the Hessian of Ψ summed over all columns (while using the data plug-in approach for approximating the
Hessian close to the solution). Therefore, this OSSPS implementation uses this prescription in general and can be applied
to any objective function implemented in STIR.

22

Note that the exact paraboloidal surrogate algorithm by Erdogan and Fessler is currently not implemented.
The relaxation value for the additive update follows the suggestion from Ahn and Fessler:

ζ =
α

1 + γn
(1)

Note that because of the nature of the preconditioner, the OSSPS algorithm does not perform very well in our experience
when there is no “additive sinogram”.

Running OSSPS

Most of what has been described above for OSMAPOSL applies verbatim for OSSPS. See STIR/samples/ for example
parameter file(s). The following describes the parameters that are specific to OSSPS:

precomputed denominator if you do not specify this keyword, the data-dependent part of the precomputed denominator
will be computed automatically (and saved using output filename prefix). You can use this parameter to re-use the
file from a previous run.
Note: setting the value to 1 will use an images full of ones (which is not a good idea!)

relaxation parameter α in the formula 1 above

relaxation gamma γ in the formula 1 above

upper bound you can give an upper bound on the image values (the lower bound is always zero). The upper bound defaults
to a very large value.

4.8.1.5 Using list mode data as input
Since STIR 2.0, you can specify an objective function that takes list mode data as input and uses a projection matrix. This
can be used to do a static image reconstruction without any resolution loss etc.

WARNING: The current implementation has not been thoroughly tested. Please use the mailing lists for
questions and results.

The following gives the main parameters to use for OSMAPOSL.

OSMAPOSLParameters :=

objective function type:=\

PoissonLogLikelihoodWithLinearModelForMeanAndListModeDataWithProjMatrixByBin

PoissonLogLikelihoodWithLinearModelForMeanAndListModeDataWithProjMatrixByBin Parameters:=

list mode filename:= listmodefile.lm

time frame definition filename:= timeframes.fdef

; time frame to use data for the reconstruction

time frame number:=1

; maximum ring difference (defaults to all ring differences)

;max ring difference num to process:=

; matrix to use for forward and back projection (defaults to ray tracing)

;Matrix type:= using ray tracing

; background term

additive sinogram:=

sensitivity filename:=filename

; other usual objective function parameters

End PoissonLogLikelihoodWithLinearModelForMeanAndListModeDataWithProjMatrixByBin Parameters:=

; normal OSMAPOSL algorithm parameters

End:=

Currently, the sensitivity filename needs to be specified as the code to compute it using a bin normalisation type has not
yet been copied to the PoissonLogLikelihoodWithLinearModelForMeanAndListModeDataWithProjMatrixByBin class. You
could run OSMAPOSL first with projection data without axial compression (and view “mashing”) to create the sensitivity
filename. Similarly, if you want to use OSSPS, you will need to run the projection data version first to get the “precomputed
denominator”.

The additive sinogram is as discussed in 4.8.1, but needs to be without axial compression (and view “mashing”).

23

4.8.1.6 Parametric image estimation algorithms
Both OSMAPOSL and OSSPS work have implementations to estimate parametric images from dynamic data, called
POSMAPOSL and POSSPS respectively. Their parameters are identical to the static versions of the algorithms, except
that they need a different type of objective function. Currently, the only defined version is where the input is dynamic projec-
tion data and the Patlak linear model is used to go from dynamic images to parametric images. See section sec:KineticModels
for more information.

Currently, the input and output has to be in ECAT7 format.
Below is an excerpt of a possible parameter for file POSMAPOSL. A complete parameter file can be found in STIR/samples/.

The only change is the fact that dynamic data form the input, and that a (linear) kinetic model has to be specified.

OSMAPOSLParameters :=

objective function type:=\

PoissonLogLikelihoodWithLinearKineticModelAndDynamicProjectionData

PoissonLogLikelihoodWithLinearKineticModelAndDynamicProjectionData Parameters:=

; input dynamic projection data with emission

input file := SOME_DYNAMIC_PROJDATA.S

; specify additive (dynamic) projection data to handle randoms or so

additive sinograms := SCATTER_AND_RANDOMS_ADDED_ECAT7.S

; kinetic model specification

Kinetic Model type := Patlak Plot

Patlak Plot Parameters :=

;; see the Patlak model description elsewhere

end Patlak Plot Parameters :=

; other parameters such as projectors and sensitivity

; identical to the static case

end PoissonLogLikelihoodWithLinearKineticModelAndDynamicProjectionData:=

; normal OSMAPOSL algorithm parameters

End:=

4.8.1.7 HKEM

Algorithm description
Hybrid kernelised expectation maximisation(HKEM) and kernelised expectation maximisation (KEM) iterative algorithms
are implemented corresponding to the one presented by Deidda D et al, “Hybrid PET-MR list-mode kernelized expectation
maximization reconstruction”, Inverse Problems, 2019, DOI: https://doi.org/10.1088/1361-6420/ab013f. However, this allows
also sinogram-based reconstruction. Each voxel value of the image, λ, can be represented as a linear combination using the
kernel method. If we have an image with prior information, we can construct for each voxel j of the emission image a feature
vector, vj , using the prior information. The voxel value, λj , can then be described using the kernel matrix

λj =

L∑
l=1

αlkjl

where kjl is the jlth kernel element of the matrix, K. The resulting algorithm with OSEM, for example, is the following:

α
(n+1)
j =

α
(n)
j∑

m k
(n)
jm

∑
i pmi

∑
m

k
(n)
jm

∑
i

pmi
yi∑

q piq
∑
l k

(n)
ql α

(n)
l + si

where the element, jl, of the kernel can be written as:

k
(n)
jl = km(vj ,vl) · kp(z(n)

j ,z
(n)
l);

with

km(vj ,vl) = exp

−‖vj − vl‖
2

2σ2
m

 exp

−‖xj − xl‖
2

2σ2
dm

being the MR component of the kernel and

24

kp(z(n)
j

,z(n)
l

) = exp

−‖z(n)
j
− z

(n)
l
‖2

2σ2
p

 exp

−‖xj − xl‖
2

2σ2
dp

is the part coming from the emission iterative update. Here, the Gaussian kernel functions have been modulated by the
distance between voxels in the image space.

Below is an excerpt of a possible parameter file for KOSMAPOSL. A complete parameter file can be found in STIR/samples/.
The changes in this parameter file includes the MR anatomical prior images and the kernel-based parameters.

An example of a KOSMAPOSL parameter file can be found in examples/samples/. It is similar to the OSMAPOSL parameter file withe following extra keywords

KOSMAPOSL Parameters:=

;the following disables the alpha coefficient output:

disable output :=1

; here we have the possibility to choose the parameters which define the kernel

; matrix and the name of the anatomical image. the following are the defaults values:

; 1 (default): use hybrid kernel (prior from MR and PET estimate)

; OR

; 0 kernel is MR-only

hybrid:=1

; Gaussian scaling parameter for the anatomical prior (units of image intensity)

; It controls the edge preservation from the anatomical image, the bigger the stronger

; default: 1

sigma_m:= 1

; Gaussian scaling parameter for the PET estimate (units of PET image intensity)

; It controls the edge preservation from the functional image, the bigger the stronger

; default: 1

sigma_p:=1

; NB: sigma_dm and sigma_dp should be the same

; Spatial Gaussian scaling parameter for the anatomical prior (mm)

; default: 1 (usual range 1-5)

sigma_dm:=5

; Spatial Gaussian scaling parameter for the PET prior (mm)

; default: 1 (usual range 1-5)

sigma_dp:=5

; Number of neigbouring voxels to compare: (num_neighbours X num_neighbours X num_neighbours)

; default: 3

number of neighbours:= 3

; Number of non-zero elements in the feature vectors. This makes you choose the size of your feature vector by default we only have one element

; default: 1

number of non-zero feature elements:=1

; this are the file names of the anatomical images (at the moment we can accept only one image)

anatomical image filenames:= {MRbrain.hv}

; the following should be 1 if you want to reconstruct 2D data

only_2D:=1

; the following is the output prefix of the PET reconstructed image

kernelised output filename prefix :=KOSMAPOSL

objective function type:= PoissonLogLikelihoodWithLinearModelForMeanAndProjData

25

PoissonLogLikelihoodWithLinearModelForMeanAndProjData Parameters:=

.

.

.

End KOSMAPOSL Parameters :=

4.8.2 Filtered back projection (FBP2D)

This implements SSRB+FBP. Currently, data have to be completely precorrected before-hand (arc-correction will be per-
formed automatically if necessary).
The implementation is careful about the implementation of the ramp-filter to avid problems with the DC component (see
RampFilter.cxx for more details).

As described in Section 4.1, the recommended manner of running FBP2D is to pass the executable a parameter file
argument which specifies the relevant parameters of the reconstruction. Parameters omitted from the file are assigned a
default value. If a parameter file is not used, the program prompts the user for the required information.

A sample.par file can be found in the samples/ directory. Below are the parameters you probably need.

fbp2dparameters :=

input file := input.hs

output filename prefix := output

; output image parameters

; zoom defaults to 1

zoom := 1

; image size defaults to whole FOV

xy output image size (in pixels) := 180

; can be used to call SSRB first

; default means:

; if no axial compression, use 3

; otherwise, use 1

;num segments to combine with ssrb := -1

; filter parameters, default to pure ramp

alpha parameter for ramp filter := 1

cut-off for ramp filter (in cycles) := 0.5

; keywords that specify the filtering that occurs at the end

; of the reconstruction

post-filter type := None

end :=

The filter parameters can be used to specify an apodising window with 2 parameters: a cut-off frequency fc and α which
specifies the usual Hamming window (although I’m not so sure about the terminology here).

(α+ (1− α) ∗ cos(π ∗ f/fc))

The actual implementation works differently to overcome problems with defining the ramp in frequency space (with a
well-known DC offset as consequence). We therefore compute the ramp*Hanning in ”ordinary” space in continuous form, do
the sampling there, and then DFT it.

Warning: the current version of the interpolating backprojector, the default backprojector used by FBP2D, has a central
artefact on some systems (including Sparc and 64-bit AMD and Intel processors).

4.8.3 3D Reprojection Algorithm (FBP3DRP)

This implements Kinahan and Rogers FBP algorithm with reprojection of the missing data [Kin89]. The implementation is
fairly generic and should be able to handle non-standard data (e.g. with less or more sinograms in a segment than you would
normally have). Also, the Colsher filter is numerically computed at a finer grid in an initial stage to avoid DC problems.

26

A sample.par file can be found in the samples/ directory. See separate documentation on FBP3DRP, the doxygen
documentation (or the source) for more info. Similar to FBP2D, an apodizing window can be specified. FBP3DRP defaults
to using the “pure” Colsher filter.
Warning: the current version of the interpolating backprojector, the default backprojector used by FBP3DRP, has a central
artefact on some systems (including Sparc and 64-bit AMD and Intel processors).

4.9 Scatter Correction

Coincidence events where one or more of the photons are scattered form a major contribution to the data in 3D PET. This
scatter background needs to be estimated and taken into account during reconstruction. In STIR 2.1, a version of the Single
Scatter Simulation (SSS) algorithm [Wat96, Wat00, Wat97, Wat04, Wer02, Poe03] has been implemented and evaluated
[Tso04]. Polycarpou et al describe in detail how to perform scatter correction using STIR [Pol11].

4.9.1 Data Initialisation

• Apply randoms correction (and optionally normalisation) to the emission data (this will be used to scale the scatter
estimate)

• Reconstruct/get attenuation image (ideally use odd number of voxels for zoom image step below).

• Calculate Attenuation Correction Factors (ACFs)

• Use create tail mask from ACFs to estimate the region that will be used for scaling

• Reconstruct emission image without scatter correction

• Construct a “sub-sampled sinogram” template (i.e. same geometrical characteristics but less rings and detectors
without arc-correction) as suggested in literature (e.g. in [Tso04]). This template sinogram should have no compression
(number of views = half the number of detectors per ring, and span = 1 (see the STIR glossary). Use a number of
tangential positions that is (Number of detectors per ring - 1) to cover all possible detector pairs. You can reduce this
if your scanner has a narrower FOV, but be careful that you do not make it too small (otherwise you will get strange
behaviour at the edge when upsampling the scatter estimate). Because of a limitation in the upsampling routine, it is
currently recommended to have ring difference 0 only in this template.

• Construct a “subsampled” attenuation image using zoom image and stir math. STIR SSS will select 1 scatter point
per voxel in this attenuation image. This can be used to speed up your calculation. When caching line integrals (which
is the default), it also means that the scatter estimation needs less memory.
Careful: zoom image will scale the voxel values with the product of the zoom-factors in each dimension. You need to
undo this scaling for the “subsampled” image. For example

zoom to larger voxels

zoom_image zoomed.hv image_mu.hv 21 .25 0 0 5 .1626

correct back to mu-values

stir_math --accumulate --including-first --times-scalar .1626 \

--times-scalar .25 --times-scalar .25 zoomed.hv

The exact number of voxels and zoom does not matter too much (as long as you cover the whole object), but the
offset parameters to zoom image HAVE TO BE ZERO and the number of voxels (in both input and output image)
HAVE TO BE ODD16

> create tail mask from ACFs --ACF-filename <projdata> \
--ACF-threshold <number (1.1)> \
--output-filename <projdata> \
--safety-margin <0>

ACF-filename Attenuation Correction Factors Projection Data Filename

ACF-threshold Value used to threshold ACF and creates the mask, defaults to 1.01

safety-margin This dilates the mask for a number of safety bins in tangential direction

output-filename The file that new projection data will be stored

16See the Wiki for more information on offset conventions.

27

4.9.2 SSS

The actual scatter estimation process consists of 2 steps:

• Use estimate scatter to find subsampled (single) scatter estimate from current emission image

• Use upsample and fit single scatter

These steps are now discussed in more detail.

> estimate scatter scatter.par

Example scatter.par

Scatter Estimation Parameters:=

; threshold below which not to bother putting a scatter point

; in a voxel (in cm^-1)

attenuation_threshold :=.01

; Place the scatter points in a random position of a voxel or in the centre

random := 1

; Caching (of the line integrals) speeds up the estimation drastically.

use_cache := 1

; The resolution of the scanner (at 511 keV) as given in the literature

; given as a ratio (example value is 22%)

energy_resolution :=.22

; Acquisition settings

lower_energy_threshold :=350

upper_energy_threshold :=650

activity_image_filename := ACTIVITY_IMAGE

density_image_filename := DENSITY_IMAGE

density_image_for_scatter_points_filename := LOW_RESOLUTION_DENSITY_IMAGE

template_proj_data_filename := SUBSAMPLED_PROJECTION_DATA_TEMPLATE

output_filename_prefix := OUTPUT_PROJECTION_DATA

End Scatter Estimation Parameters:=

activity image current estimate of the activity (or emission) image

density image mu-map or attenuation image (at 511 keV and in units cm−1), used to compute the line-integrals (in the
exponentials) in the Klein-Nishina formula.

density image for scatter points ”subsampled” attenuation image (at 511 keV and in units cm−1), used to select scatter
points (and their corresponding mu), as discussed in section 4.9.1

template proj data “subsampled sinogram” template, as discussed in section 4.9.1

The reason we use 2 different attenuation images is to be able to investigate if the sampling used for the attenuation in those
2 situations makes any difference. Unfortunately, we didn’t complete that investigation so cannot recommend what to use
for the original attenuation image (for large uniform objects, it won’t make any difference, for objects with small features of
high attenuation, it might). As discussed in the literature however, you can safely reduce the number of scatter points and
still get good estimates.

> upsample and fit single scatter \
--min-scale-factor <number> \
--max-scale-factor <number> \
--remove-interleaving <1|0> \
--half-filter-width <number> \
--output-filename <filename> \
--data-to-fit <filename> \
--data-to-scale <filename> \
--norm <filename> \
--weights <filename>

This program takes the coarse scatter estimate, upsamples it to the size of the emission data (data-to-fit) and performs
“tail-fitting”: the tails in the sinograms are supposed to contain only scattered counts, so the upsampled scatter estimate is
scaled to fit the emission data in the tails. The tails are determined from the weights parameter.

28

min-scale-factor,max-scale-factor : Both min and max scale factors are set such that the scaling does not explode for
some reason. STIR’s scatter routine is scaled such that scale-factor=1 is appropriate to model single scatter only. For
human patients, the presence of multiple scatter and out-of-FOV scatter means that the actual scale factor will be a
bit more than 1. How much will depend on your scanner, the size of the patient etc. In most cases it shouldn’t be
more than 2. Therefore, limiting the scale factor between 0.9 and 2 is probably a good idea.

remove-interleaving : Remove the interleaving in the coarse scatter estimate before upscaling (it is recommended to set
this to 1)

half-filter-width : width of filter to apply on estimated scale factors (in axial direction). The filter is a simple boxcar.

output-filename : Scatter projection data at the emission data settings

data-to-fit : Normalised Emission sinogram (corrected for randoms)

data-to-scale : Course scatter sinogram

norm : optional parameter to specify normalisation appropriate for the emission data (see below). The parameter expects
the filename of a .par file with the following keywords

Bin Normalisation parameters:=

type:= <type info as usual>

<other keywords for the chosen type>

END:=

weights : This is the mask sinogram, or any other weighting factors on projection space that is used to define the region of
scaling.

If the emission data was pre-normalised, the norm parameter should not be used. However, this strategy fails for scanners
which have zero detection efficiency in some bins (as pre-normalisation cannot work in those bins). Therefore, it is also
possible to use emission data without normalisation, but pass the normalisation info to the fitting. In effect, what this will
do is find scale factors α that minimise ∑

b

wb(Db − αUb/Nb)2

with b an index running over the bins in the sinograms, D the data to fit (normally randoms-corrected emission), N the
normalisation factors, U the upsampled scatter estimate. (If no normalisation is given, N = 1). The output of the program
is the final scatter estimate:

Sb = αUb/Nb

The procedure of scaling involves B-Splines interpolation for the tangential (Cubic), axial (Cubic) and view (Linear)
dimensions, while for oblique segments, currently the interpolation is achieved by applying the pseudo-inverse transform of
Single Slice Rebinning as described in [Tso05].

4.9.3 Iterative loop (if necessary)

The scatter estimation is based on images that do not include scatter, therefore an iterative procedure is needed such that
scatter is eliminated progressively. In the first iteration, scatter (B.2) is overestimated and thus images are overcorrected
(B.3) for it. Then, in the second iteration (B.2) scatter is underestimated. The mean value of the two scatter estimates can
be used for scatter correction. Two iterations are usually enough to estimate a good approximation of scatter.

• Reconstruct emission image with scatter estimate
Two options exist:

– FBP: Correct the scatter estimate for attenuation and subtract from the precorrected emission data. Run FBP
with sufficient filtering.

Image = FBP (ACF ∗ (N ∗ (P −R)− S))

– Iterative (e.g. OSEM or OSSPS): Use the following for the additive sinogram (A).

A = (R ∗N + S) ∗ (ACF)

where

N Normalization Factors,

ACF Attenuation Correction Factors,

R Random Projection Data,

S Scatter Projection Data as estimated using STIR,

P Measured Projection Data (prompts)

29

4.9.4 Limitations

The three separate executables need to be merged in one together with the iterative loop. The SSS can estimate 3D scatter
that is measured by indirect rings but no interpolation of indirect rings is currently in place. Therefore, upsampling of oblique
sinograms is currently handled in a simple way i.e. (pseudo)-inverse SSRB but ideally interpolation of the 3D sinograms will
be useful. In the current version, we have only SSS in STIR with scaling per sinogram of the scatter sinograms for taking
consideration of the out of field of view activity and multiple scattering events. This generally seems to produce good results
in most instances [Thi07].

4.10 Parametric Image Construction using kinetic modelling

A parametric image class (ParametricDiscretisedDensity) has been implemented that at the moment can hold two
parameters17. In this release Patlak plot [Pat83, Pat85], i.e. a linear kinetic model for tracers with irreversible kinetic
behavior, has been implemented. The PatlakPlot class is derived from the KineticModel class.

The user will need to provide information about:

• File of input function (e.g. plasma activity or reference tissue activity values);

• Calibration Factor (i.e. scale factor that sets the projection data to the same units with the input function)

• Starting frame to apply Patlak Plot

• Delay between input function and PET measurement

• Time-frame definition file.

• The boolean In total counts is 0 or 1 depending if the counts are total or mean over each frame

• In correct scale should be set to 1 if STIR has already scaled correctly the images according to x voxel size

Example Sample File: PatlakPlot.par

Patlak Plot Parameters:=

time frame definition filename :=

starting frame := UNSIGNEDINT

calibration factor := FLOAT

scale factor := FLOAT

blood data filename := plasma.if

; In seconds

Time Shift := FLOAT

In total counts := 1

In correct scale := 1

end Patlak Plot Parameters:=

Current assumptions are that an F-18 tracer is used; the input function is not decay corrected and it is given in a text file
with three columns (i.e. PlasmaSample): time in seconds, plasma-activity in kBq/cm-3, and blood-activity in kBq/cm-3)
and multiple the total number of PlasmaSample is usually given in the very first row. Currently, the parametric image
has to be in ECAT7 format with num frames being equal to num params.

How to Run Patlak Plot :
> apply patlak to images \
output-parametric-image input-dynamic-image patlak-plot.par

How to Estimate Dynamic Images using Patlak Plot Parametric Images:
> get dynamic images from parametric images \
output-dynamic-image input-parametric-image patlak-plot.par

Of course the reference tissue model can also be applied:

Patlak Plot Parameters:=

time frame definition filename :=

starting frame := UNSIGNEDINT

calibration factor := 1

scale factor := 1

blood data filename := tac.roi

17Most relevant STIR classes are templated in the number of parameters and would therefore work with numbers. There are some
preprocessor defines however to shorten the code in a few places. Currently this uses #DEFINE NUM PARAMS 2.

30

; In seconds

Time Shift := 0

In total counts := 1

In correct scale := 1

end Patlak Plot Parameters:=

Important Note: The current version of indirect reconstruction does not consider any special weighting for the time
frames. This is a good approximation only if the counts at each frame is very similar which is mostly true for frames with
the same duration. If the user needs to use weighted least-squares, the code will need minor modification.

Moreover, two direct reconstruction version of linear kinetic models have been also implemented, evaluated [Tso08, Tso07]
and optimised [Ang11]. These are the parametric versions of OSEM and OSSPS therefore called POSEM and POSSPS.
P
> POSMAPOSL POSEM.par

> POSSPS POSSPS.par

The parameter files include the information of the kinetic model as described for the indirect case and the declaration of
the new objective function type
PoissonLogLikelihoodWithLinearKineticModelAndDynamicProjectionData.

Important Note: Patlak plot Parameters are highly correlated thus POSEM and POSSPS will struggle to compute
the parameters [Tso07]. However, for (non-negative) kinetic models that correlation is minimum it is expected that they will
work fine.

4.11 Motion Correction

Motion correction has become an important task in PET imaging. Amongst several approaches to motion-correct PET data,
two are the most common: reconstruct-transform-average (RTA) [Kle96] and motion-compensated image reconstruction
(MCIR) [Li06]. In RTA, separate images are reconstructed for each motion ”state” (or ”frame”), which are then transformed
to one reference frame and averaged to produce a motion-corrected image. In MCIR, the projection data from all frames are
reconstructed together by including the motion information into the reconstruction system matrix, so that a motion-corrected
image is produced directly. In both cases it is assumed that an accurate description of the motion is available.

In STIR, the motion compensation can happen either before or during reconstruction. Two research papers have validated
the implementation of RTA and MCIR in STIR [Pol12], [Tso13]. As these are based on OSMAPOSL their names are
RTA-OSMAPOSL and MCIR-OSMAPOSL. The implementation has been validated only for the additive median-root-prior
(MRP), but it is compatible with any MAP reconstruction of STIR. Furthermore, the implementation can also work for
OSSPS but the current version of MCIR-OSSPS needs further debugging.

During RTA, motion correction is performed by first reconstructing independently the raw data of each respiratory
position using a conventional iterative algorithm, such as the ordered subsets expectation maximisation (OSEM).Then the
reconstructed image of each gate is transformed to the reference position using known motion fields. The transformed gates
are then averaged to produce a motion-corrected image. For example, when using MRP:

Λ
(s+1)
νg = Λ

(s)
νg

1∑
b∈Sl

PνbAbg+βg∇ΛνE
(s)
ν

∑
b∈Sl

Pνb
Ybg∑̃

ν
Pbν̃Λ

(s)
ν̃g +

Bbg
Abg

(2)

where

βg∇ΛνE
(s)
ν ≡ βg Λ

(s)
νg −M

(s)
ν

M
(s)
ν

(3)

Λν = 1
G

∑
g

∑
ν′
Ŵ−1
ν′g→νΛν′g (4)

The transform-and-average operation is performed by the warp and accumulate gated images utility.
For MCIR the motion transformations are incorporated directly into reconstruction. The motion corrected image is

reconstructed using the following iterative formula which is based on conventional OSEM including motion via the forward
/ backward transformation operators, as well. Again using the Median Root Prior, we get

Λ
(s+1)
ν = Λ

(s)
ν

1∑
b∈Sl,g

∑
ν′
Ŵ−1
ν′g→νPν′bAbg+β∇ΛνE

(s)
ν

×
∑

b∈Sl,g

∑
ν′

Ŵ−1
ν′g→νPν′b

Ybg∑̃
ν
Pbν̃

∑
ν̃′
Ŵν̃′→ν̃gΛ

(s)

ν̃′ +
Bbg
Abg

 (5)

Notation:

• Λ
(s)
ν is the radioactivity distribution at voxel ν and subiteration number s;

• Ybg is the number of coincident photons of each detector pair (bin) b that belongs to the lth subset S and gate g;

31

• Sl corresponds to the lth subset of the projection space, which is divided into L total subsets;

• s is the subiteration number and l = s mod L. A set of L subiterations comprises a full iteration;

• Pbν is the system projection matrix;

• Ŵ , Ŵ−1 represent the forward / backward warping operations of the image that move the activity from voxel ν′ to
the voxel ν using the motion fields and linear interpolation;

• E is the “potential” function;

• Mν corresponds to the median 3× 3× 3 mask width of neighbourhood voxels centred at voxel ν;

• G is the total number of gates;

• β, βg are the penalisation factors for MCIR and RTA, respectively. Note that β = G× βg, but for simplicity all cases
are displayed with respect to βg;

• Abg and Bbg are the attenuation coeffecient and background term (e.g. scatter) for each bin and gate, respectively.

Both RTA-OS-MAP-OSL and MCIR-OS-MAP-OSL are using the same routines for warping each respiratory gate to
the reference gate. However, MCIR requires two motion fields: the forward (Ŵ) motion fields and the backward (Ŵ−1)
motion fields (i.e. the same as used in RTA). The forward operator practically warps all frames to the reference frame, while
the backward operator ’unwarps’ the reference frame to each frame so that they can be compared with the corresponding
projection gates in the numerator. It is important that the forward and backward projectors are consistent with each other,
if not the result might not converge to a solution. In future we plan to include an alternative option for the backward motion
fields to be the transpose matrix of the forward motion fields.
Warning:
The current implementation has been tested for respiratory gating, where each gate has the same number of counts. If this
is not the case, or if there is for instance radioactive decay between frames in dynamic PET, the implementation likely needs
minor modifications. For instance, the different gate duration could be accounted for by normalising for the time duration
[Rah08]. A simple temporary solution is to rescale the normalisation sinogram to take into account time duration, e.g. for
two gates with the first gate having 80% of the total duration and the second gate 20%, the normalisation sinogram for the
first gate should be divided by a factor 0.8 and the second by 0.2.

4.11.1 Data Preparation

Multiple Files (one for each position): Emission sinogram, Multiplicative corrections (attenuation, normalisation), additive
corrections (scatter, randoms), motion vectors, and gate definitions filename.

• Sinograms for each position: These have a standard suffix g#, e.g. sinogram g1.hs is the header of the position 1. To
read the sinogram you will need also have set the corresponding definition file for the positions, e.g. sinogram.gdef

• Images: These have a similar suffix g#, e.g. image g1.hv is the header of the position 1. To read the image you will
need also to set the corresponding definition file for the positions, e.g. image.gdef

• Motion Vectors: These have a standard suffix g#d%, e.g. motion g1d1.hv is the header of the motion corresponding
to the position 1 and the first direction (i.e. axial according to STIR coordinate system); d2 corresponds to the vertical
axis direction and d3 to the horizontal axis direction. To read the files you will need also to have set the corresponding
definition file for the positions, e.g. motion.gdef. The image has exactly the same characteristics as the reconstructed
PET image. This currently creates a minor burden as the final voxel sizes and the number of voxels have to predefined
on the motion vector images. We hope to change this in future releases.

4.11.1.1 Coordinate system for motion vectors:

Although motion is designed for general motion information such as rigid motion, affine etc, currently only MotionVectors
on a Cartesian grid are implemented. Information is stored in millimeter using the normal STIR coordinate system and axes
(see the developer’s guide).

Important STIR (as many other programs) uses a pull interpolation warping, i.e. for each voxel in the target (i.e.
motion-corrected) image, the motion vector at that voxel is added to its coordinates, the corresponding location (i.e. before
motion correction) in the original image is found and the new value is obtained by interpolating between the values of the
surrounding voxels of the original image.

One way to understand this is as follows: if a point-source is in a voxel at location ~r in the motion-corrected image and
the motion field at that voxel is ~m1 for gate 1, then this means that the point source was at location ~r + ~m1 in gate 1.

A nice illustration can be found (at the time of writing) at
http://www.bioen.utah.edu/wiki/index.php?title=Geometric Transformation and Interpolation.

4.11.2 Motion Correction

4.11.2.1 RTA
See section 4.12.7.

32

http://www.bioen.utah.edu/wiki/index.php?title=Geometric_Transformation_and_Interpolation

4.11.2.2 MCIR

The procedure involves warping operation by the use of linear interpolation (based on B-Splines) in each forward/backward
step. Note that the current release assumes no weighting over the respiratory positions but this could be manually included
in the multiplicative sinogram.

As the main reconstruction algorithm is exactly the same as for ordinary image reconstruction, we can use the normal
OSMAPOSL program, but with a different objective function.
> OSMAPOSL OSMAPOSL with motion correction.par

An example parameter file would be as follows

OSMAPOSLParameters :=

objective function type:= PoissonLogLikelihoodWithLinearModelForMeanAndGatedProjDataWithMotion

PoissonLogLikelihoodWithLinearModelForMeanAndGatedProjDataWithMotion Parameters:=

input filename := INPUT

projector pair type := Matrix

Projector Pair Using Matrix Parameters :=

Matrix type := Ray Tracing

Ray Tracing Matrix Parameters:=

; use a slightly better approximation than simple ray tracing

number of rays in tangential direction to trace for each bin := 10

End Ray Tracing Matrix Parameters:=

End Projector Pair Using Matrix Parameters :=

use subset sensitivities := 1

; This input is to read the multiplicative factors

; (normalisation*attenuation). The suffix of each file is _g#

normalisation sinograms := ATTENNORMFACTORS

; The input is to read the additive term

; (randoms + scatter). The suffix of each file is _g#

additive sinograms := added_sinos

Gate Definitions filename := MOTION.gdef

; The Motion Vectors are in image file format and their suffix is _g#d%

; where % corresponds to the dimension (1, 2 or 3)

Motion Vectors filename prefix := MOTION

Reverse Motion Vectors filename prefix := INVERTEDMOTION

; here comes the MRP stuff

prior type := FilterRootPrior

FilterRootPrior Parameters :=

penalisation factor := 1

; you can use any image processor here

; the next parameters specify a 3x3x3 median

Filter type := Median

Median Filter Parameters :=

mask radius x := 1

mask radius y := 1

mask radius z := 1

End Median Filter Parameters:=

END FilterRootPrior Parameters :=

end PoissonLogLikelihoodWithLinearModelForMeanAndGatedProjectionDataWithMotion Parameters:=

number of subsets:= 23

number of subiterations:= 460

save estimates at subiteration intervals:= 23

output filename prefix := MOTIONCORRECTEDIMAGE

33

END:=

4.11.3 Regularisation and Noise

According to [Tso13], regularisation is generally advised for either RTA or MCIR. Currently, MRP is validated. Further tests
on quadratic prior and OSSPS implementation are recommended to the researchers using STIR. Otherwise, two iterations
are usually enough to obtain a relatively good image if followed by postfiltering.

4.11.4 Further Extensions for the Future

More robust testing: Currently the tests are performed based on basic tests.
OSSPS: Needs further debugging as it seems the current settings do not reconstruct the motion compensated image.
Scatter Estimation: Assumed to have it already estimated prior to reconstruction.

4.11.5 Realistic Datasets and other info

An extensive database of realistic simulated PET data with motion is available at
http://www.isd.kcl.ac.uk/pet-mri/simulated-data.

Motion fields of these data have been estimated using a local hierarchical affine registration algorithm developed by
Christian Buerger [Bue11]. This independent library is available at http://www.isd.kcl.ac.uk/internal/hyperimage.
The library is working with GIPL (Guy’s Image Processing Lab) File Format and we provide in STIR two utilities two
convert them to/from Interfile format (conv gipl to interfile and conv interfile to gipl). Note that special care need to be
taken with respect to the orientation the original files have been stored in gipl format.

4.12 Utilities

Programs are given in the STIR/utilities directory, that allow the user to display, manipulate and convert interfile data,
either image or projection data.

Utilities specific to files in ECAT 6 or 7 format or in the ecat sub-directory.

4.12.1 Displaying and performing operations on data

The programs are manip image, stir write pgm, list image info, list image values and find maxima in image for
image data and manip projdata, display projdata, extract segments, list projdata info for projection data and
stir math for both. Run them with the name of the image or projection data file as an argument. For example, for
manip image:
> manip image file name.hv

See also section 4.7.1 for the use of SSRB to manipulate projection data.
The program get time frame info is STIR’s first (small!) step into supporting dynamic data.
Note: The displaying functionality is really basic, and only intended for a quick check how your data looks like. For any

serious work, use a decent viewer. For example, AMIDE is a free viewer that can read STIR image data 18. Alternatively,
convert your STIR data to another format using (X)medcon 19.

4.12.1.1 list image info

A utility that lists information about an image on stdout. This includes number of voxels, physical sizes, bounding boxes,
etc. It also prints min/max/sum of the data.

4.12.1.2 stir write pgm

A utility that writes a PGM file for a single slice of an image. You can specify min and max threshold, orientation and
slice number. PGM files can be displayed for instance via ImageMagick. This utility is mainly useful for shell/batch scripts.

4.12.1.3 manip image

This program works on two modes. Additionally to the display possibility, the main mode allows to retrieve information
about the image:

• the minimum and maximum values; either for a plane or for an entire 3D image.

• the number of counts.

18http://amide.sourceforge.net
19http://xmedcon.sourceforge.net

34

http://www.isd.kcl.ac.uk/pet-mri/simulated-data/
http://www.isd.kcl.ac.uk/internal/hyperimage
http://amide.sourceforge.net
http://xmedcon.sourceforge.net

• the voxel value profile; either for an image slice or for any row 1D row through the image.

Within this mode, a truncation (here called trim) of the data can be performed; it results in the circular resetting to zero of
pixels at the image edges.

The other mode (math mode) lets one perform arithmetic operations between two images, or between an image and a
scalar. The result of each calculation is kept in a math mode buffer which becomes the input to the next calculation. Hence,
a sequence of mathematical operations can be carried out on the input image within math mode. The math buffer contents
can also be displayed inside the mode.

4.12.1.4 manip projdata

This utility is the counterpart of manip image for projection data. A menu is displayed with the following options:

• viewgram-wise / sinogram-wise display.

• computation of minimum and maximum values and total counts.

• arithmetic operations between two projection data arrays or between a projection data array and a scalar.

• binarisation of the sinogram, positive values are set to 1, negative values to 0.

• truncation of the negative values.

• application of a tangential truncating window (e.g. all data for bins greater than a specified distance from the scanner
axis may be set to 0).

• application of an axial truncating window to segment 0 (e.g. end plane data may be set to zero).

Each time an operation results in a new projection data array, the user is prompted for the name of an output file, to which
the result is written. This output file then automatically becomes the input file to the next selected operation. Similar to
manip image, this allows new projection data files to be generated from a sequence of operations.

Warning: the user must ensure that all input and output projection data arrays in a given operation are read from /
written to separate files.

4.12.1.5 display projdata

This utility should be preferred to manip projdata when the goal is to display the data by view or by segment for a
defined segment number (ring difference).

4.12.1.6 list projdata info

A utility that lists size info of the projection data on stdout. Optionally it also prints min/max/sum of the data. Use
this if you think there is something wrong with how STIR reads your projection data.

4.12.1.7 create projdata template

This utility is mainly useful to create a template that can then be used for other STIR utilities (such as forward project,
lm to projdata etc.).
> create projdata template output filename

This will ask questions to the user about the scanner, the data size, etc. It will then output new projection data (in
Interfile format). However, the binary file will not contain any data.

It currently only supports PET data. For SPECT, you will have to copy the sample Interfile header from the samples
directory and edit it by hand. You will also need to provide a file with the binary data (but this can be empty if you are
only going to use this as a template).

4.12.1.8 extract segments

This utility extracts projection data by segment into a sequence of 3d image files. It is mainly useful to import segments
into external image display/manipulation programs which do not understand 3D-PET projection data, but can read Interfile
images.

The user will be asked if the images should correspond to SegmentByView or SegmentBySinogram data. In the first, data
are stored as a stack of viewgrams (one for each view), in the second as a stack of sinograms (one for each axial position).
(See the STIR glossary).

35

4.12.1.9 stir math

This is a command line utility for adding or multiplying data and other numerical operations, with a somewhat awkward
syntax. Just execute stir math for a usage message.

Since STIR 2.1, this utility also supports parametric or dynamic data using the command line switches --parametric

and --dynamic.
Examples

• Adding 3 images

> stir math output in1 in2 in3

Sets output=in1+in2+in3

• Subtracting 2 images

> stir math --times-scalar -1 output in1 in2

Sets output=in1-in2

• Sum the square of each images

> stir math --power 2 --including-first output in1 in2

Sets output=in1 2 + in2 2

• Dividing 2 projection data files

> stir math -s --mult --power -1 output in1 in2

Sets output=in1/in2

• Dividing 2 projection data files avoiding division by 0 by thresholding the 2nd data-set.

> stir math -s --mult --min-threshold .1 --power -1 \
output in1 in2

Sets output=in1/max(in2,.1)

• Dividing 2 files, with first file set to the quotient

> stir math --accumulate --mult --power -1 in1 in2

Sets in1=in1/in2

• Linear combination of 3 files

> stir math --times-scalar 5 --divide-scalar 2.5 output \
in1 in2 in3

Sets output=in1+2*in2+2*in3

Warning There is no check that the data sizes and other info are compatible and the output will have the largest data
size in the input, and the characteristics (like voxel-size or so) are taken from the first input data. Hence, lots of funny effects
can happen if data are not compatible.

Warning When ’--accumulate’ is not used, the output file HAS to be different from all the input files.
Warning The result of using non-integral powers on negative numbers is probably system-dependent.

4.12.1.10 generate image

This program can be used to generate images containing geometric shapes such as cylinders, spheres etc. See the online
documentation generated by doxygen for more info.

4.12.1.11 zoom image

This can be used to reinterpolate images to different voxel sizes and/or dimensions. See the online documentation
generated by doxygen for more info.

4.12.1.12 get time frame info
This simple program allows display of time frame info for a given file. The specified file can be an ECAT6 or an ECAT7
file, or a simple text file specifying the number of time frames and their durations. See the class documentation for Time-
FrameDefinitions for the format of this text file.
Basic Usage:
> get time frame info filename frame number

Using no arguments will give a more extensive usage message showing some options to select which data to print.

36

4.12.1.13 list ROI values

This is a test-release of a program that can be used to find ROI values for an image. See the online documentation
generated by doxygen for more info.

4.12.1.14 extract dynamic images

This executable can be used to get the individual components of a dynamic image as separate images. To use it, simply
give the pattern of the output filename, the input filename, and optionally supply a parameter file for saving the output
images.

4.12.2 Converting data

This program is used to convert CTI ECAT 6 data (either image or projection data) into interfile data. It normally should
be run as follows
> convecat6 if output file name without extension \
cti data file name [scanner name]

The optional scanner name can be used to force to a particular scanner (ignoring the system type in the main header).
scanner name has to be recognised by the Scanner class (see STIR/buildblock/Scanner.cxx). Examples are: ECAT 953,
ART, ECAT HR+, Advance etc. If the scanner name contains a space, the scanner name has to be surrounded by double
quotes when used as a command line argument.

If there are no command line parameters, the user is asked for these parameters instead.
The program asks if all frames should be written or not. If so, all sinograms/images are converted for a fixed ’data’

number. For each data set, a suffix is added to the output filename of the form f#g#b#d# where the # are replaced by the
corresponding number of the frame, gate, bed, data.

Warning CTI ECAT 6 files seem to have a peculiarity that frames and gates are numbered from 1, while bed positions
are numbered from 0. Similarly, the number of bed positions in the main header seems to be 1 less than the actual number
present. This is at least the case for single bed studies. If this is not true for multi-bed studies, the code would have to be
adapted.

Warning Most of the data in the ECAT 6 headers is ignored (except dimensions)
Warning Data are multiplied with the subheader.scale factor, In addition, for emission sinograms, the data are multiplied

with subheader.loss correction fctr (unless the loss correction factor is < 0, in which case it is assumed to be 1).
Warning Currently, the decay correction factor is ignored
Warning Note that sinogram data have to be ’corner-swapped’, see section 4.12.2.4.

4.12.2.1 conv to ecat6
This program is used to convert image or projection data into CTI ECAT 6 data (input can be any format currently supported
by the library). It normally should be run as follows:

for images:
> conv to ecat6 [-k] [-i] outputfilename.img \
input filename1 [input filename2 ...] scanner

for projection data:
> conv to ecat6 -s[2] [-k] [-i] outputfilename.scn \
input filename1 [input filename2 ...]

If there are no command line parameters, the user is asked for the filenames and options instead. Unless the –i option is
used, the data will be assigned a frame number in the order that they occur on the command line.

See STIR/buildblock/Scanner.cxx for supported scanner names, but examples are “ECAT 953”, “ART”, “Advance”.

Command line options

-s2 This option forces output to 2D sinograms (ignoring higher segments).

-k the existing ECAT6 file will NOT be overwritten, but added to. Any existing data in the ECAT6 file with the same
<frame,gate,data,bed> specification will be overwritten.

-i ask for < frame,gate,data,bed> for each dataset

Note that to store projection data in ECAT6, a 3D sinogram cannot be axially compressed (CTI span=1).
Warning This utility does not corner-swap 3D projection data back to the ‘raw’ convention, see section 4.12.2.4.

37

4.12.2.2 conv to ecat7
This program is used to convert image or projection data into CTI ECAT7 data (input can be any format currently supported
by the library). conv to ecat7 uses the Louvain la Neuve ecat library, see section 3.2.3. This means it will only work on
those systems supported by that library. It normally should be run as follows

for images:
> conv to ecat7 output ECAT7 name input filename1 \
[input filename2 ...] scanner

for emission projection data
> conv to ecat7 --s output ECAT7 name input filename1 \
[input filename2 ...]

for sinogram-attenuation data
> conv to ecat7 -a output ECAT7 name orig filename1 \
[orig filename2...]

If there are no command line parameters, the user is asked for the filenames and options instead. The data will be
assigned a frame number in the order that they occur on the command line.

See buildblock/Scanner.cxx for supported scanner names, but examples are “ECAT 953”, “ART”, “Advance”.

4.12.2.3 ifheaders for ecat7: ECAT7 support for reading
The current release includes some support for making Interfile headers that point towards and ECAT 7 file. This is possible
because ECAT7 normally stores the data with single subheaders per frame/gate/bed/data. ifheaders for ecat uses the
Louvain la Neuve ecat library, see section 3.2.3. This means it will only work on those systems supported by that library.
This program writes Interfile headers that ’point into’ an ECAT 7 file. That is, the binary data are NOT rewritten.
So, the result of this program is a collection of Interfile headers for every data set in the ECAT 7 file. They are called
ecat7 filename extension f1g1d0b0.* etc, indicating which frame, gate, bed, data number the dataset corresponds to. Run
the program as follows
> ifheaders for ecat7 ecat7 filename.extension

This only works with some CTI file types. In particular, it does NOT work with the ECAT6-like file types, as then there
are subheaders ’in’ the datasets.
Warning This utility does not take corner-swapping of 3D projection data into account, see section 4.12.2.4.
Note that you do not have to use this utility if you want to read only “frame 1, gate 1, data 0, bed 0”. In this case, you can
pass the ECAT7 file directly to any STIR program.
Warning The calibration factor field in the main header of ECAT7 images is currently ignored.

4.12.2.4 ecat swap corners

Usage

> ecat swap corners out name in name

What does it do?
For some historical reason, CTI scanners store 3D sinograms sometimes in a ’corner-swapped’ mode. What happens is that
some corners of the positive and negative segments are interchanged. (As a consequence, segment 0 is never affected).
Below is a summary of what Kris Thielemans understood about corner-swapping from various emails with CTI people.
However, he might have totally misunderstood this, so beware!

For ECAT6 data, corner-swapped mode occurs always for data straight from the scanner. However, data which have
been normalised using the import 3dscan utility from CTI are already corner-swapped correctly. Unfortunately, there is no
field in the ECAT6 header that allows you to find out which mode it is in.

For ECAT7 data, the situation is even more confusing. Data acquired directly in projection data have to be corner-
swapped when the acquisition was in ’volume-mode’ (i.e. stored by sinograms), but NOT when acquired in ’view-mode’ (i.e.
stored by view). It seems that bkproj 3D sun follows this convention by assuming that any ECAT7 projection data stored
in ’volume-mode’ has to be corner swapped, and when it writes projection data in ’view-mode’, it does the corner swapping
for you. So, although there is strictly speaking no field in the ECAT7 header concerning corner swapping, it seems that the
‘storage mode’ field determines the corner swapping as well.
When the data is acquired in listmode, this changes somewhat. Apparently, there is a parameter in the set-up of listmode
scans that allows you to put the ACS in ’volume-mode’ or ’view-mode’. The resulting listmode files encode the sinogram
coordinates then with corner-swapping or without. After the acquisition, the listmode data has then to be binned into
projection data. It is then up to the binning program to take this corner-swapping into account. This is easiest to do by
generating ’volume-mode’ projection data when a ’volume-mode’ when the listmode setup was in ’volume-mode’, and similar
for ’view-mode’.

If this sounds confusing to you, KT would agree. Here seems to be the best thing to do:

38

Do all acquisitions in ’view-mode’, set-up your listmode scan in ’view-mode’, bin the data in ’view-mode’. Forget about
corner-swapping.

If you cannot do this, then this utility will corner-swap the projection data for you.

Who implemented this and how was it tested?
The actual corner swapping code was supplied by Christian Michel, based on code by Larry Byars. KT has tested it by
performing a very long cylinder scan in ’volume-mode’ on the ECAT 966, and looking at the delayeds. The oblique segments
had obvious discontinuities in the efficiency patterns. After applying this utility, these discontinuities appeared.

Warning This utility does not (and cannot) check for you if the data has to be corner-swapped or not. So, it can do the
wrong thing.

4.12.2.5 copy ecat7 header
Allows copying header info between ECAT7 files. Check doxygen, or run without parameters for usage info.

4.12.2.6 conv AVW
If you have the AVW TMlibrary 20 installed on your system, the build process should have built utilities/conv AVW, see
also 3.3.1. This utility allows to use the AVW library to read an image, and then write it out using STIR as Interfile.
Warning: the AVW library seems to do flip some images depending on the file format. For instance, it reads ECAT7 files
using a z-flip compared to STIR.

It normally should be run as follows:
> conv AVW [--flip z] imagefile

It will require access to a run-time license for AVW.

4.12.2.7 conv GATE projdata to interfile
This program converts GATE raw sinogram output (.ima) into STIR interfile format.

4.12.2.8 conv gipl to interfile and conv interfile to gipl
These programs convert from/to GIPL format. The latter program has a somewhat wrong name. It will actually read an
image in any format supported by STIR.

4.12.3 Filtering image data

The postfilter.cxx program allows one to apply any available image processor on an input image. 21 Review Section 4.13.2
for info on which filters you can apply.

The program is run as follows:
> postfilter [<output filename> [<input file name> \
[<postfilter par filename>]]]

where the square brackets denote optional parameters (their value will be asked interactively). Example postfilter.par
files can be found in the STIR/samples directory.

4.12.4 Comparing files

The two utilities compare image and compare projdata can be used to see if 2 files are identical up to rounding errors.
(Note that running reconstructions on a different architecture, or even when using different compilers will almost certainly
give rounding error differences.) They should be run with 2 command line arguments, specifying the 2 filenames. Optional
arguments are as follows:
> compare projdata file1 file1 [maximum segment number to process]

> compare image [-r rim truncation in pixels] file1 file1

where the rim truncation argument to compare image says how many pixels it should ignore at the radial rim of the
image.

20See www.mayo.edu/bir/Software/AVW/AVW1.html.
21The current version does no longer allow to compute the impulse response (i.e. point spread function) of a discretised

filter. This is largely because the image processors can be non-linear, in which case the PSF concept does not apply. For
linear filters, it would still be possible to obtain the PSF by using as input image an image with all 0s except a single pixel
in the middle of the image.

39

http://www.mayo.edu/bir/Software/AVW/AVW1.html

4.12.5 Precorrecting (or uncorrecting) projection data

The correct projdata utility located in STIR/utilities is useful to perform precorrections such as randoms and/or scatter
subtraction, normalisation and attenuation correction. It can also be used to ’uncorrect’ the data which might be useful if
you get completely precorrected data out from the scanner (or FORE) and want to reverse some of the corrections.

It is run as
> correct projdata correct projdata par filename

A sample parameter file is given in STIR/samples and is more or less as follows

correct_projdata Parameters :=

input file := trues.hs

; Current way of specifying time frames, pending modifications to

; STIR to read time info directly from the headers

; The specified file can be an ECAT6 or an ECAT7 file, or a simple

; text file. See also section \ref{sec:get_time_frame_info}.

time frame definition filename := frames.fdef

; if a frame definition file is specified, you can say that

; the input data corresponds to a specific time frame

; the number should be between 1 and num_frames and defaults to 1

; this is currently only used to pass the relevant time

; to the normalisation

time frame number := 1

; output file

; for future compatibility, do not use an extension in the name of

; the output file. It will be added automatically

output filename := precorrected

; default value for next is -1, meaning ’all segments’

; maximum absolute segment number to process :=

; use data (1) or set to one (0) :=

; apply (1) or undo (0) correction :=

; parameters specifying correction factors

; if no value is given, the corresponding correction will

; not be performed

; random coincidences estimate, subtracted before anything else

; is done

; randoms projdata filename := random.hs

; normalisation (or binwise multiplication)

Bin Normalisation type := from projdata

Bin Normalisation From ProjData :=

normalisation projdata filename:= norm.hs

End Bin Normalisation From ProjData:=

; scatter term to be subtracted AFTER norm(+atten correction)

; WARNING This is not the same as the output of the scatter estimation

; defaults to 0

;scatter projdata filename := scatter.hs

END:=

Time frame definition is only necessary when the normalisation type uses this time info for dead-time correction (which
is not supported yet in the current (public) version of STIR).

The following gives a brief explanation of the non-obvious parameters.

use data (1) or set to one (0) Use the data in the input file, or substitute data with all 1’s. This is useful to get correction
factors only. Its value defaults to 1.

40

apply (1) or undo (0) correction Precorrect data, or undo precorrection. Its value defaults to 1.

Bin Normalisation type Normalisation (or binwise multiplication, so can contain attenuation factors as well). See Section
4.13.8.

attenuation image filename obsolete Specify the attenuation image, which will be forward projected to get attenuation
factors. Has to be in units cm−1 .

This parameter will be removed. Use instead a chained bin normalisation (section 4.13.8) with a bin normalisation
from attenuation image (section 4.13.8).

forward projector type obsolete Forward projector used to estimate attenuation factors, defaults to Ray Tracing. See
Section 4.13.5.

This parameter will be removed.

The calculate attenuation coefficients utility (located in STIR/utilities) can also convert an attenuation image to
attenuation (correction) factors. It is less flexible than correct projdata though. For example, using the --ACF switch, it
will compute the attenuation correction factors (ACFs)22, which can then be used in other STIR programs.

The attenuation coefficients to projections utility (located in STIR/utilities) is a (simplistic) example to convert
attenuation (correction) coefficients to projections by taking the logarithm. For real-world use, it is recommended to pre-filter
the data first, to reduce noise and remove negatives.

4.12.6 Generating Poisson noise

For simulation purposes, it is often useful to be able to generate multiple noise realisations given the ‘true’ mean projection
data. For PET and SPECT, the appropriate statistics is very closely Poisson23, at least for uncorrected counts. STIR
includes the following utility to find a noise realisation given the mean projection data.

Usage:
> poisson noise [-p | --preserve-mean] output filename \
mean projdata filename scaling factor seed-unsigned-int

The scaling factor is used to multiply the input data before generating the Poisson random number. This means that a
scaling factor larger than 1 will result in less noisy data.

The seed value for the random number generator has to be strictly positive. Passing different seeds will result in different
noise realisations.
Without the -p option, the mean of the output data will be equal to scaling factor*mean of input, otherwise it will be equal
to mean of input.

The options -p and –preserve-mean are identical.

4.12.7 Motion related utilities

4.12.7.1 warp image
This program warps an image to another position using as input given motion vectors

4.12.7.2 warp and accumulate gated images

> warp and accumulate gated images \
output filename filename prefix motion vectors prefix

filename prefix The images that need to be placed in the same reference position.

motion vectors prefix motion vector images

The procedure involves a warping operation by the use of linear interpolation (based on B-Splines). Note that the current
release assumes no weighting over the respiratory positions, but this could be manually included if the images are scaled
according to duration of each position prior to the correction.

4.12.7.3 zeropad planes
This program zero pads the start and end planes of an image.

4.12.7.4 shift image origin
This utility can be used to simply change the origin in the interfile header of an image.

22roughly log(-ray tracing(image))
23For a given scan, the actual distribution of the detected raw counts is binomial. However, for acquisition times that are

shorter than the half life of the radio-isotope, the Poisson approximation is very good.

41

4.12.7.5 shift image
This utility can be used to apply translations to an image. The translations are applied with no interpolation, but the entire
image moves for an given integer number of voxels.

4.12.8 Using projectors

4.12.8.1 Utilities for forward or back-projection
forward project and back project will perform a single projection given input data and a “template” for the output. The
template is used to know what data sizes and characteristics to use. Both utilities optionally allow passing a parameter file
with settings which projector to use (see 4.13.5 for forward projection and 4.13.6 for back-projection). Run these utilities
for a usage message.

4.12.8.2 Utilities for testing
The fwdtest and bcktest programs located in STIR/recon test/ can be used to examine forward or back projectors.
They allow to project only subregions of the data, but can also do the whole projection in one go. These programs are really
only intended for testing though. Normally, you would use forward project and back project.

The fwdtest and bcktest programs located in STIR/recon test/ can be used to examine forward or back projectors.
They allow to project only subregions of the data, but can also do the whole projection in one go. These programs are really
only intended for testing though. Normally, you would use forward project and back project.

4.12.9 Interfacing with SimSET

STIR contains some routines to make it easier to reconstruct data from SimSET [Lew98], a popular Monte Carlo simulator
for PET and SPECT. This is all preliminary. Check out the README.txt in the STIR/SimSET directory.

4.13 User-selectable components

The software design of STIR has a heavy emphasis on object-oriented programming. For the user, the main benefit of this
is that it is possible to select at run-time what particular type of e.g. forward projector to use. The following is a list of all
available components where this type of run-time selection is currently available. In the doxygen documentation, look at the
class documentation for RegisteredObject.

For each component, there are different types, each with its own unique name. Each type has its specific set of parameters.
Conventions used in this section

Each component has its own section, and each type has its subsection. The name of the subsection is the unique identifier
of the type.

In a parameter file, the selection of the type would look for instance as

This Program Parameters:=

some parameter:=

filter type := my preferred filter type

my preferred filter type parameters:= ; REQUIRED keyword

par 1:=

...

end my preferred filter type parameters := ; REQUIRED keyword

another program parameter :=

;etc

end :=

Please note that the first and last keywords of a particular type have to be included in the parameter file, even if no
additional parameters are given.

4.13.1 Available output file formats

STIR can write images in a number of different formats. Currently, a single 3D image is written per file, i.e. no multi-frame
or gate files yet. The only exceptions to this rule are the conv to ecat6 and conv to ecat7 utilities.
Currently, the default output file format is Interfile (see below), although this could be changed (for most STIR programs)
by editing the file
include/stir/IO/DefaultOutputFileFormat.h
(not recommended).

42

4.13.1.1 Common parameters
The following parameters are common to all file formats. However, the implementation for a particular file format could
ignore the value of these parameters if it does not support it. These parameters follow the Interfile 3.3 syntax, except that
the “short float” and “long float” values for “number format” keyword are not supported. Use “float” instead.

byte order <string>
values: littleendian | bigendian
default: native byte order

number format <string>
values: bit | ascii | signed integer | unsigned integer | float;
default: float

number of bytes per pixel <integer>
default: 4

If “byte order” is omitted, the default value corresponds to the native byte order of the computer the program runs on.
Summarising: if none of these keywords is specified, data are written as 4-byte floats in the native byte order, unless the
specific file format has another default.

Warning: Note that only essential information is written in the headers. In particular, frame duration etc are currently
not filled in.

4.13.1.2 Interfile
The most comprehensively supported file format in the library is a newly proposed version of interfile. More details about this
type can be found on the STIR website. Interfile image files are written as a pair of files image filename.hv, image filename.v
where image filename.hv is the header text file and image filename.v is the data file. In addition, we currently write a .ahv
file which uses Interfile 3.3 conventions, with a tweak for the slice thickness keyword to work-around an AnalyzeTM bug24.
The .ahv file is probably also readable by other programs capable of reading Interfile 3.3.

If this output file format is used, and a filename without extension is specified for output, or when the filename has an
extension .hv, the above naming conventions hold. If a filename with another extension is specified, this name is used for the
name of the binary file.

When a file must be specified for reading as a parameter for a STIR utility or reconstruction program, the name of the
.hv header file should be given.

Warning The interfile 3.3 standard does not allow to specify scale factors for the data. Hence, the .ahv file has no scale
factors. This means that any program that reads the .ahv file will have improperly scaled images, unless the scale
factor is 1. However, when using float output, STIR automatically writes data with scale factor equal to 1, so as long as
your non-STIR program knows about float data, everything will be all right. The newly proposed Interfile standard does
use a scale factor, and the .hv file follows this convention. However, currently probably only STIR programs know about
this convention.25

Parameters
This file format currently has no extra parameters, except for the start and stop keywords.

Interfile Output File Format Parameters :=

; any parameters common to all file formats

End Interfile Output File Format Parameters :=

Currently, data is written always in the native byte order, and only signed short, unsigned short or float data are supported
(although this could easily be extended to 1 or 4 byte integers or doubles).

4.13.1.3 ITK
If this output file format is used, ITK IO is used, see also 4.5.6. In this case, the actual file format will be determined by
the extension of the filename. Therefore, this can be used to write Nifti (.nii), Teem (.nhdr), MetaIO (.mhdr), etc.

A default extension can be set that will be appended if a filename without extension is used.

ITK Output File Format Parameters:=

default extension:= .nhdr ; current default value

End ITK Output File Format Parameters:=

24See the comments for write basic interfile image header() in STIR/IO/interfile.cxx
25The utilities distributed by the UCL, Louvain-la-Neuve, Belgium on ftp://ftp.topo.ucl.ac.be/pub/ecat follow a

different convention of reading the scale factor. Currently, STIR writes .hv files that can be read correctly by those utilities,
including the mediman image viewer and (x)medcon. Note however that mediman cannot read float data.

43

ftp://ftp.topo.ucl.ac.be/pub/ecat

4.13.1.4 ECAT6
If this output file format is used, and a filename without extension is specified for output, .img will be added to the filename.

Parameters
This file format currently has only 1 extra parameter, except for the start and stop keywords.

ECAT6 Output File Format Parameters :=

; any parameters common to all file formats

default scanner name := <string>

End ECAT6 Output File Format Parameters :=

The scanner name has to be one of the values listed in buildblock/Scanner.cxx, but generally follows the format
ECAT 953 (this is the default). Currently, the value of this keyword is always used, even for other images reconstructed
from data from other scanners.

Currently, data is written always in the little-endian byte order, and only signed short data are supported.

4.13.1.5 ECAT7
The file format is only available when the ECAT7 support is enabled during compilation, see section 3.2.3.
If this output file format is used, and a filename without extension is specified for output, .img will be added to the filename.

Parameters
This file format currently has only 1 extra parameter, except for the start and stop keywords.

ECAT7 Output File Format Parameters :=

; any parameters common to all file formats

default scanner name := <string>

End ECAT7 Output File Format Parameters :=

The scanner name has to be one of the values listed in buildblock/Scanner.cxx, but generally follows the format
ECAT 962 (this is the default). Currently, the value of this keyword is always used, even for other images reconstructed
from data from other scanners.

Currently, data is written always in the big-endian byte order, and only signed short data are supported.

4.13.2 Available filters or data processors

Reconstruction algorithms and some utilities use filters, or in general data processing algorithm. In STIR 1.x the data-type
was restricted to images, but now other data-types can in principle be used. Some of the available data processors can work
on any data type, but most only work on images.

The type of data processors available to programs is fully extendable (at compile time). How to do this is beyond the
scope of this document. Here we only discuss how to specify a particular data processor at run-time, and list the currently
available ones. Samples of their parameters should be available in STIR/samples.

Each data processor has a unique name associated to it (given as the head of its subsection below). This name has to be
used as value of a filter type keyword (or interactive question). Depending on the filter type, different parameters have to
be given in the.par file (or will be asked interactively).

In addition, it is possible to specify the name None. This is the default for all keywords that ask for the type of the data
processor .

See also the online documentation for the class DataProcessor.
As of STIR version 4.0, it is now possible to use data processors on images prior to forward projection and following

back projection with any projector. This supercedes functionality provided by PresmoothingForwardProjectorBy-
Bin and PostsmoothingBackProjectorByBin, which can now be considered deprecated. Examples are available in
examples/samples/forward projector proj matrix ray tracing pre smoothing.par (and a similarly named back-
projector example).

4.13.2.1 Separable Convolution
This implements spatial non-periodic convolution with a 3D separable filter. The kernel is given in voxel units (not in Fourier
space).
This filter applies a 1D convolution in all directions (z,y,x) with potentially a different filter kernel for every direction.
When parsing, the filter coefficients are read as a list of numbers for each direction. The following conventions is used:
• A list of 0 length (which is the default) corresponds to no filtering.
• When the list contains an even number of data, a 0 is appended (at the end).
• After this, the central element of the list corresponds to the 0-th element in the kernel, see below.

44

Convolution is non-periodic. In each direction, the following is applied:

outi =
∑
j

kernelforthisdirectionj ini−j

Note that for most kernels, the above convention means that the zero-index of the kernel corresponds to the peak in the
kernel.

Elements of the input array that are outside its index range are considered to be 0.
Warning There is NO check if the kernel coefficients add up to 1. This is because not all filters need this (e.g. edge

enhancing filters).

Parameters

Separable Convolution Filter Parameters:=

x-dir filter coefficients:= list_of_numbers

y-dir filter coefficients:= list_of_numbers

z-dir filter coefficients:= list_of_numbers

END Separable Convolution Filter Parameters:=

Example input for a low-pass filter in x,y, no filtering in z

Separable Convolution Parameters :=

x-dir filter coefficients := {0.25,.5,.25}

y-dir filter coefficients := {0.25,.5,.25}

;z-dir filter coefficients :=

END Separable Convolution Parameters :=

4.13.2.2 Separable Cartesian Metz
This is a separable 3D Metz filter for images discretised on a Cartesian voxel grid. These filters are composed of 3 1D
filter kernels, one for the x,y and z directions each. Each 1D filter is specified by a Full Width at Half Maximum (FWHM)
parameter (in millimetres), Metz power parameter and maximum spatial kernel width.

With each triple of parameters, one can associate a 1D continuous Metz filter kernel whose frequency response M(f) is
given by the formula

M(f) =
1− (1−G(f)2)N+1

G(f)

Where G(f) is the frequency response (G(0) =1) of a zero-mean Gaussian distribution function with the associated
FWHM and N is the associated Metz power parameter. Note that in the special case N =0, the filter reduces to the Gaussian
filter G(f). If a strictly positive Metz power parameter is chosen, a non-trivial Metz filter results whose frequency response
possesses an amplifying middle frequency band (see also [Jac00]).

The filtering routines apply the filter by computing discretised versions of the 1D continuous filter kernels in the space
domain and convolving with the image in the appropriate direction. The following rules apply to the construction and
application of filters:

(i) The value 0.0 mm is permissible for the filter FWHM parameter. Selecting a FWHM of 0.0 mm produces trivial filter
kernels, i.e. impulse functions, enabling one to disable the filter in any direction.

(ii) In accordance with sampling theory, the routine that constructs the 1D filter kernels bandlimits the continuous filter
to the hypothesized Nyquist frequency of the image (i.e. 1/(2*voxel size) of the image in the associated direction). Note
that this is equivalent to convolving with a sinc function in the space domain and may yield negative kernel values where
unexpected (e.g. in a Gaussian filter kernel). In general, when reasonably large FWHMs are selected (a few multiples of the
voxel dimension), the bandlimiting has no effect on the filter construction.

(iii) The spatial kernel width can be limited, which will set any other values to 0. If this is not done, the kernel width is
determined by the first value which is smaller in absolute value than 10ˆ-6 times the central kernel value.

(iv) Filter kernels computed by the software may contain non-positive values. This is partly because, in general, a 1D
continuous Metz filter response function may contain non-positive value and so also will its samples. In addition, non-positive
kernel values may arise due to the bandlimiting operations described in (ii).

Consequently, filtered positive images may likewise contain non-positive values.

45

Parameters
Sample parameters are given below

separable cartesian metz filter parameters :=

x-dir filter fwhm (in mm) := 6

y-dir filter fwhm (in mm) := 6

z-dir filter fwhm (in mm) := 6

x-dir filter metz power := 2

y-dir filter metz power := 2

z-dir filter metz power := 2

x-dir maximum kernel size := 129

y-dir maximum kernel size := 129

z-dir maximum kernel size := 31

end separable cartesian metz filter parameters :=

An explanation of these parameters is given here for the x-direction (others are obvious extensions)

x-dir filter FWHM (in mm) The Full Width at Half Maximum of the Gaussian filter kernel from which the x direction
Metz filter kernel are derived.

x-dir filter Metz power The exponent parameter for the x direction Metz filter kernel.

x-dir maximum kernel size The maximum width of the kernel (in pixels). Prior to version 0.93 of the PARAPET library
this was fixed to the number of pixels in the input image (in that direction).

4.13.2.3 Separable Gaussian Filter
This is a separable 3D Gaussian filter for images discretised on a Cartesian voxel grid. These filters are composed of 3 1D
filter kernels, one for the x,y and z directions each. Each 1D filter is specified by a Full Width at Half Maximum (FWHM)
parameter (in millimetres), and a maximum spatial kernel width. The kernel values are obtained by sampling a Gaussian.

The filter is normalised to 1 by default, but the user can choose to disable this option.

Parameters
Sample parameters are given below

separable gaussian filter parameters :=

x-dir filter fwhm (in mm) := 6

y-dir filter fwhm (in mm) := 6

z-dir filter fwhm (in mm) := 6

x-dir maximum kernel size := 129

y-dir maximum kernel size := 129

z-dir maximum kernel size := 31

Normalise filter to 1 := 1

end separable gaussian filter parameters :=

Default values are: (i) fwhm = 0 , which means no filtering (ii) maximum kernel size = -1 , which means unrestricted
(iii) normalise filter to 1 = 1, which means that the filter is normalised to 1.

4.13.2.4 Median
This applies a straightforward 3D (or 2D) median filter on the image.

Parameters
Sample parameters are given below

Median Filter Parameters :=

mask radius x := 1

mask radius y := 1

mask radius z := 1

End Median Filter Parameters:=

A radius of 0 means no filtering in that direction, a radius of 1 means the median will be computed over a mask of 3
pixels, and so on.

4.13.2.5 Truncate To Cylindrical FOV
This image processor will set all voxels to 0 outside a certain radius. TODO this needs updating.

46

Parameters
Sample parameters are given below

Truncate To Cylindrical FOV Parameters:=

; default use x^2 + y^2 < R^2

; if set to 0, will use <=

strictly_less_than_radius:=1

End Truncate To Cylindrical FOV Parameters:=

4.13.2.6 Threshold Min To Small Positive Value
This is a generic data processor that will work on any type of data.

Since strict positivity is a preferred property of images in many circumstances, a post-thresholding of the filtered data is
sometimes applied to truncate non-positive values. The thresholding rule currently used is:
(1) If the entire filtered data is non-positive, the data is uniformly set to a hard-coded strictly positive parameter
SMALL NUM<<1.
(2) Otherwise, all non-positive entries in the data are set to SMALL NUM times the minimum strictly positive value.

4.13.2.7 Chained Data Processor
This is a generic data processor that will work on any type of data.

This data processor allows subsequent application of 2 other data processors on the image. It can for example be used
to first Metz filter an image and then threshold it.

Parameters
Example parameters are given by

Chained Data Processor Parameters :=

Data Processor to apply first := None

Data Processor to apply second := None

END Chained Data Processor Parameters :=

Obviously, in normal practice the Data Processor keywords will have values given by any of the listed data processors in
this section (including Chained Data Processor again).

4.13.3 Incorporating prior information

Some iterative reconstruction algorithms allow the incorporation of a priori information, for instance the One Step Late
algorithm (implemented as OSMAPOSL). At the moment, ’generalised’ priors are used, where we mean that we need to
know only the gradient of the actual (log of the) prior function.
Which priors are available to programs is fully extendable (at compile time). How to do this is beyond the scope of this
document. Here we only discuss how to specify a particular prior, and list the currently available ones. Samples of their
parameters should be available in STIR/samples.

Each prior has a unique name associated to it (given as the head of its subsection below). This name has to be used as
value of a prior type keyword (or interactive question). Depending on the prior type, different parameters have to be given
in the.par file (or will be asked interactively).

In addition, it is possible to specify the name None. This is the default for all prior keywords.
See also the online documentation for the class GeneralisedPrior.

Parameters
These are the keywords that can be used for all priors.

penalisation factor := <float>

where the penalisation factor is usually called β in the literature, and is just a global scale factor for the prior.

4.13.3.1 FilterRootPrior
This prior is an extension of the idea first developed for the Median Root Prior [Ale97]. The prior takes any Data Processor
(i.e. a filter), and computes the prior ’gradient’ as

Gv = λv/Fv − 1

where λv is the image where to compute the gradient, and Fv is the image obtained by filtering λ.
Note that for nearly all filters, this is not really a prior, as this ’gradient’ is not the gradient of a function. This can be

checked by computing the ’Hessian’ (i.e. the partial derivatives of the components of the gradient). For most (interesting)
filters, the Hessian will not be symmetric.

The Median Root Prior is obtained by using Median (see 4.13.2) as Data Processor.

47

Parameters
These are the keywords that can be used in addition to the ones listed in 4.13.3..

FilterRootPrior Parameters :=

penalisation factor := 1

; you can use any data processor here

; the next parameters specify a 3x3x3 median

Filter type := Median

Median Filter Parameters :=

mask radius x := 1

mask radius y := 1

mask radius z := 1

End Median Filter Parameters:=

END FilterRootPrior Parameters :=

4.13.3.2 Quadratic
This implements a quadratic Gibbs prior. The gradient of the prior is computed as follows:

gr =
∑
d

rwdr(λr − λr+dr) ∗ κr ∗ κr+dr

where λ is the image where the gradient is computed and r and dr are indices and the sum is over the neighbourhood where
the weights wdr are non-zero.

The κ image can be used to have spatially-varying penalties such as in Jeff Fessler’s papers. It should have identical
dimensions to the image for which the penalty is computed. If κ is not set, this class will effectively use 1 for all κ’s.

By default, a 3x3 or 3x3x3 neigbourhood is used where the weights are set to x-voxel size divided by the Euclidean
distance between the points.

Parameters
These are the keywords that can be used in addition to the ones listed in 4.13.3..

Quadratic Prior Parameters:=

; next defaults to 0, set to 1 for 2D inverse Euclidean weights, 0 for 3D

only 2D:= 0

; next can be used to set weights explicitly. Needs to be a 3D array (of floats).

’ value of only_2D is ignored

; following example uses 2D ’nearest neighbour’ penalty

; weights:={{{0,1,0},{1,0,1},{0,1,0}}}

; use next parameter to specify an image with penalisation factors (a la Fessler)

; see class documentation for more info

; kappa filename:=

; use next parameter to get gradient images at every subiteration

; see class documentation

gradient filename prefix:=

END Quadratic Prior Parameters:=

4.13.3.3 PLS
This implements the anatomical penalty function, Parallel Level Sets (PLS), proposed by Matthias J. Ehrhardt et. al [Ehr16].
Note that PLS becomes smoothed TV when an uniform anatomical image is provided. The prior has 2 parameters alpha
and eta. It is computed for an image f as

φ(f) =

√
α2 + |∇v|2 − 〈∇f, ξ〉2

where f is the PET image, ξ is the normalised gradient calculated as follows:

ξ =
∇v√

|∇v|2 + η2

v is the anatomical image, α controls the edge-preservation property of PLS, and depends on the scale of the emission
image, and η avoids division by zero, and depends on the scale of the anatomical image.

48

Parameters
These are the keywords that can be used in addition to the ones listed in 4.13.3..

prior type := PLS

PLS Prior Parameters:=

penalisation factor :=1

;

; alpha controls the edge-preservation property of PLS, and depends on the scale of the emission image.

; eta avoids division by zero, and depends on the scale of the anatomical image.

eta:=1

alpha:=1

anatomical_filename:=${filename}

only_2D:=0

END PLS Prior Parameters:=

4.13.4 Selecting different projector pairs

Many algorithms use both a forward and a back projector. The first step to select which one will be used is to say what kind
of projector pair you want to use, of which there are only 2 candidates as given below.

Each projector pair has a unique name associated to it (given as the head of its subsection below). This name has to be
used as value of a ’projector pair type’ keyword (or interactive question). Depending on the projector pair type, different
parameters have to be given in the.par file (or will be asked interactively).

Samples of OSMAPOSL reconstruction parameter files selecting different types of projectors should be available in
STIR/samples.

Warning: for most iterative algorithms, it is recommended to use matching forward and back-projector.
This is unfortunately not the default due to historical reasons. It is recommended to replace the default by
using a projection matrix as detailed below.

4.13.4.1 Matrix
Both projectors are based on a single projection matrix, as given in Section 4.13.7.

Parameters

Projector Pair Using Matrix Parameters:=

Matrix type := some value

; parameters relevant to this type of matrix

End Projector Pair Using Matrix Parameters:=

See Section 4.13.7 for possible values for the ’matrix type’ keyword.

4.13.4.2 Separate Projectors
Forward and back projectors are completely independent of each other. In some programs this is necessary to handle images
or projection data of different sizes.
Even if the projectors are used that both use the same type of projection matrix, that matrix will not share the same cache
or memory.

Parameters

Projector Pair Using Separate Projectors Parameters:=

Forward projector type:= some value

Back projector type:= some value

End Projector Pair Using Separate Projectors Parameters:=

See Section 4.13.5 for possible values for the ’forward projector type’ keyword and Section 4.13.6 for the ’back projector
type’ keyword.

49

4.13.5 Selecting a forward projector

It is possible to select the forward projector used at run-time, and extend the available ones at compile time. The mechanism
is exactly the same as for the ImageProcessor hierarchy.

Each projector has a unique name associated to it (given as the head of its subsection below). This name has to be
used as value of a ’forward projector type’ keyword (or interactive question). Depending on the projector type, different
parameters have to be given in the.par file (or will be asked interactively).

4.13.5.1 Matrix
This forward projector uses a projection matrix to compute its result.

Parameters

Forward Projector Using Matrix Parameters:=

Matrix type := some value

End Forward Projector Using Matrix Parameters:=

See Section 4.13.7 for possible values for the ’matrix type’ keyword.

4.13.5.2 Ray Tracing
This forward projector uses an optimisation of Siddon’s algorithm to compute its result. That is, it uses Length of Intersection.
As it avoids storing the matrix elements, it is currently faster than using a forward projector using a ray tracing matrix (see
Section 4.13.7). The result is identical though (up to rounding errors and possibly the voxels at the edge of the FOV).

See also online documentation for class ForwardProjectorUsingRayTracing.

Parameters

Forward Projector Using Ray Tracing Parameters:=

End Forward Projector Using Ray Tracing Parameters:=

This projector currently has no user-selectable parameters. Nevertheless, the 2 keywords given above have to follow the
’forward projector type’ keyword in a parameter file.

4.13.5.3 Pre Smoothing
This forward projector applies a filter before the normal back-projection. This is useful for reconstruction with resolution-
recovery by using an (image-based) PSF.

Parameters

Pre Smoothing Forward Projector Parameters:=

Original Forward projector type:= some projector value

; normal projector parameters

filter type:= some filter value

; normal filter parameters

End Pre Smoothing Forward Projector Parameters:=

4.13.6 Selecting a back projector

It is possible to select the type of back projector. The mechanism is exactly the same as for the ForwardProjector hierarchy.

4.13.6.1 Matrix
This back projector uses a projection matrix to compute its result.

Parameters

Back Projector Using Matrix Parameters:=

Matrix type := some value

End Back Projector Using Matrix Parameters:=

See Section 4.13.7 for possible values for the ’matrix type’ keyword.

50

4.13.6.2 Interpolation
This back projector uses incremental (piecewise)-linear interpolation to compute its result. See [Egg98] for details. It can
only handle arc-corrected data.

Warning: The current implementation has problems (noticeable sometimes at 45 and 135 degrees but mostly at the
centre of the image) on Sun Sparc, HP and 64-bit AMD and Intel processors (for certain optimisation settings of the C++
compiler).

Parameters

Back Projector Using Interpolation Parameters:=

Use piecewise linear interpolation := 1

Use exact Jacobian := 1

End Back Projector Using Interpolation Parameters:=

The ’piecewise linear’ keyword allows the user to choose between ordinary linear interpolation or piecewise linear in-
terpolation [Thi99] in axial direction. The latter approximates Volume of Intersection for axially uncompressed data. The
piecewise linear interpolation is only used when the axial voxel size is half the axial sampling of the projection data (for the
segment in question), otherwise linear interpolation is used anyway.

The ’exact Jacobian’ keyword selects if the exact or an approximate version of the Jacobian is used. The approximation
consists in taking the value for the central tangential position and is often used in analytic algorithms in the literature.

Even when all default values are used, the start and end keywords given above have to follow the ’back projector type’
keyword in a parameter file.

See also online documentation for class BackProjectorByBinUsingInterpolation.

4.13.6.3 Post Smoothing
This back projector applies a filter after the normal back-projection. This is useful for reconstruction with resolution-recovery
by using an (image-based) PSF.

Parameters

Post Smoothing Back Projector Parameters:=

Original Back projector type:= some projector value

; normal projector parameters

filter type:= some filter value

; normal filter parameters

End Post Smoothing Back Projector Parameters:=

4.13.7 Selecting a projection matrix

It is possible to select these independently at run-time, and extend the available ones at compile time. The mechanism is
exactly the same as for the ForwardProjector hierarchy.

Warning: Currently, most projection matrices are implemented for PET. Using them for SPECT data could lead to
surprising results.

4.13.7.1 Common parameters to all projection matrices
The following parameters can be used for all types of projection matrices. There default values are indicated below.

disable caching:= 0

store only basic bins in cache:=1

Here is an explanation of these parameters.

disable caching [0,1,0] Normally the elements of the matrix are stored in memory (or at least parts of it, see next keyword)
after the first use. This can be disabled, but this should normally only be done if not enough RAM memory is available
such that heavy swapping occurs. The current procedure is an all-or-nothing cache. In the future, it might become
possible that an upper memory limit can be given.

store only basic bins in cache [0,1,1] Most projectors use symmetries to reduce the number of elements that need to be
computed. For example, if the ring spacing of the scanner is an integer multiple of the voxel size in z-direction, it is
only necessary to compute the matrix elements only for 1 ring(pair). When caching is enabled, by default only the
independent elements are cached. If you have plenty of RAM memory, you can store all (non-zero) elements. If your
system does not start swapping, this will speed-up the computation.

51

4.13.7.2 Ray Tracing
This projection matrix uses an optimisation of Siddon’s algorithm to compute its result. That is, it uses Length of Intersec-
tion.
Currently, the LOIs are divided by voxel size.x(), unless NEWSCALE is #defined during compilation time of ProjMatrixBy-
BinUsingRayTracing.cxx.

It is possible to use multiple LORs in tangential direction. The result will then be the average of the various contributions.
Currently all these LORs are parallel. For a very high number of LORs, the result approximates a strip integral (in tangential
direction).

If the z voxel size is exactly twice the sampling in axial direction, 2 or 3 LORs are used, to avoid missing voxels.
It is possible to use a cylindrical or cuboid FOV (in the latter case it is going to be square in transaxial direction). In

both cases, the FOV is slightly ’inside’ the image (i.e. it is about 1 voxel at each side smaller than the maximum possible).
It is possible to reduce the number of symmetries used by this matrix. This might be useful if you have plenty of RAM

and want to speed up the calculations. See also the discussion on caching in section 4.13.7.
Warning Care should be taken to select the number of rays in tangential direction such that the sampling is not greater

than the x,y voxel sizes.
Warning The current implementation assumes that z voxel size is either smaller than or exactly twice the sampling in

axial direction of the segments.

Parameters
The following parameters can be set (default values are indicated):

Ray Tracing Matrix Parameters :=

; any parameters appropriate for all matrices

restrict to cylindrical FOV := 1

number of rays in tangential direction to trace for each bin := 1

do symmetry 90degrees min phi := 1

do symmetry 180degrees min phi := 1

End Ray Tracing Matrix Parameters :=

It is recommended to use a number of rays that is larger than 1 (e.g. 10) to avoid some discretisation
artefacts in the final image.

For the azimuthal angle φ, the following angles are symmetry related for a square grid:
{φ, 180o − φ, 90o − φ, 90o + φ}.
Two boolean parameters allow to select which angles should be considered as related:

all 4 (do symmetry 90degrees min phi=true,
do symmetry 180degrees min phi = true)

only {φ, 180− φ} (do symmetry 90degrees min phi=false,
do symmetry 180degrees min phi = true)

none (do symmetry 90degrees min phi=false,
do symmetry 180degrees min phi = false)

Note that when do symmetry 90degrees min phi=true, it is irrelevant what the value is of do symmetry 180degrees min phi.
This is because otherwise a non-consecutive range in φ would have to be used.

The symmetry in φ is automatically reduced for non-square grids or when the number of views is not a multiple of 4.
In addition, there is a keyword use actual detector boundaries. However, changing its default value is currently not

recommended.
Note that even when all default values are used, the start and stop keywords given above have to follow the ’matrix type’

keyword in a parameter file.
See also online documentation for class ProjMatrixByBinUsingRayTracing.

4.13.7.3 Interpolation
This projection matrix uses interpolation in projection space as model. When using this matrix for back-projection, the
centre of a voxel is projected into a “viewgram” (i.e. roughly a projection plane but taking scanner geometry into account),
and its contribution is computed by linearly interpolating between the surrounding values in the viewgram.

It is intended to give essentially the same results as the incremental-interpolation backprojector 4.13.6. This matrix
version allows using the same model for forward projection.

Note The implementation does not use the incremental computations of 4.13.6 and is therefore not affected by rounding
error.

Warning The current implementation is quite slow in constructing the matrix. If you need to use this multiple times,
it might be worth writing it to disk and then reading it (see 4.13.7).

52

Parameters
The following parameters can be set (default values are indicated):

Interpolation Matrix Parameters:=

; any parameters appropriate for all matrices

use_piecewise_linear_interpolation:=1

use_exact_Jacobian:=1

do_symmetry_90degrees_min_phi:=1

do_symmetry_180degrees_min_phi:=1

do_symmetry_swap_segment:=1

do_symmetry_swap_s:=1

do_symmetry_shift_z:=1

End Interpolation Matrix Parameters:=

See 4.13.6 for an explanation of the first two parameters.

4.13.7.4 SPECT UB
This is a flexible implementation specific to SPECT data. See [Fus13] and [Fus14] for some information. A sample is given
below

Projection Matrix By Bin SPECT UB Parameters:=

;PSF type of correction { 2D // 3D // Geometrical }

psf type:= 2D

; next 2 parameters define the PSF.

; They are ignored if psf_type is "Geometrical"

; the PSF is modelled as a Gaussian with sigma dependent on the

; distance from the collimator

; sigma_at_depth = collimator_slope * depth_in_cm + collimator_sigma_0

collimator slope := 0.0163

collimator sigma 0(cm) := 0.1466

;Attenuation correction { Simple // Full // No }

attenuation type := Simple

;Values in attenuation map in cm-1

attenuation map := attMapRec.hv

;Mask properties { Cylinder // Attenuation Map // Explicit Mask // No}

mask type := Explicit Mask

mask file := mask.hv

; if next variable is set to 0, only a single view is kept in memory

keep all views in cache:=1

End Projection Matrix By Bin SPECT UB Parameters:=

The weight matrix or system matrix in tomographic reconstruction in SPECT is the matrix that stores the percentual
contribution of each voxel of the object into each bin in the projections. In the MLE framework, weight ij can be though
as the probability of one photon being emitted in the voxel i reached the bin j. Each weight can be factorized in three
components: geometry (PSF), attenuation and scattering. This software can calculate the geometrical and the attenuation
component. The correction for scattering should be done using alternative strategies. The geometrical part is calculated as
the integral of the PSF (area 1) within the bin. The geometrical part is multiplied by the attenuation factor calculated using
a modified version of the Siddon algorithm.

Parameters

maximum number of sigmas [0,∞,2]

This is the number of sigmas to consider in PSF correction (float, typically 1.5 to 2.5). PSF are modelled by Gaussian
functions whose extension is infinite. To increase unnecessarily the number of sigmas would produce an increase of the
weight matrix size that would not result in a better correction for PSF. It does not make sense to take into account

53

very small contributions. A balance between the precision of the correction for PSF and the size of the matrix and the
time of the reconstruction process should be done.

psf type The possible values are { 2D, 3D, Geometrical (default) } to indicate, respectively, a planar reconstruction (no
information mixed between planes, planes reconstructed sequentially, 1d -PSF), volumetric (mixed information between
planes, volume reconstructed at once, 2d-PSF), or no correction for PSF (in this case PSF is the trapezoid obtained
by the projection of the square voxel).

collimator slope, collimator slope sigma 0 (cm) (default 0)

These two 2 parameters define the PSF. They are ignored if psf type is Geometrical. These values are mostly dependent
on your collimator. The PSF is modelled as a Gaussian with sigma dependent on the distance from the collimator

σ(d) = slope ∗ d+ σ0 (6)

with d the distance (in cm) of the voxel to the collimator radius.

In the range of usual distances between the object and the detector, the dependence of the sigma with the distance
keeps perfectly linear for parallel collimators. You can adjust this dependence experimentally or use analytical methods
to determine it.

attenuation type The possible values are { Simple, Full, No (default) }. Attenuation is calculated as the negative expo-
nential of the sum of the length of the projection ray in each crossed voxel by its attenuation coefficient. It requires
an attenuation map (see next keyword). The simple option for correction for attenuation is to consider that the whole
PSF suffers the same attenuation (the attenuation of the central ray). One single factor is applied to weight the con-
tribution from one voxel to all the bins in a detection plane. It is a very good approximation for uniform attenuation
maps. The full option means that a different attenuation coefficient is calculated for each voxel-bin contribution (that
is obtained along the voxel-bin pathway). It could be useful for very inhomogeneous attenuation maps.

See [Fus14] for an evaluation and more explanation.

attenuation map A filename giving the attenuation map as the attenuation coefficient at each voxel (in cm−1). Currently,
this file has the same geometric characteristics as the image to be reconstructed (number of columns, row, slices and
voxel dimensions, orientation).

mask type This is a parameter to indicate if any mask should be applied to the volume, to reduce the matrix size by
removing weights from voxels that, according the prevoius information, do no contribute to the projections. Possible
values are:

Cylinder the cylinder inscribed into the volume is used as a mask. The radius of the cylinder is the maximum volume
dimension (x-y),

Attenuation Map the attenuation map is used as a mask. No weight is calculated where the attenuation map is
zero (assiming no attenuation=no activity). NaNs values are set to zero.

Explicit Mask the mask is defined in a file. The mask should have the same geometrical prescription than the image.
It could be useful for instance to remove the weight of voxels from the table (no activity but attenuation) or to
reduce the matrix size when no attenuation for correction is considered.

No (default). No attenuation correction.

mask file A filename with the mask (if the mask type is set to Explicit Mask). Any voxels which are (exactly) zero in
the mask will be ignored. Currently, this file has the same geometric characteristics as the image to be reconstructed
(number of columns, row, slices and voxel dimensions, orientation).

keep all views in cache [0,1,0]

If this variable is set to 0 (default), only a single view is kept in memory. This avoids running out-of-memory but
means that the matrix has to be recomputed at every iteration.

4.13.7.5 From File
You can use write proj matrix by bin to write a projection matrix to file. You can then read the matrix back into memory.
This could be useful if it takes a long time to generate the matrix, or if you have an external program to write the matrix
(see below for more information on what you will need to do).

Parameters
The necessary parameters to include in the par file are:

ProjMatrixByBinFromFile Parameters:=

Version := 1.0

symmetries type := PET_CartesianGrid

PET_CartesianGrid symmetries parameters:=

54

do_symmetry_90degrees_min_phi:= <bool>

do_symmetry_180degrees_min_phi:=<bool>

do_symmetry_swap_segment:= <bool>

do_symmetry_swap_s:= <bool>

do_symmetry_shift_z:= <bool>

End PET_CartesianGrid symmetries parameters:=

; example projection data of the same dimensions as used

; when constructing the matrix

template proj data filename:= <filename>

; example image of the same dimensions as used

; when constructing the matrix

template density filename:= <filename>

; binary data with projection matrix elements

data_filename:=<filename>

End ProjMatrixByBinFromFile Parameters:=

The symmetries all default to true, but it is best to include the values in the file in all cases.
You need to be careful that these parameters match the matrix written to file. To make this easier, write proj matrix by bin

will write these to file for you. In the current version of STIR, you will need to copy these into the .par file (this will change
in a future version of STIR).

Note that image and projection data characteristics are read from the template files. Their geometric characteristics
have to match those of the data that you want to process with the stored matrix (the stored matrix could have more segments
or tangential positions than the data). This will be checked at run-time.

Information on how to write your own projection matrix to file
The projection matrix is stored as a sparse matrix (in the file dennoted by the data filename parameter). The format is
reasonably simple. For each element (“bin”) in the projection data, the Line of Response (LOR) is encoded as follows:

segment_num (int32_t)

view_num (int32_t)

axial_pos_num (int32_t)

tangential_pos_num (int32_t)

num_voxels_in_LOR (uint32_t)

for_each voxel

z (int16_t)

y (int16_t)

x (int16_t)

matrix_value (float)

end

The order of bins is not important, neither is the order of the voxels (although you will get better performance if these are
stored such that voxels are listed consecutively).

To reduce data size, symmetries can be used to store only “basic” Lines Of Responses (LORs). The exact definition of
the symmetries is unfortunately not easy and not documented fully here. If you want to use your own code to write the
matrix and want to use symmetries you will need to check the DataSymmetriesForBins class or a derived class. In case all
symmetries are enabled, the following should hold:

0<=segment_num

0<=view_num<=num_views/4

axial_pos_num==0

0<=tangential_pos_num

Check the STIR developer’s guide and the Wiki for information on coordinate systems used by STIR. In particular, note the
STIR convention about index numbering in section 2.2 of the developer’s guide.

A final note: currently the sparse matrix is read completely into memory before it is used (but of course keeping only
the “basic” part of the matrix taking the symmetries into account). This restricts the size of the matrix according to how
much memory your system has available.

4.13.8 Selecting a bin normalisation procedure

In PET, a procedure called ’normalisation’ is used which is essentially a calibration procedure for every detector pair. It
provides a multiplicative factor for every bin, or element of the projection data.
The library can provide different types of normalisation procedures. It is possible to select these independently at run-time,
and extend the available ones at compile time. The mechanism is exactly the same as for the ForwardProjector hierarchy.

In addition to the types listed below, you can also enter ’None’, which means that the data won’t be normalised at all.

55

4.13.8.1 From Projdata
This can be used when the normalisation factors are stored simply as projection data. Currently, these data have to have
exactly the same characteristics (size etc.) as the projection data which are going to be normalised. Note that the stored
factors have to be the ones you’d apply to normalise the data (and not their reciprocal).

Parameters

Bin Normalisation From ProjData :=

normalisation projdata filename:= norm.hs

End Bin Normalisation From ProjData:=

See also online documentation for class BinNormalisationFromProjData.

4.13.8.2 From ECAT7
This can be used when normalising ECAT7 data. CTI/Siemens stores the normalisation data in a files normally ending on
.n or .N. Dead-time correction is also supported, although awkwardly. To get dead-time correction to work, you need to
specify the singles rates for the scan26

Parameters

Bin Normalisation From ECAT7:=

normalisation filename:= STUDY.n

singles rates := Singles From ECAT7 File

Singles Rates From ECAT7 File:=

ECAT7_filename := ecat7_sinogram.S

End Singles Rates From ECAT7:=

End Bin Normalisation From ECAT7:=

In addition, you currently have to set the time frame information in the .par file.
See also online documentation for class BinNormalisationFromECAT7.

4.13.8.3 From Attenuation Image
This can be used for attenuation correction factors (ACFs) if you do not have the ACFs but an attenuation image (or mu-
map). The ACFs are found by forward projecting the attenuation image, multiplying the result with -1, and exponentiating,
i.e. using Beer’s law.

Warning Attenuation image data are supposed to be in units cm−1. (Reference: water has µ = .096cm−1.)

Parameters

Bin Normalisation From Attenuation Image:=

attenuation_image_filename := <string>

forward projector type := <string>

End Bin Normalisation From Attenuation Image :=

Default forward projector is ForwardProjectorByBinUsingRayTracing (see section 4.13.5).
See also online documentation for class BinNormalisationFromAttenuationImage.

4.13.8.4 Chained
This can be used to apply two normalisation one after the other. For example, a first one could be the ’usual’ normalisation
factor, while a second one could be the attenuation factors.

26In future, hopefully this will not be necessary. This work-around is needed because STIR currently does not directly read any of
the meta-data in the headers of sinograms etc.

56

Parameters

Chained Bin Normalisation Parameters:=

Bin Normalisation to apply first:= some_bin_normalisation_type

; parameters for this type

Bin Normalisation to apply second:= some_bin_normalisation_type

; parameters for this type

END Chained Bin Normalisation Parameters:=

See also online documentation for class ChainedBinNormalisation.

4.13.9 Available shapes

STIR can use shapes, e.g. in the generate image utility, or for specifying ROIs. The distribution contains sample parameter
files in the samples directory. In the following sub-sections the available shapes are listed.

Most shapes have a centre and orientation. This is specified in the parameter files by giving the “origin” and a 3x3
matrix specifying 3 direction vectors. Note that these vectors do not necessarily have to be orthogonal nor have unit-norm.
To decide if a point with coordinates coords is inside the shape, the coordinates are first translated to “shape-specific”
coordinates using:

shape coords = direction vectors.(coord− origin)

When parsing, the relevant variables are specified as follows:

origin (in mm):= <float> ;defaults to {0,0,0}

; values below are give a rotation around y for 90 degrees (swapping x and z)

; Warning: this uses the STIR convention {z,y,x}

direction vectors (in mm) := { {0,0,1}, {0,1,0}, {-1,0,0}}

See also the online documentation for the class Shape3D and Shape3DWithOrientation.

4.13.9.1 Box3D
Three-dimensional cuboid box.

Parameters

Box3D Parameters:=

length-x (in mm):= <float>

length-y (in mm):= <float>

length-z (in mm):= <float>

; any parameters of Shape3DWithOrientation

End:=

4.13.9.2 Ellipsoid
Three-dimensional ellipsoid. A point with coordinates “shape-coordinates” x, y, z is inside the shape if

x2

R2
x

+
y2

R2
y

+
z2

R2
z

≤ 1

Parameters

Ellipsoid Parameters:=

radius-x (in mm):= <float>

radius-y (in mm):= <float>

radius-z (in mm):= <float>

; any parameters of Shape3DWithOrientation

End:=

57

4.13.9.3 Ellipsoidal Cylinder
Three-dimensional ellipsoidal cylinder (oriented along the z-axis). A point with coordinates “shape-coordinates” x, y, z is
inside the shape if

x2

R2
x

+
y2

R2
y

≤ 1 and abs(z) ≤ Lz/2

In addition, this shape can be restricted to a wedge by specifying initial and final angles (w.r.t. the x axis).

Parameters

Ellipsoidal Cylinder Parameters:=

radius-x (in mm):= <float>

radius-y (in mm):= <float>

length-z (in mm):= <float>

initial angle (in deg):= <float> ; (defaults to 0)

final angle (in deg):= <float> ; (defaults to 360)

; any parameters of Shape3DWithOrientation

End:=

4.13.9.4 Discretised Shape3D
This shape can be used to read for instance saved ROIs. Image values are supposed to be between 0 and 1. Note that centre
and orientation are taken from the image data, not from the parameter file.

Parameters

Discretised Shape3D Parameters:=

input filename := <filename>

END:=

where filename needs to specify a volume that can be read by STIR.

4.14 Display

Some of the programs (e.g. in utilities/, recon tests/) use the display routines. Which version is actually used depends on
the compilation settings (in particular the GRAPHICS cmake variable), see section 3.3.1.

4.14.1 X Windows display

This provides a (very basic) way of displaying bitmaps when using X windows. This works by creating a new window where
some of the bitmaps are displayed. To proceed, you have to make this window the ’focus’ (how to do this depends on your
window manager but usually you have to move the cursor over it, or click the title bar) and then press any key. In your
original terminal window you will then be asked if you want to continue with the next set of bitmaps until no more are left.

In addition, when your X server supports the Pseudocolor visual, you can cycle between 4 different colour scales by
pressing Mouse button 2 while the ’bitmap’ window is selected.

Warning In the current implementation, it seems to happen occasionally that not all colours in the colour scale have
been allocated properly. This can be seen by looking at the side bar displaying the colour scale. Unfortunately, this effect
might give you wrongly coloured regions (usually spots) in the image.

4.14.2 PGM display

This ’display’ mode actually writes out a file in the Portable Greyscale Map format, which can be read by various graphics
programs (like Paint Shop Pro or xv).

4.14.3 MathLink display

This mode is (somewhat) useful if you have MathematicaTM, and want to pipe the data into Mathematica. (It is probably easier
to read the binary data from file though using the Mathematica command BinaryRead). Sample Mathematica statements:

(* create link before starting the (first) display in your STIR

program*)

link=LinkCreate[‘‘STIR’’];

58

(* read data from link *)

data3d=LinkRead[link];

(* display the 3rd image *)

ListPlot3D[data3d[[3]], Mesh->False];

(* read data from link from next display *)

nextdata3d=LinkRead[link];

(* and so on *)

(* close link at end of STIR program *)

LinkClose[link];

5 B-spline interpolation in STIR

Special classes to interpolate data using B-Splines [Uns99] have been implemented in STIR. The B-Splines coefficients are
estimated with a fast method that incorporates FIR and IIR filters [Uns93]. The level of B-splines that are currently
available are 0, 1 (linear), 2 (quadratic), 3 (cubic), 4 (quartic) and 5 (quintic). Moreover, a synthetic spline has also been
implemented based on B-splines for maximum order interpolation but minimal support, i.e. MOMS splines [Blu01]. In all
cases no regularization has been incorporated during the interpolation procedures, therefore special care should be taken
when higher than the first order B-splines are used, as noise may be enhanced at the interpolated data. Interpolation can
be also performed in sinogram space. However this space is regular only in axial, and not in radial, angular and azimuthal
directions. Therefore, the current interpolation can be cubic only in axial direction while for the rest directions a choice
of linear interpolator is safer. In future with some additional classes, reconstruction could be performed to obtain B-spline
coefficients directly from the projection sinograms, which can be useful for better noise properties [Nic02].

6 Directories in the STIR tree

STIR can roughly be split into a library applications and applications. 27

See the doxygen documentation for an overview of the directory tree with brief descriptions.

7 Future developments and Support

The STIR library, in its current state, possesses many capabilities. The developers, however, look forward to still further
increases in the flexibility and power of the software. Some of the developments being discussed are:

• expanded library of polymorphic classes (e.g. image grids, and ordered subsets)

• additional scanners, also for SPECT

• additional data formats support, without conversion to Interfile.

• point-spread function reconstruction

While support for the library is on a voluntary basis, users of the library are encouraged to subscribe to relevant STIR
mailing lists (see the ‘Mailing Lists’ section of the STIR website http://stir.sourceforge.net) where they can follow
developments of the software and obtain helpful information from other users. Questions will ONLY be answered (if at all)
when directed to the mailing list.

Commercial support is available from Algorithms and Software Consulting Ltd.
Below, we list of some of the features that might make it into the next releases. However, which feature is actually

finalised/implemented depends on the needs of the developers. If you want one of these features and are willing to help, let
us know.

• More automatic testing programs

• More algorithms: potentially ART, OSCB [Ben99b]

• More projectors

• More priors

• Extending the parallelisation of OSMAPOSL and OSSPS to FBP3DRP etc, or using OPEMMP

• Compatibility of the interpolating backprojector with recent processors.

• More kinetic models: Spectral Analysis, Logan Plot

27The distinction is not complete as some applications are implemented in terms of classes that actually end up in the library.

59

http://stir.sourceforge.net/
http://asc.uk.com

8 References

[Ahn2003] S. Ahn and J. A. Fessler, Globally convergent image reconstruction for emission tomography using relaxed ordered
subsets algorithms, IEEE Trans. Med. Imag., vol. 22, no. 3, pp. 613-626, May 2003.

[Ale97] Alenius S and Ruotsalainen U (1997) Bayesian image reconstruction for emission tomography based on median
root prior. European Journal of Nuclear Medicine , Vol. 24 No. 3: 258-265.

[Ang11] Angelis G I, Thielemans K, Tziortzi A C, Turkheimer F E and Tsoumpas C (2011). Convergence Optimization of
Parametric MLEM Reconstruction for Estimation of Patlak Plot Parameters. Computerized Medical Imaging and Graphics,
35:407-416, doi:10.1016/j.compmedimag.2011.01.002

[Ben99] Ben-Tal A, Margalit T and Nemirovski A (1999) The ordered subsets mirror descent optimization method with
application to tomography. Research report #2/99, March 1999, MINERVA Optimization Center, Faculty of Industrial
Engineering and Management, Technion – Israel Institute of Technology.

[Ben99b] Ben-Tal A and Nemirovski A (1999) The conjugate barrier method for non-smooth, convex optimization.
Research report #5/99, October 1999, MINERVA Optimization Center, Faculty of Industrial Engineering and Management,
Technion – Israel Institute of Technology.

[Bei08] Beisel T, Lietsch S, and Thielemans K (2008) A Method for OSEM PET Reconstruction on Parallel Architectures
Using STIR. Proc. of the IEEE Medical Imaging Conference, Dresden, Germany, 2008.

[Blu01] Blu T, Thcvenaz P, Unser M (2001). MOMS: maximal-order interpolation of minimal support. IEEE Trans
Image Processing 10(7): 1069-1080.

[Bue12] Buerger, C., T. Schaeffter, and A. P. King (2011), Hierarchical adaptive local affine registration for fast and
robust respiratory motion estimation. Medical Image Analysis, vol. 15, pp. 551-564, doi 10.1016/j.media.2011.02.009

[Bou97] Boudraa A E O (1997) Automated detection of the left ventricular region in magnetic resonance images by
Fuzzy C-Means model. Int J of Cardiac Imag ; 13: 347-355.

[Dau86] Daube-Witherspoon M E and Muehllener G (1986) An iterative space reconstruction algorithm suitable for
volume ECT. IEEE Trans. Med. Imaging, vol. MI-5: 61-66.

[Dau97] Daube-Witherspoon M E and Muehllehner G (1987) Treatment of axial data in three-dimensional PET, J. Nucl.
Med. 28, 171-1724.

[Def95] Defrise M. (1995) “A factorization method for the 3D X-ray transform” Inverse Problems, 11 pp. 983-994.
[Def97] Defrise M, Kinahan P E, Townsend D W, Michel C, Sibomana M and Newport D F (1997) Exact and approximate

rebinning algorithms for 3-D PET data. IEEE Trans. Med. Imaging, MI-16: 145-158.
[Egg98] Egger M L, Joseph C and Morel C (1998) Incremental beamwise backprojection using geometrical symmetries

for 3D PET reconstruction in a cylindrical scanner geometry. Phys Med. Biol., 43: 3009-3024.
[Gem84] Geman S and Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans PAMI, 6: 721-741.
[Gem85] Geman S and McClure D (1985) Bayesian image analysis: an application to single photon emission tomography.

in Proc. American Statistical Society, Statistical Computing Section (Washington, DC) 12-18.
[Gre90] Green P J (1990) Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE

Trans. Med. Imaging, MI-9: 84-93.
[Heb89] Hebert T J and Leahy R M (1989) A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson

data using Gibbs priors. IEEE Trans. Med. Imaging, MI-8: 194-202.
[Her80] Herman G T (1980) Image Reconstruction from Projections: The fundamentals of Computational Tomography.

Academic Press, New York.
[Hud94] Hudson H M and Larkin R S (1994) Accelerated image reconstruction using ordered subsets of projection data.

IEEE Trans. Med. Imaging, MI-13: 601-609.
[Fus13] Berta Marti Fuster, Carles Falcon, Charalampos Tsoumpas, Lefteris Livieratos, Pablo Aguiar, Albert Cot,

Domenec Ros and Kris Thielemans, (2013) Integration of advanced 3D SPECT modeling into the open-source STIR
framework, Med. Phys. 40, 092502; http://dx.doi.org/10.1118/1.4816676

[Fus14] Berta Marti Fuster, Kjell Erlandsson, Carles Falcon, Charalampos Tsoumpas, Lefteris Livieratos, Domenec Ros,
Kris Thielemans, (2014) Evaluation of the novel 3D SPECT Modelling Algorithm in the STIR Reconstruction Framework:
Simple vs. full attenuation correction, proc. IEEE MIC 2013, Seoul, Korea.

[Jac00] Jacobson M, Levkovitz R, Ben-Tal A, Thielemans K, Spinks T, Belluzzo D, Pagani E, Bettinardi V, Gilardi M
C, Zverovich A and Mitra G (2000) Enhanced 3D PET OSEM Reconstruction using inter-update Metz filters. Phys. Med.
Biol. 45 No.8 (2000) 2417-2439l.

[Kin89] Kinahan P E and Rogers J G (1989) Analytic 3D image reconstruction using all detected events. IEEE Trans.
Nucl. Sci., 36: 964-968.

[Kle96] Klein, G. J., B. W. Reutter, and R. H. Huesman (1996), Non-rigid summing of gated PET via optical flow, 1996
IEEE Nuclear Science Symposium Conference Record, vol. 2, pp. 1339-1342, doi 10.1109/NSSMIC.1996.591692

[Lab97] Labbe C, Ashburner J, Koepp M, Spinks T, Richardson M and Cunningham V (1997) Accurate PET quantifi-
cation using correction for partial volume effects within cerebral structures. Neuroimage, 5: B12.

[Lab99a] Labbé C, Thielemans K, Belluzzo D, Bettinardi V, Gilardi MC, Hague DS, Jacobson MW, Kaiser S, Levkovitz
R, Margalit T, Mitra G, Morel C, Spinks T, Valente P, Zaidi H and Zverovich A: An object-Oriented Library for 3D PET

60

http://dx.doi.org/10.1016/j.media.2011.02.009
http://dx.doi.org/10.1109/NSSMIC.1996.591692

Reconstruction using Parallel Computing, Proceedings of Bildverarbeitung fuer die Medizin 1999, Algorithmen-Systeme-
Anwendungen, Informatik aktuell, Springer, Eds. H. Evers, G. Glombitza, T. Lehmann, H.-P. Meinzer, pp 268-272.

[Lab99b] Labbé C, Thielemans K, Zaidi H and Morel C: An object-oriented library incorporating efficient projec-
tion/backprojection operators for volume reconstruction in 3D PET. Proc. of 3D99 Conference, June 1999, Egmond aan
Zee, The Netherlands

[Lal93] Lalush D S and Tsui M W (1993) A general Gibbs prior for Maximum a posteriori reconstruction in SPET.
Phys. Med. Biol., 38: 729-741.

[Lan90] Lang K (1990) Convergence of EM Image reconstruction algorithms with Gibbs smoothing. IEEE Trans. Med.
Imaging, MI-9: 4.

[Lew98] Lewellen T K, Harrison R L and Vannoy S (1998) The SimSET program, Monte Carlo Calculations in Nuclear
Medicine: Applications in Diagnostic Imaging ed M Ljungberg, S-E Strand and M A King (Bristol: Institute of Physics
Publishing) pp 77-92.

[Li06] Li, T., B. Thorndyke, E. Schreibmann, et al (2006), Model-based image reconstruction for four-dimensional PET.
Med Phys vol. 2, pp. 1288-1298 doi 10.1118/1.2192581

[Man97] Manders Jones H (1997) A Computational Investigation of the solution of large scale Optimization problems.
Ph.D Thesis, Department of Mathematics and Statistics. Brunel, The University of West London. Oct 1997.

[Mar99] Margalit T, Gordon E, Jacobson M, Ben-Tal A, Nemirovski A and Levkovitz R (1999) The ordered sets mirror
descent and conjugate barrier optimization algorithms adapted to the 3D PET reconstruction problem. Technion internal
report and PhD thesis of T. Margalit

[Mus01] Mustafovic S and Thielemans K, (2001) Additive and Multiplicative versions of the Maximum A Posteriori
Algorithm with the Median Root Prior. poster at IEEE Med. Img. Conf. 2001.

[Mus04] Mustafovic S and Thielemans K, (2004) Object Dependency of Resolution in Reconstruction Algorithms with
Inter-Iteration Filtering Applied to PET , IEEE Trans. Med. Im. 23 (4): (2004) 433-446.

[Mus02] Mustafovic S and Thielemans K, , (2002) Comparison of Unconventional Inter-Filtering Methods to Penalised-
likelihood for Space-invariant Tomographs, poster at IEEE Medical Imaging Conf. 2002.

[Nem78] Nemirovski A and Yudin D (1978) Problem complexity and method efficiency in optimization. Nauka Publishers,
Moscow, 1978 (in Russian); English translation: John Wiley & Sons, 1983.

[Nic02] Nichols, T. E., J. Qi, E. Asma and R. M. Leahy (2002). Spatiotemporal reconstruction of list-mode PET data.
IEEE Trans Med Imaging 21(4): 396-404.

[Pat83] Patlak C S, Blasberg R G, Fenstermacher J D (1985) Graphical evaluation of blood-to-brain transfer constants
from multiple-time uptake data. J Cereb Blood Flow Metab 3(1): p. 1-7.

[Pat85] Patlak C S, Blasberg R G (1985) Experimental and Graphical evaluation of blood-to-brain transfer constant
from multiple-time uptake data: Generalizations. J Cereb Blood Flow Metab 5: p. 584-90.

[Poe03] Poenisch F, Enghardt W, and Lauckner K (2003), Attenuation and scatter correction for in-beam positron
emission tomography monitoring of tumour irradiations with heavy ions. Phys Med Biol 48(15): 2419-2436.

[PAR1.3] Levkovitz R, Zibulevsky M, Labbe C, Zaidi H and Morel C (1997) Determination of a Set of Existing Algorithms
for Comparative Evaluation. PARAPET documentation for D1.3, Geneva University Hospital and Technion.
Available at http://stir.sourceforge.net.

[Pol 11] Polycarpou I, Thielemans K, Manjeshwar R, Aguiar P, Marsden PK, Tsoumpas C (2011) Comparative eval-
uation of scatter correction in 3D PET using different scatter-level approximations. Ann Nucl Med, 25(9): 643-649, doi:
10.1007/s12149-011-0514-y.

[Pol12] Polycarpou, I., C. Tsoumpas and P. K. Marsden (2012), Analysis and comparison of two methods for motion
correction in PET imaging Med Phys vol. 39, 3586-3590, doi 10.1118/1.4754586.

[Rah08] Rahmim, A., K. Dinelle, et al (2008), Accurate event-driven motion compensation in high-resolution PET
incorporating scattered and random events. IEEE Trans Med Imaging, vol. 27, 1018-1033, doi 10.1109/TMI.2008.917248.

[Rea98] Reader A J, Visvikis A, Erlandsson K, Ott R J, and Flower M A (1998) Intercomparison of four reconstruction
techniques for positron volume imaging with rotating planar detectors. Phys. Med. Biol., 43: 823-34.

[She82] Shepp L A and Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med.
Imaging, 1: 113-122.

[Sil90] Silverman B W, Jones M C, Wilson J D, and Nychka D W (1990) A smoothed EM approach to indirect estimation
problems, with particular reference to stereology and emission tomography. J. Roy. Stat. Soc., 52: 271-324.

[Thi07] Thielemans K, Manjeshwar R, Tsoumpas C and Jansen F(2007), A new algorithm for scaling of PET scatter
estimates using all coincidence events. IEEE Nucl Sci Symp Med Imaging Conf 3586 - 3590.

[Thi12] Kris Thielemans, Charalampos Tsoumpas, Sanida Mustafovic, Tobias Beisel, Pablo Aguiar, Nikolaos Dikaios, and
Matthew W Jacobson, STIR: Software for Tomographic Image Reconstruction Release 2, Physics in Medicine and Biology,
57 (4), 2012 pp.867-883.

[Tso04] Tsoumpas C, Aguiar P, Nikita K S, Ros D and Thielemans K(2004), Evaluation of the single scatter simulation
algorithm implemented in the STIR library. IEEE Nucl Sci Symp Med Imaging Conf 3361-3365.

[Tso07] Tsoumpas C, Turkheimer F E and Thielemans K (2007), Convergence properties of algorithms for direct para-
metric estimation of linear models in dynamic PET. IEEE Nucl Sci Symp Med Imaging Conf 3034-3037

[Tso08] Tsoumpas C, Turkheimer F E and Thielemans K (2008), Study of direct and indirect parametric estimation
methods of linear models in dynamic positron emission tomography. Med. Phys. 35(4): p. 1299-1309.

61

http://link.aip.org/link/doi/10.1118/1.2192581
http://stir.sourceforge.net
http://dx.doi.org/10.1118/1.4754586
http://dx.doi.org/10.1109/TMI.2008.917248

[Tso13] Tsoumpas, C., I. Polycarpou, K. Thielemans, et al (2013), The effect of regularisation in motion compensated
PET image reconstruction: A realistic numerical 4D simulation study. Phys Med Biol, vol. 58, 1759-1773, doi 10.1088/0031-9155/58/6/1759.

[Uns93] Unser M, Aldroubi A, Eden M (1993). B-Spline Signal Proccessing: Part II - Efficient Design and Applications.
IEEE Trans Signal Processing 41(2): 834-848.

[Uns99] Unser M. (1999). Splines: A Perfect Fit for Signal and Image Processing. IEEE Signal Processing Magazine:
22-38.

[Wat96] Watson C C, Newport D, and Casey M E(1996), A single-scatter simulation technique for scatter correction in
3D PET. Fully 3D Image Recon Radiol Nucl Med Kluwer Academic: 255-268.

[Wat97a] Watson C C, Newport D, Casey M E, deKemp R A, Beanlands R S, and Schmand M (1997), Evaluation of
Simulation-Based Scatter Correction for 3-D PET Cardiac Imaging. IEEE Trans Nucl Sci , 44(1): 90-97.

[Wat97b] Watson C C, Newport D, Casey M E, Beanlands R S, Schmand M, and deKemp R A (1997), A technique
for measuring the energy response of a PET tomograph using a compact scattering source. IEEE Trans Nucl Sci , 44(6):
2500-2508.

[Wat00] Watson C C (2000), New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci 47(4):
1587-1594.

[Wat04] Watson C C, Casey M E, Michel C, Bendriem B(2004), Advances in scatter correction for 3D PET/CT. IEEE
Nucl Sci Symp Med Imaging Conf 3008 - 3012.

[Wer02] Werling A, Bublitz O, Doll J, Adam L E, and Brix G(2002), Fast implementation of the single scatter simulation
algorithm and its use in iterative image reconstruction of PET data. Phys Med Biol 47(16): 2947-2960.

[Ehr16] Ehrhardt M J, Markiewicz P, Liljeroth M, Barnes A, Kolehmainen V, Duncan J, Pizarro L, Atkinson D, Hutton
B F, Ourselin S, and others(2016), PET reconstruction with an anatomical MRI prior using parallel level sets. IEEE Trans
Med Imaging 35(9): 2189-2195.

62

http://dx.doi.org/10.1088/0031-9155/58/6/1759

	 Introduction
	 A general note on documentation in STIR
	 Installation
	 Installing source files
	 Installing external software
	BOOST
	 C++ Compiler
	 Enabling ECAT 7 support
	 Enabling GE RDF and VOLPET support

	 Building
	 Using CMake
	CMake configuration variables

	 Operating system specifics
	Mac OS
	All Unix/Linux flavours
	Cygwin on Windows

	 Running tests

	 Running STIR programs
	 Conventions
	 Error handling etc
	 Running programs using MPI
	 Running programs using OPENMP
	 File formats
	Interfile
	Siemens interfile-like
	VOLPET sinograms
	ECAT6 and ECAT7 data
	Image IO using the AVW library
	Image IO using the ITK library
	SimSET files
	ROOT files as output by OpenGATE

	 List mode processing
	 lm_to_projdata
	 lm_to_projdata_bootstrap
	 lm_fansums
	 list_lm_events
	 list_lm_countrates

	 Rebinning algorithms
	 SSRB
	 FORE

	 Image reconstruction programs
	 Iterative algorithms
	Running OSMAPOSL on static projection data
	 Notes and technical issues regarding the selection of parameters
	Extra parameters the MPI version
	OSSPS
	Using list mode data as input
	Parametric image estimation algorithms
	HKEM

	 Filtered back projection (FBP2D)
	 3D Reprojection Algorithm (FBP3DRP)

	 Scatter Correction
	Data Initialisation
	SSS
	Iterative loop (if necessary)
	Limitations

	 Parametric Image Construction using kinetic modelling
	 Motion Correction
	Data Preparation
	Coordinate system for motion vectors:

	Motion Correction
	RTA
	MCIR

	Regularisation and Noise
	Further Extensions for the Future
	Realistic Datasets and other info

	 Utilities
	 Displaying and performing operations on data
	list_image_info
	stir_write_pgm
	manip_image
	manip_projdata
	display_projdata
	list_projdata_info
	create_projdata_template
	extract_segments
	stir_math
	generate_image
	zoom_image
	get_time_frame_info
	list_ROI_values
	extract_dynamic_images

	 Converting data
	conv_to_ecat6
	conv_to_ecat7
	ifheaders_for_ecat7: ECAT7 support for reading
	ecat_swap_corners
	copy_ecat7_header
	conv_AVW
	conv_GATE_projdata_to_interfile
	conv_gipl_to_interfile and conv_interfile_to_gipl

	 Filtering image data
	 Comparing files
	 Precorrecting (or uncorrecting) projection data
	 Generating Poisson noise
	Motion related utilities
	warp_image
	warp_and_accumulate_gated_images
	zeropad_planes
	shift_image_origin
	shift_image

	 Using projectors
	 Utilities for forward or back-projection
	Utilities for testing

	 Interfacing with SimSET

	 User-selectable components
	 Available output file formats
	Common parameters
	Interfile
	ITK
	ECAT6
	ECAT7

	 Available filters or data processors
	Separable Convolution
	Separable Cartesian Metz
	Separable Gaussian Filter
	Median
	Truncate To Cylindrical FOV
	Threshold Min To Small Positive Value
	Chained Data Processor

	 Incorporating prior information
	FilterRootPrior
	Quadratic
	PLS

	 Selecting different projector pairs
	Matrix
	Separate Projectors

	 Selecting a forward projector
	Matrix
	Ray Tracing
	Pre Smoothing

	 Selecting a back projector
	Matrix
	Interpolation
	Post Smoothing

	 Selecting a projection matrix
	Common parameters to all projection matrices
	Ray Tracing
	Interpolation
	SPECT UB
	From File

	 Selecting a bin normalisation procedure
	From Projdata
	From ECAT7
	From Attenuation Image
	Chained

	 Available shapes
	Box3D
	Ellipsoid
	Ellipsoidal Cylinder
	Discretised Shape3D

	 Display
	 X Windows display
	 PGM display
	 MathLink display

	B-spline interpolation in STIR
	 Directories in the STIR tree
	 Future developments and Support
	 References

