Fitting Equations in Analysis

Protein-Ligand Fast Exchange Kd Equation

This equation is for fitting Kd using shifts measured at varying concentrations of ligand (and sometimes also protein).

We have the reaction $A+B \rightleftharpoons A B$. We take A to be the protein (or other molecule that binds) and B to be the ligand. We vary the amount of B and normally we keep the amount of A fixed.

Let $[A]$ be the concentration of A in the unbound state, $[B]$ be the concentration of B in the unbound state and $[A B]$ be the concentration of the protein-ligand complex.

Let $a=[A]+[A B]$ be the total concentration of A. Let $b=[B]+[A B]$ be the total concentration of B.

The equilibrium dissociation constant is

$$
K_{d}=\frac{[A][B]}{[A B]}
$$

We have

$$
\begin{aligned}
{[A] } & =\frac{K_{d}[A B]}{[B]} \\
& =\frac{K_{d}(a-[A])}{[B]} \\
& =\frac{K_{d}(a-[A])}{b-[A B]} \\
& =\frac{K_{d}(a-[A])}{b-a+[A]}
\end{aligned}
$$

Multiply up to get

$$
[A](b-a+[A])=K_{d}(a-[A])
$$

and so

$$
[A]^{2}+\left(b-a+K_{d}\right)[A]-a K_{d}=0
$$

Or in other words

$$
\begin{aligned}
{[A] } & =\frac{-\left(b-a+K_{d}\right)+\sqrt{\left(b-a+K_{d}\right)^{2}+4 a K_{d}}}{2} \\
& =\frac{-\left(b-a+K_{d}\right)+\sqrt{\left(b+a+K_{d}\right)^{2}-4 a b}}{2}
\end{aligned}
$$

(We cannot have the other root because it would give a negative $[A]$, as can be seen from the first line above.) Then

$$
\frac{a-[A]}{a}=\frac{b+a+K_{d}-\sqrt{\left(b+a+K_{d}\right)^{2}-4 a b}}{2 a}
$$

The percentage of bound A is

$$
r_{\text {bound }}=\frac{[A B]}{a}=\frac{a-[A]}{a}
$$

and the percentage of unbound A is

$$
r_{\text {free }}=1-r_{\text {bound }}
$$

Let $\delta_{\text {bound }}$ be the chemical shift of the bound A and $\delta_{\text {free }}$ be the chemical shift of the unbound A.

For fast exchange we have that the observed chemical shift is

$$
\begin{aligned}
\delta_{\text {obs }} & =r_{\text {bound }} \delta_{\text {bound }}+r_{\text {free }} \delta_{\text {free }} \\
& =r_{\text {bound }} \delta_{\text {bound }}+\left(1-r_{\text {bound }}\right) \delta_{\text {free }} \\
& =\delta_{\text {free }}+\left(\delta_{\text {bound }}-\delta_{\text {free }}\right) r_{\text {bound }} \\
& =\delta_{\text {free }}+\left(\delta_{\text {bound }}-\delta_{\text {free }}\right)\left(\frac{a-[A]}{a}\right) \\
& =\delta_{\text {free }}+\left(\delta_{\text {bound }}-\delta_{\text {free }}\right)\left(\frac{b+a+K_{d}-\sqrt{\left(b+a+K_{d}\right)^{2}-4 a b}}{2 a}\right)
\end{aligned}
$$

We normally know what $\delta_{\text {free }}$ is and so we introduce

$$
\Delta \delta_{o b s}=\delta_{o b s}-\delta_{f r e e}
$$

and similarly

$$
\Delta \delta_{\infty}=\delta_{\text {bound }}-\delta_{\text {free }}
$$

in which case the equation becomes

$$
\Delta \delta_{o b s}=\Delta \delta_{\infty}\left(\frac{b+a+K_{d}-\sqrt{\left(b+a+K_{d}\right)^{2}-4 a b}}{2 a}\right)
$$

We know a and b. Sometimes we know $\delta_{\text {bound }}$ in which case the only thing left to fit is K_{d}. Sometimes we do not know $\delta_{\text {bound }}$ in which case we have to fit that as well (so equivalently $\Delta \delta_{\infty}$).

Let

$$
\begin{aligned}
A & =\Delta \delta_{\infty} / 2 \\
B & =1+K_{d} / a \\
x & =b / a \\
y & =\Delta \delta_{o b s}
\end{aligned}
$$

Then the above equation becomes

$$
y=A\left(B+x-\sqrt{(B+x)^{2}-4 x}\right)
$$

which is the equation used in Analysis. We have shift measurements at various b. We fit both A and B and we also use a weighted sum over the (normally two) dimensions of the shift to make a single scalar. This is not optimal. The ratio y / A is independent of dimension. In other words, all dimensions should (or could) provide an estimate of K_{d}, and combining the shifts together loses information.

Note that

$$
K_{d}=a(B-1)
$$

This fitting only makes sense if b is kept constant throughout the experiments. If b also varies then we have that y has two dependent variables (in effect, a and b). The Analysis code would need some changing to cope with that.

A description of the fitting equation is on the web at
http://structbio.vanderbilt.edu/chazin/wisdom/kdcalc.htm
The correspondence with the formulae in that webpage is:

$$
\begin{aligned}
Q_{a} & =\delta_{\text {obs }} \\
Q_{0} & =\delta_{\text {free }} \\
Q_{\max } & =\delta_{\text {bound }} \\
{\left[P_{\text {tot }}\right] } & =a \\
{\left[A_{\text {tot }}\right] } & =b
\end{aligned}
$$

Monomer-Dimer Fast Exchange Kd Equation

We have the reaction $A+A \rightleftharpoons A A$. Let Let $[A]$ be the concentration of the monomer and $[A A]$ the concentration of the dimer. Let $a=[A]+2[A A]$ be the total concentration of A.

The equilibrium dissociation constant is

$$
K_{d}=\frac{[A]^{2}}{[A A]}
$$

Define the ratio

$$
r=\frac{[A A]}{a}
$$

or in other words

$$
[A A]=r a
$$

Then we also have

$$
[A]=a-2[A A]=(1-2 r) a
$$

(Note that $0 \leq r \leq 1 / 2$.) Therefore we have

$$
K_{d}=\frac{(1-2 r)^{2}}{r} a
$$

or in other words

$$
4 r^{2}-4 r+1=(1-2 r)^{2}=\frac{K_{d}}{a} r
$$

and so

$$
r^{2}-\left(1+\frac{K_{d}}{4 a}\right) r+\frac{1}{4}=0
$$

And thus

$$
\begin{aligned}
r & =\frac{1}{2}\left(1+\frac{K_{d}}{4 a}-\sqrt{\left(1+\frac{K_{d}}{4 a}\right)^{2}-1}\right) \\
& =\frac{1}{8 a}\left(K_{d}+4 a-\sqrt{\left(K_{d}+4 a\right)^{2}-16 a^{2}}\right)
\end{aligned}
$$

The positive root cannot be taken because that would make $r>1 / 2$.
Let δ_{A} be the chemical shift of the monomer and $\delta_{A A}$ be the chemical shift of the dimer, and define $\Delta \delta_{\infty}=\delta_{A A}-\delta_{A}$. In general we do not know either δ_{A} or $\delta_{A A}$.

For fast exchange we have that the observed chemical shift is

$$
\begin{aligned}
\delta_{o b s} & =\frac{[A] \delta_{A}+2[A A] \delta_{A A}}{a} \\
& =(1-2 r) \delta_{A}+2 r \delta_{A A} \\
& =\delta_{A}+2 r\left(\delta_{A A}-\delta_{A}\right) \\
& =\delta_{A}+2 r \Delta \delta_{\infty} \\
& =\delta_{A}+\frac{\Delta \delta_{\infty}}{4 a}\left(K_{d}+4 a-\sqrt{\left(K_{d}+4 a\right)^{2}-16 a^{2}}\right)
\end{aligned}
$$

There is no point subtracting anything here since we do not know either δ_{A} or $\delta_{A A}$ in general.

Let

$$
\begin{aligned}
A & =\Delta \delta_{\infty} \\
B & =K_{d} \\
C & =\delta_{A} \\
x & =a \\
y & =\delta_{o b s}
\end{aligned}
$$

Then the above equation becomes

$$
\begin{aligned}
y & =A\left(B+4 x-\sqrt{(B+4 x)^{2}-16 x^{2}}\right) / 4 x+C \\
& =A\left(1+B / 4 x-\sqrt{(1+B / 4 x)^{2}-1}\right)+C
\end{aligned}
$$

which is the equation used in Analysis.

