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In the past, power analyses were not that common for fMRI studies, but recent advances in power calculation techniques and software development are
making power analyses much more accessible. As a result, power analyses are more commonly expected in grant applications proposing fMRI studies.
Even though the software is somewhat automated, there are important decisions to be made when setting up and carrying out a power analysis.
This guide provides tips on carrying out power analyses, including obtaining pilot data, defining a region of interest and other choices to help create
reliable power calculations.
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INTRODUCTION

When running a functional magnetic resonance imaging (fMRI)

experiment, we hope that our data have signal related to our task of

interest and, more importantly, that we have collected enough data to

detect this signal. The ability to detect an effect, when present, is

referred to as statistical power and we typically aim for power of

80% or higher. The interpretation of 80% power is if we were to

repeat our study 100 times, and the signal truly existed, it would be

detected in 80 of the studies. Unlike other statistical analyses, a power

analysis needs to be performed prior to collecting data and is used as a

study planning tool. Most commonly, power analyses are included in

a grant proposals. Although different strategies for fMRI power ana-

lyses have existed since the early 2000s, the earlier approaches either

required lengthy simulations (Desmond and Glover, 2002) or were too

complicated for a non-statistician to apply (Hayasaka et al., 2007;

Mumford and Nichols, 2008). The recently developed software pack-

age, fMRIPower (fmripower.org), accomplishes region of interest

(ROI) power calculations based on a simplified version of the methods

in Mumford and Nichols (2008). fMRIPower and the upcoming power

analysis software described in Joyce and Hayasaka (2011) make it pos-

sible for any investigator to perform power analyses. This is of great

use as power analyses are more commonly required in fMRI-based

grant applications and should help reduce the number of underpow-

ered fMRI studies in the future.

The power analysis model described in Mumford and Nichols

(2008) has the flexibility to calculate power according to both how

many subjects you include and how many stimuli (or blocks of sti-

muli) are presented in a run. Changing the number of stimuli requires

the generation of new first-level design matrices, which is difficult to

automate in a software package. Therefore, fMRIPower only allows for

power calculation as a function of the overall sample size. The power

analysis assumes that the future data will use the same stimulus pres-

entation and number of runs as the pilot data used to drive the power

analysis. This Matlab-based software uses pilot analysis output from

the FSL (www.fmrib.ox.ac.uk/fsl/) or SPM (www.fil.ion.ucl.ac.uk/spm/)

software packages and automatically extracts the data necessary for a

power calculation. fMRIPower can calculate power for one-sample,

two-sample and paired t-tests. The software will automatically detect

what type of analysis was originally run on your pilot data and you will

only need to specify the number of subjects for which you would like

to calculate power and the ROI for the power analysis. Although it

could not be automated for general analysis of variance (ANOVA)

models, most of the contrasts of interest from an ANOVA model

can be put into the two-sample t-test framework and then used in

fMRIPower. Of course, it could be the case that your future data

will not exactly match the study design used for the pilot data and

in this case, your power analysis may not be accurate. For example, you

may expect your future study to have higher variability. By using the

output from fMRIPower you can alter values of the mean or variance

of the activation and study how this impacts power.

Sometimes it is difficult to know how to get started with a power

analysis and the purpose of this work is to provide some guidelines for

the process and tips for producing a power calculation that more

closely represents your future data. This information can be used to

perform power calculations with fMRIPower and, when released, the

power calculation tool described in Joyce and Hayasaka (2011). Next is

a brief overview of how power is calculated. Then, the two most im-

portant pieces of information, the ROI and pilot data, are discussed in

detail. The pitfalls of a power analysis as well as the lesser realized

benefits of running a power analysis are discussed. In addition, it is

important to realize that power analyses are only appropriate when

predicting the power of a future study, which differs from the mis-

guided idea of post hoc power. This is typically done in an attempt to

estimate power for a study that has already occurred, perhaps to build

a case for the null or explain that a result was not found due to a lack

in power. Lastly, a brief overview of the steps you should take when

performing a power analysis is discussed.

REVIEW OF POWER ANALYSIS

The definition of statistical power is the probability of rejecting the

null hypothesis, given that the alternative hypothesis is true. So, in

order to calculate power, we need to know our statistic threshold for

rejecting the null hypothesis, based on the null distribution, and then

we would calculate the probability of being larger than this threshold

according to the alternative distribution. This generally requires four

pieces of information: the mean of the activation, its variance, the Type

I error rate and sample size. Furthermore, for fMRI, we also need a

brain ROI to focus on for the power analysis. Figure 1 illustrates power

calculations for three different alternative distributions. In each case,

we must first specify the null distribution, which is shown in red.

Typically, this is centered at 0 and the variance is based on a previously

obtained estimate and the proposed sample size. If your statistic fol-

lows the normal distribution, your null would be N (0,�2/n) and the

alternative would be N (�,�2/n), where n is the proposed sample size,

� and � are the mean and s.d. of the future data. Without loss of
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generality, we can standardize these statistics by dividing by the s.d.

and these are the distributions shown in Figure 1, where the null is

N(0,1) and the alternative is Nð
ffiffiffi
n
p
�=�; 1Þ. Then, according to the null

distribution and Type I error rate, the statistic threshold that defines

significance is specified, in this case, a threshold of 1.64 is used, as it

corresponds to a P-value of 0.05 for a one-sided test based on the

standard normal distribution. The area under the alternative distribu-

tion to the right of this threshold is the power. Since the mean of the

alternative is defined as
ffiffiffi
n
p
�=�, increasing n or �, or decreasing � will

increase the mean of the alternative distribution and, therefore, the

power. In addition, one could increase power by decreasing the statistic

threshold used to define significance, but this comes at the cost of an

increase in the Type I error rate, which is not recommended.

PILOT DATA

The above examples of power analyses assumed that we knew the true

mean and variance, � and �2, but in reality, we must estimate these

values. Commonly, funds are not available to run a pilot study to

supply data for a power analysis, but, if you can do so, it is highly

recommended. In addition to acquiring data for your power calcula-

tion, you may possibly uncover important improvements that can be

made in your study design and modeling strategy. How many subjects

should be included in your pilot study is not exactly clear, perhaps

somewhere between 6 and 10 subjects for a one-sample t-test. If you

are running a task for which you expect the magnitude of the signal to

be small or the variance to be large, possibly due to working with a

patient population, you will need more subjects in your pilot data. A

two-sample t-test generally requires more subjects per group for a pilot

study since the effects are typically small and the variance is larger than

a one-sample t-test. You basically need an estimate of the size and

variance of your effect and small sample sizes will produce highly

variable estimates of both. Still, it will be closer than what you

would have had without pilot data and you can always test how

much the power changes if you decrease the effect size a little or in-

crease the variance. Hopefully, for the sample size you choose, the

power will not change too much with these small changes. If, however,

the power changes greatly you may want to increase the proposed

sample size of your future study.

If you do not have any pilot data and you are thinking of your

power analysis well in advance of your grant submission deadline,

you can try to obtain data from other research groups. Power analyses

are a good motivation for why our data should be made public when

we are done running our own analyses. Examples of fMRI databases

are the Open fMRI Project (openfmri.org) and the open fMRI Data

Center (http://fmridc.org/f/fmridc). Open fMRI is a newer database,

which currently supplies 12 datasets (220 subjects total) online and is

expected to add more in the near future. The fMRI Data Center has

107 datasets which may be obtained by request. These two resources

supply whole brain data, which is necessary for most power analyses,

whereas other databases, such as the Brain Map database (www.brain

map.org), only supply coordinates indicating the active voxels.

Granted, these coordinates could be used to form ROIs for the

power analysis using independent data.

The last resort is obtaining effect sizes and variance estimates from

results published in articles. This is, by far, is the least desirable ap-

proach. Primarily because most articles only report significant activa-

tion and obviously these will have high power estimates according to

your calculation. A power analysis is not supplying any new informa-

tion in this case and you can simply state that with a similar sample

size you would hope to find a similar effect without running an actual

power analysis. Of course, if the effect sizes reported came from max-

imum statistic voxels or biased ROIs, they will not be useful at all in a

power analysis. The only time this would be acceptable is if a

non-significant result was reported using an unbiased ROI.

A very important consideration, if you have run a power analysis

using pilot data, is that these data can only be used for the purposes of

your pilot study and cannot be combined with your future data to

perform the final analysis. If you use your pilot data to estimate the

mean and variance of the effect, or even just the variance (a mean is

assumed a priori) combining your pilot data with more data will in-

crease your Type I error rate. This is because your sample size, which is

normally a fixed value, becomes a random variable that is dependent

on the distribution of your pilot data. Since this newly introduced

sample size variability is not accounted for in our standard analyses,

the Type I error rate increases. Consider the case of a one-sided,

one-sample t-test where the true mean is 1, true s.d. is 2.5 and our

goal Type I error rate is 0.05. For 80% power, this study would require

41 subjects. In reality, we do not know the true values. Let us assume

our guess of the mean is correct (� ¼ 1) and we collect data from five

subjects to obtain a variance estimate and run a power analysis to

determine how many more subjects we need. Lastly, we collect only

as many more subjects as we would need to meet this sample size and

analyze all of the data, including the five pilot subjects. Based on 5000

simulated datasets, the estimated true Type I error rate, when thresh-

olding your statistics based on a 0.05 threshold, is actually 0.0614. In

other words, although we were thresholding our statistic such that we

would have a Type I error of 5%, our true Type I error is actually

6.14%. Although our power is higher, this comes at the cost of an

increase in the number of false positives that will result in the group

analysis. The inflation in the Type I error rate will vary according to

how large your pilot study is with respect to the final total sample size,

the type of test you are running and other factors. In the simulation

work by Wittes et al. (1999) for a two-sample t-test, the Type I error

ranged up to 0.08 and they recommended that this practice only be

used in very large studies (hundreds of subjects) as the bias is negligible

in this case. Not only is the Type I error bias unpredictable, no study

has been conducted to characterize this bias in fMRI studies where

hundreds of thousands of tests are performed within a single brain.
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Fig. 1 Examples of three different levels of power, assuming a normal distribution. In each case, the null distribution is centered at 0 and the alternative is centered at
ffiffiffi
n
p
�=�, both with a variance of 1. A

statistic threshold of 1.64 controls the Type I error rate at 5% for a one-sided hypothesis. In all cases, power is the area under the alternative distribution for statistic values larger than the threshold of 1.64. The
left panel shows a high power example. The middle panel illustrates that if the mean of the distribution is exactly the threshold, the power is 50%. Lastly, the right panel shows a case where power is very low.
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It is unknown whether the bias would be larger or small when multiple

comparison correction is used. Thus, this reuse of pilot data should not

be practiced for our fMRI studies.

CHOOSING A ROI

The ROI should be chosen carefully for a power analysis. However, the

ROI is chosen, we need to ensure that it was not done in a manner that

would bias the effect size. Most often this occurs because the ROI was

selected based on significant activations in the pilot data. This topic has

been thoroughly discussed from the standpoint of Type I error rate

inflation by Kriegeskorte et al. (2009) and Vul et al. (2009), who

illustrated that defining ROIs in a biased fashion can lead to overesti-

mates of effect sizes that are driven by noise in the data. Another

important point made by Yarkoni (2009) is, due to the small sample

sizes we tend to use in fMRI studies, the effects found to be significant

are necessarily large. For example, for a one-sample t-test with 10

subjects, the effect size (�/�) must be at least 0.58 to reject the null,

whereas for a sample size of 20, an effect size of 0.39 is required to

reject the null. Hence, the effect sizes from significant findings in

studies with small samples run the risk of being much larger than

the true mean of the alternative distribution. In other words, this

sample likely came from the upper tail of the alternative distribution.

Yarkoni (2009) suggests that sample sizes of 20 subjects used in many

current fMRI studies are much too small and sample sizes of 50 or

larger are most likely more appropriate to detect the effects in fMRI.

Therefore, if you select an unbiased ROI, do not be surprised if a

power analysis suggests you need 50 or more subjects as this could

be a more realistic sample size for imaging studies.

Note that the proposed fMRI power analysis project of Joyce and

Hayasaka (2011) is a voxelwise approach that uses voxelwise multiple

comparison correction through random field theory. In this case, it

may be tempting to skip ROI selection, as the power maps are cor-

rected for multiple comparisons, but, especially with small sample

sizes, it is possible for large effects to be present in the data that are

driven by noise. To help prevent noise from driving your power ana-

lysis, choose an ROI independent of your data prior to looking at the

power map.

If you have multiple ROIs you will want to adjust your Type I error

accordingly. A Bonferroni correction according to the number of ROIs

you are investigating should be adequate (use 0.05/n, where n is the

number of ROIs). Bonferroni tends to be conservative, but in the case

of power, it is better to be slightly conservative in your estimates.

If, prior to collecting the pilot data, you had ROIs, use those for the

power analysis. Or, another option is to look through similar pub-

lished studies and use the regions, or a combination of regions, from

the work of others for your power analysis. Do not limit yourself to a

single ROI, but perhaps a couple of reasonable regions and run mul-

tiple power analyses to obtain a range of sample sizes. If you have

enough data, I recommend randomly splitting the data into two

halves, using one half to define the ROI and the other half for the

power analysis.

WHEN A POWER ANALYSIS IS NOT APPROPRIATE

More often than we would like, the results of our data analysis are not

what we would expect and we are left wondering whether there is no

effect (the null hypothesis is true) or if the power was too low to detect

the effect. Due to the relationship between the Type I error rate and

power, running a power calculation on a dataset to predict the power

of that study is not informative (Hoenig and Heisey, 2001; Levine and

Ensom, 2001). These types of power analyses are often referred to as

posthoc power analyses or observed power. Unfortunately, popular stat-

istical software packages, such as SPSS (http://www-01.ibm.com/

software/analytics/spss/), often report observed power estimates and

journal reviewers will sometimes request them. Power is the probabil-

ity of rejecting the null hypothesis given the true activation is of a

particular magnitude. There is no way to determine whether our

observed effect size resulted from a sample from a null distribution

or an alternative distribution with a non-zero mean. It is analogous to

being told that the number 2 was randomly sampled from the null or

alternative distribution and you now must specify what distribution

this single observation came from (null or alternative). Clearly, you

would need more data sampled from that same distribution to make

this sort of conclusion.

In addition, the P-value and observed power have a relationship

such that if you fail to reject the null hypothesis your observed

power, based on your estimated effect size, is guaranteed to be low

and hence is not informative. This is shown in the middle and right

panels of Figure 1. If you fail to reject the null and then use this effect

size to define the mean of your alternative distribution, assuming sym-

metric distributions the power will be 50% when the statistic equals the

threshold (middle panel) or smaller (right panel). This does not give us

any information about our true alternative distribution. In this sense, a

posthoc power analysis is not informative at all, high P-values always

imply low observed power. Note for non-symmetric distributions

(such as the noncentral t) and for two-sided hypothesis, the power

may be > 50% when the null is not rejected. All possible arguments for

post hoc power are clearly refuted in Hoenig and Heisey (2001).

What can you do if you do not detect anything significant for one of

your hypotheses and reviewers request a posthoc power analysis? Since

it is not informative and there are plenty of references explaining why

(Goodman and Berlin, 1994; Hoenig and Heisey, 2001; Levine and

Ensom, 2001), you can respectfully decline to run a posthoc power

analysis. One alternative, which is often suggested, is to supply a con-

fidence interval for the estimate (Goodman and Berlin, 1994). The

reason behind this is that the confidence interval provides intuition

for the range of values supported by the data that we do have.

BENEFITS OF A POWER ANALYSIS

Power analyses are not an exact science, meaning following the sug-

gested sample size from a power analysis does not guarantee you will

have a significant result in your study. One of two things can prevent

this. First, our estimate of, �̂=�̂, may be much larger than the truth,

causing our power to be lower than we had hoped (true alternative is

shifted to the left). In addition, even if our estimates are perfect, 80%

power means that one out of five replications of our study will fail to

find a result (your study’s result falls in the lower tail of the alternative

distribution). Due to this, some are skeptical about whether or not

power analyses are useful. If we are merely making an educated guess

that may be wrong, why bother? Surprisingly, even though by this

point, the investigator has thought through their study in depth and

is usually almost finished writing a grant, the act of going through the

power analysis often results in an even deeper understanding of the

study, including the exact models that will be used to analyze the data,

the effects of interest that will be studied and exactly where in the brain

the activation is expected. The aims of the study may change slightly,

so for this and other reasons, the power analysis should be performed

early on in the grant writing process.

If care and thought are put into a power calculation, it is likely that

you will end up revising parts of your study design. You may change

how many trials you are including, based on what other people have

reported. In order to calculate power you must know the specific

contrasts that you will be estimating and how they will be estimated,

which may alter your modeling strategy or other features of the study

such as the baseline task. For example, if you were planning on a
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longitudinal fMRI study with five imaging sessions, it may sound like

an impressive plan at first, but once you start thinking about this from

the modeling perspective, you will quickly discover that running

whole-brain repeated measures analyses like this is not easily done.

It is a complicated model and currently most standard fMRI software

packages cannot handle this type of data, especially in the case of

missing data. In realizing this, a more simple design may be proposed

or an ROI-based approach may be considered instead of a whole-brain

analysis.

LIMITATIONS OF A POWER ANALYSIS

The data used to create the mean and variance estimates for the power

calculations may not be good representations of the future data. If the

mean is over-estimated or variance is under-estimated, the predicted

sample size will be too small. Likewise if the mean is too small or

variance too large, the predicted sample size will be too large.

Within reason, a conservative power calculation is preferred as it in-

creases the chances that the effect will be seen. It is likely that this can

occur, especially in an fMRI study where the pilot data you are using

most likely will not be exactly the same as what will be used in the

future study and even the types of subjects may change. Obviously, if

you already had data that could test your hypothesis you would not be

proposing a new study to collect exactly the same data. This is not

unique to the field of fMRI, but occurs with almost all power analyses.

One way to help avoid overly optimistic estimates of effect size is to

tweak the different variables involved in the power analysis to see how

much the predicted sample size fluctuates. Try a couple of ROIs and a

range of effect sizes within reason for your experiment. Based on all of

these findings be sure not to rely on the best case scenario. So, if you

ran three variations of your power analysis and obtained sample sizes

of 20, 35 and 38, be honest with yourself that although the sample size

of 20 seems really tempting, you are probably safer with a sample

size of 35 or 40. In addition to looking at a variety of ROIs and

effect sizes, it is highly recommend that you obtain some pilot data.

This will have many benefits, including supplying better estimates of

the mean and variance estimates.

GETTING ORGANIZED FOR YOUR POWER ANALYSIS

If you know you have a grant deadline approaching, start working on

your power analysis as soon as possible. It takes time to find pilot data

and almost every time you run a power analysis you will discover that

you need more subjects than you thought and so your budget and

possibly your primary hypotheses may change as a result. Most likely

you will not perform a power analysis for every task you are proposing,

so try to perform power analyses on the important aims of your pro-

posal. If you are using fMRIPower for your power analysis, it requires a

pilot data analysis that was performed in either FSL or SPM and you

must also input an ROI. Thorough, step-by-step instructions for using

the GUI in fMRIpower can be found at http://fmripower.org/instruc-

tions.pdf. Since this is an automated program, it can only perform

one-sample, two-sample and paired t-tests. Although by default it

will calculate power for each of the regions in the automated anatom-

ical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), for reasons

described in the ‘Choosing a ROI’ section you should think carefully

about what region you will use, as opposed to simply running it for all

regions of the AAL atlas and choosing the region with the most sat-

isfying level of power. Since anatomical atlases have such large ROIs,

you typically will not have very high power, so it is recommended that

you form your own ROI based on evidence from literature and not

from what you found in your pilot data. Last you will enter a single or

range of sample sizes and a Type I error rate. I would simply

Bonferroni correct the Type I error rate according to how many

ROIs your are using.

fMRIPower uses the average mean and s.d. over the ROI in the

power analysis. If you have V voxels, where the data in each voxel,

xv, are distrubuted, N(�,�2), the variance of the mean across the voxels

is Var 1
V

�vxv
� �

¼ 1
V
�2. Hence, if the averaged data over the ROI were

first calculated and then the mean and s.d. of the averaged data were

used for the power analysis, the size of the ROI would influence the

size of the variance and the power such that larger ROIs would have

higher power. Thus, the power analysis produced by fMRIPower

applies to the average voxel in the ROI. Furthermore, the power ana-

lysis assumes the same number of runs, trials per run and stimulus

presentation as the pilot data, so any possible differences should be

noted. Often, if I suspect my future data will more variable than the

pilot data, I will also test power for slight variations in the s.d. If a

single sample size is used for the power analysis, fMRIPower will dis-

play the power, mean in s.d. units, mean and s.d. images as shown in

the left panel of Figure 2. You can obtain �̂ and �̂ either from this

image or the Matlab structure that is saved. If you run power for a

range of sample sizes (right panel of Figure 2), the mean and s.d.

images are instead replaced by a power curve, showing power as a

function of sample size. If you want to run the power analysis for a

different s.d., just use your favorite power calculation software for your

test and the values.

Once the mean and s.d. have been calculated, the power calculation

is actually quite simple if you are fixing the length of the run and study

design. This makes it easy to test slight variations in the variance.

Fig. 2 Two options for sample size specification. If an individual sample size is selected you will
obtain power estimates for that sample size only (left), whereas a range of sample sizes supplies a
power curve (right).
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I find that a concise way to report power calculations for a range of

mean or variance estimates is to plot a few power curves on the same

axis.

CONCLUSION

Recent research has not only supplied the field of fMRI with

approaches for calculating power, but tools for doing so. Although

some are skeptical about the utility of a power analysis, following

the advice given here will help improve the quality of sample size

estimates. This will have a positive impact on the quality of grant

applications and will cut down on the number of underpowered stu-

dies. In addition, careful thought about the details of your study that

are necessary when running a power analysis will often impact your

study positively by improving the task or study design.
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