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Abstract

Background: Genes encoding transcription factors that constitute gene-regulatory networks and maternal factors
accumulating in egg cytoplasm are two classes of essential genes that play crucial roles in developmental processes.
Transcription factors control the expression of their downstream target genes by interacting with cis-regulatory
elements. Maternal factors initiate embryonic developmental programs by regulating the expression of zygotic
genes and various other events during early embryogenesis.

Results: This article documents the transcription factors of 77 metazoan species as well as human and mouse maternal
factors. We improved the previous method using a statistical approach adding Gene Ontology information to Pfam
based identification of transcription factors. This method detects previously un-discovered transcription factors. The
novel features of this database are: (1) It includes both transcription factors and maternal factors, although the number
of species, in which maternal factors are listed, is limited at the moment. (2) Ontological representation at the cell,
tissue, organ, and system levels has been specially designed to facilitate development studies. This is the unique
feature in our database and is not available in other transcription factor databases.

Conclusions: A user-friendly web interface, REGULATOR (http://www.bioinformatics.org/regulator/), which can help
researchers to efficiently identify, validate, and visualize the data analyzed in this study, are provided. Using this web
interface, users can browse, search, and download detailed information on species of interest, genes, transcription
factor families, or developmental ontology terms.
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Background
Transcription factors (TFs) bind to the cis-regulatory el-
ements of downstream target genes and promote or
block the recruitment of RNA polymerase II to those
promoter regions [1,2]. They control various develop-
mental processes by regulating cell fate specification
[3,4], morphogenesis [5,6], the cell cycle [7], apoptosis
[8] and pathogenesis [9]. Similarly, maternal factors
(MFs) present in unfertilized eggs are of interest, as they
play crucial roles in early embryogenesis [10-14]. MFs
initiate embryonic developmental programs, followed by
triggering of zygotic gene activation [10,15,16]. Compre-
hensive annotation and comparison of TFs and MFs
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among metazoans would lead to a clearer understanding
of developmental processes.
To date, several TF databases, such as AnimalTFDB

[17], DBD [18] and TFCat [19], have been established.
On the basis of DNA-binding domains (DBD) and se-
quence similarity, many TFs have been discovered in an-
imals [17], plants [20-23], bacteria [18] and archaea [24].
However, prediction of TFs based only on DNA-binding
domains can be misleading, since some non-TF proteins
may also have similar domains. For example, the C2H2
type zinc finger domain may also be present in some
RNA-binding proteins [25]. Likewise, the homology-
based BLAST search method may fail to list every TF in
a genome due to the fact that the sequences of some
TFs are not so conserved. Therefore, more intelligent
methods are needed in order to facilitate better
prediction.
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The supervised machine learning method combined
with feature selection has been demonstrated to be a
powerful tool for resolution of various biological prob-
lems, especially for placing genes into distinct categories
[26,27]. Given that TFs have features such as Pfam ID
[28] and Gene Ontology term ID [29] usage that distin-
guish them from other genes, we have improved the
previous method by assigning a different weight to each
feature, depending on the category. For example, the GO
term GO:0006355 (regulation of transcription, DNA-
templated) should appear more frequently in TFs other
than non-TFs. This method is based on statistical infor-
mation similarity (SIS), and its performance has been
evaluated.
To gain a better understanding of the roles of every

TF and MF, we have developed a developmental ontol-
ogy browser using the present data, allowing retrieval of
information at the cell, tissue, organ, and system levels
in a hierarchical way. All developmental ontology terms,
as well as other detailed information, can be accessed via
the REGULATOR web interface.

Methods
Prediction methods for transcription factors
Prediction strategy
The TF prediction workflow employed in the present
study using the supervised machine learning method
combined with feature selection is shown in Figure 1.
First, genes of 77 metazoan species from public data-
bases were collected and redundant sequences were
removed. Second, Pfam and GO annotation of the non-
redundant sequences were assigned in order to ensure
that every protein was represented by at least one feature
(Pfam or GO ID). Subsequently, all proteins were catego-
rized into four groups (transcription factors, transmem-
brane proteins, enzymes, and other proteins), and features
Figure 1 Outline of TF prediction strategy.
that are well represented in each group were selected using
feature selection. Third, the weights of annotated features
were calculated from the occurrence possibilities for each
category. Fourth, every protein was re-encoded according
to the selected features. Fifth, TFs based on statistical infor-
mation similarity were predicted and the performance
was evaluated using Leave-One-Out Cross-Validation
(LOOCV) [27,30,31] in order to determine features
showing the best LOOCV performance. Finally, TFs
were predicted using the selected features. Details of
these steps are described in the following sections.

Dataset and preprocessing
Protein sequences of all metazoan genes were collected
from the UniProtKB/Swiss-Prot (Release 2013/08), NCBI
RefSeq (Release 60) and Ensembl (Release 72) databases.
In addition, TF sequences from Ensembl annotated by the
Animal Transcription Factor DataBase (AnimalTFDB) [17]
were collected as a complement. Amino acid sequences
whose length was not between 50 and 5000 or those
containing irregular characters (e.g. '*') were excluded. Se-
quences with high similarity were clustered by CD-HIT
[32] at a sequence identity threshold of 0.90. Redundant se-
quences in each cluster were removed, and only the longest
one was retained. These genes were categorized into four
groups (transcription factors, transmembrane proteins, en-
zymes, and other proteins) as the training dataset using the
methods described below.

Pfam and GO annotation
All sequences were searched against the Pfam profile
HMM database (Release 27.0) by hmmscan in the
HMMER package (v3.1b1) with an e-value threshold of
1e-3. Generally, GO terms could be inferred using either
InterProScan or BLAST-based methods. Considering
that InterProScan is also based on conserved domains,
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which are redundant to some degree, we conducted a
BLAST-based homology search for GO terms annota-
tion, which provide information complementary to the
Pfam domain-based method. All non-redundant proteins
were queried against UniProtKB/Swiss-Prot metazoan
proteins with BLASTP. Because the number of experi-
mentally validated GO terms is very limited, we also
adopted IEAs (Inferred from Electronic Annotation).
However, IEAs are often error prone. To ensure more
reliable annotation, we used following criteria: (1) We
used an e-value of 1e-10 as a threshold. (2) We retained
only the top 10 hits. (3) Only GO terms that occurred in
no less than 50% of the hit genes were considered to be
features of the query gene. (4) Features presented in less
than 20 genes were removed. (5) Genes without any fea-
tures were excluded from the initial training dataset. All
of these criteria contribute to support the accuracy.
Thus, when inadequate terms were assigned, they would
be removed by these criteria. Furthermore, even when
minority of GO terms were not correctly assigned, the
final score will be determined largely depending on
major correctly assigned terms with high weights during
the final step of prediction of TFs.

Classification of genes
In order to clarify the features that distinguish TFs from
other proteins, we first categorized the proteins into four
groups: transcription factors (TFS), transmembrane pro-
teins (MEM), enzymes (ENZ) and other proteins (OTS)
not belonging to any of the first three groups (Table 1).
TFS Group: Well-known TFS, including general tran-
scription factors, such as TFIIA, TFIIB, TFIID, TFIIE,
TFIIF, and TFIIH [33], were collected from AnimalTFDB
(Ensembl IDs), NCBI and UniProtKB/Swiss-Prot based
on their functional descriptions or annotations. Then,
all Ensembl, NCBI RefSeq and UniProtKB/Swiss-Prot
genes whose Pfam or GO descriptions were related to
"transcription factor activity" (Additional file 1), or
whose names contained the key words "transcription
factor" or "transcription initiation factor" were consid-
ered to be TFS. Transcription cofactors whose descrip-
tions contained "cofactor", "coregulator", "coactivator"
or "corepressor" were categorized into OTS. MEM
Group: Proteins whose UniProtKB/Swiss-Prot or NCBI
Table 1 Categories and sample numbers of selected
proteins in the training dataset

Groups Description Number (Total: 556,753)

TFS Transcription factors 64,596

ENZ Enzymes 119,669

MEM Transmembrane proteins 269,080

OTS None of the above proteins 113,892

Note: Some proteins are categorized into more than one group.
RefSeq descriptions contained "membrane", whose GO
terms included "integral to membrane", and whose key-
words contained "transmembrane", and those predicted
to be transmembrane proteins by TMHMM [34], were
considered to be MEM. ENZ Group: NCBI enzymes
were identified from the RefSeq descriptions, and Uni-
ProtKB/Swiss-Prot enzymes were easily identified from
the 'EC' identifier. OTS Group: Homologs (with at least
two hits, and no less than half of the top ten hits belong-
ing to at least one category with a BLASTP identity ≥
25% and an E-value ≤ 1e-20) of the above categories
were grouped as TFS, MEM and ENZ, and the other
proteins were considered to be OTS.

Mathematical representation of genes characterized by
features
We have shown a concrete example of mathematical
procedures using specific genes in Additional file 2
in order to help understanding what we did in this and
following sections. In order to facilitate interpretation
by the computational program, a binary gene coding
system [27] were employed. Given that a total of N
features (a feature being the Pfam or GO term ID) were
annotated in a total of M genes, and the features were
sorted in alphabetical order, each gene sample was
converted to an N dimensional vector, as shown in
formulae (1) to (4):

vm ¼ f 1; f 2;…; f i;…; f Nf g ð1Þ
i∈ 1; 2; 3…;Nf g ð2Þ
m∈ 1; 2; 3;…;Mf g ð3Þ
f i∈ 0; 1f g ð4Þ

where vm is the m-th gene sample out of the total of M
samples, and fi is the i-th annotated feature out of the
total of N annotated features. If sample vm is annotated
with the i-th feature, then fi = 1, otherwise fi = 0.

Estimation of statistical information
As the frequency of occurrence of each feature differs in
each of the four categories (TFS, MEM, ENZ, OTS), the
weights of the feature in each category would also differ
accordingly. In this study, we measured the weights
based on Information content (IC), which has been
widely adopted in bioinformatics as well as many other
sciences that employ information measuring [35]. Here,
statistical information was estimated using the formulae
(5) to (9):

Pi;j ¼ Ci;j

N j
⋅
Ci;j

C1
¼ C2

i;j

Nj⋅Ci
ð5Þ

ICi;j ¼ − log2 Pi;j ð6Þ
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wi;j ¼
1

ICi;j
; Pi;j > 0

0; Pi;j ¼ 0

8<
: ð7Þ

Wm;j ¼ w1;j;w2;j;…wN ;j
� � ð8Þ

j∈ TFS;MEM;ENZ;OTSf g ð9Þ

where Ci,j is the present frequency of the i-th feature in
category j, Nj is the total number of sample proteins in
category j, and Ci is the total number of the i-th feature
in the four categories. Pi,j is the joint probability of the i-
th feature in category j, and it balances both inter-
category and intra-category probabilities. ICi,j and wi,j

are the information content and weight of the i-th
feature in category j, respectively. Wm,j is the N dimen-
sional weight vector of the m-th sample in category j.
For each sample protein, four weight vectors were
assigned because there were four categories and the pos-
sibility of each feature being present in each category
would differ.

Feature selection
Next, we tried to select the best features that would yield
the best prediction performance. However, feature selec-
tion software packages, such as TOOLDIAG [36],
mRMR (maximum relevance minimum redundancy)
[37] and Weka [38], were time-consuming and incapable
of processing large datasets due to the limited memory
of our computational server. Therefore, a locally devel-
oped Perl pipeline was introduced to carry out this se-
lection. For each feature, we defined MWDi to measure
the degree of mutual weight difference between the four
categories, as described in formula (10):

MWDi ¼ wi;j1− wi;j2 þ wi;j3 þ wi;j4
� �

=3 ð10Þ

where wi,j1, wi,j2, wi,j3 and wi,j4 were the sorted weights in
descending order of the i-th feature in categories j1, j2,
j3 and j4, respectively. Finally, according to MWDi, a list
of sorted features was generated. In order to reduce the
search space, features whose first weight was less than
the sum of the others were removed.
Next, LOOCV was carried out and the top best fea-

tures corresponding to the highest accuracy were se-
lected. Details of this method have been described
previously [26,27].

Prediction based on similarity score estimation
Prediction was carried out using the training data set by
estimating and comparing the feature similarity between
two proteins. The cosine correlation coefficient function
[27,39] was introduced to quantify the similarity of
two feature vectors, and a final similarity score was
calculated between protein a and protein b, as shown in
formulae (11) and (12):

sim a;bð Þ ¼ Va⋅Vb

Vak k⋅ Vbk k ð11Þ

SCORE a;b;jð Þ ¼ sim a;bð Þ⋅
XN
k

wk;j ð12Þ

where va and vb represent the N dimensional binary
vector of gene a and gene b, respectively, and ||va|| and
||vb|| represent the module of vector va and vb, respect-
ively. va · vb is the product of vector va and vb, and ||va|| ·
||vb|| is the product of their modules ||va|| and ||vb||. k
is the k-th feature present in both protein a and protein
b. wk,j is the weight of the k-th feature in category j (as-
suming that protein a is the query, and protein b belongs
to category j). Since the weight of each feature differs in
each of the four categories, four different scores are ob-
tained. LOOCV was carried out by employing the Near-
est Neighbor Algorithm (NNA) classifier [27,39] using
the similarity score mentioned above. Query genes were
considered to belong to the category with the maximum
score.

Performance evaluation
To evaluate the performance of our predictions, sensitiv-
ity, specificity, accuracy, precision and the Matthews
correlation coefficient (MCC) [27,40-42] were intro-
duced in this study, as shown in formulae (13) to (17)
respectively:

sensitivity ¼ TP
TP þ FN

ð13Þ

specifity ¼ TN
TN þ FP

ð14Þ

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð15Þ

precision ¼ TP
TP þ FP

ð16Þ

MCC ¼ TP⋅TN−FP⋅FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ⋅ TP þ FNð Þ⋅ TN þ FPð Þ⋅ TN þ FNð Þp

ð17Þ
where TP (true positive) is the number of proteins cor-
rectly predicted to be TF, FP (false positive) is the num-
ber of proteins incorrectly predicted to be TF, TN (true
negative) is the number of proteins correctly predicted
to be non-TF, and FN (false negative) is the number of
proteins incorrectly predicted to be non-TF. The quality
was measured by MCC.
We determined features that showed the best LOOCV

performance. Finally, TFs were predicted using the selected
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features in the same way as described above in "Prediction
Based on Similarity Score Estimation".

Prediction methods for maternal factors
To predict MFs, raw data of various normal cell types,
tissues and development stages were used. Relevant gene
expression series in the Affymetrix Human Genome
U133 Plus 2.0 Array (GPL570) and Affymetrix Mouse
Genome 430 2.0 Array (GPL1261) were collected from
the NCBI Gene Expression Omnibus (GEO) [43]. Back-
ground correction and normalization were conducted by
GCRMA using the adjusted Robust Multi-array Average
(RMA) algorithm [44]. Genes whose expression values
were no less than four-fold in unfertilized egg/metaphase
II oocytes compared with all late-stage somatic cells
were considered to be MFs in order to list egg-specific
transcripts, namely strictly maternal transcripts. Late-
stage somatic cells excluded embryos at the 1 ~ 8-cell
stage, morula stage, blastocyst stage, testis, ovary and
embryonic stem cells.

Results
TF prediction
The categories and sample numbers of reserved proteins
(total 556,753) in the training dataset are listed in
Table 1. These samples were used for subsequent feature
selection. As illustrated in Figure 2A, when all of
the 4,666 features were selected (Additional file 3),
LOOCV accuracy and precision reached 96.5% and
87.1%, respectively, the sensitivity being almost satu-
rated, and the specificity showing no rapid decrease.
Clustering of these 4,666 features showed that each
group had significantly distinct features (Figure 2B), es-
pecially between TFs and non-TFs, thus supporting the
high accuracy of our prediction methods. Final predic-
tion was carried out using the sequences of 77 metazoan
species (60 from the Ensembl database and 17 from the
NCBI RefSeq database). As a result, a total of 85,561
unique TF genes (protein IDs were converted to NCBI
GeneID, and if no NCBI GeneID was available, the
Ensembl gene ID was used) were identified based on the
4,666 features, and these are summarized in Table 2.

MF prediction
MFs are already present in unfertilized eggs, and become
gradually reduced as embryogenesis progresses. It has
been estimated that about 60% of animal genes are
expressed in unfertilized eggs [45]. In order to reduce
the search space for developmentally important MFs, we
focused only on strictly maternal factors, which are spe-
cifically expressed at the egg stage. Due to the limited
amount of public data that have been collected at vari-
ous developmental stages, only human and mouse
microarray data deposited in the NCBI Gene Expression
Omnibus (GEO) [43] were available. For genes examined
using more than one probe and showing inconsistent ex-
pression levels between the probes, if the expression
based on one probe satisfied the MF criterion, we still
retained this gene, considering that the discrepancy may
have been due to the presence of some alternative spli-
cing isoforms. Finally, 542 MFs from human and 156
MFs from mouse were obtained.

Comprehensive annotation
In order to provide a comprehensive annotation, some
basic information was extracted from the UniProtKB/
Swiss-Prot database and GenBank, including the gene
name, description of the full name, and the gene ID. For
each Refseq gene, we use NCBI GeneID as the unique
ID, whereas for some Ensembl genes without GeneID,
the Ensembl gene ID was used. In addition, cross-
references to other public databases, such as Ensembl,
NCBI RefSeq, UniProtKB/Swiss-Prot and KEGG were
also related. A comprehensive InterPro annotation (in-
cluding FPrintScan, HMMPfam, HMMSmart, ProfileS-
can, PatternScan, SuperFamily, SignalPHMM, TMHMM,
Gene3D and so on), GO and 3D structure links to PDB
were also described. Protein-protein interaction informa-
tion was linked to STRING [46], MINT [47], IntAct [48]
and DIP [49]. Putative orthologs were predicted using
the bidirectional BLASTP best hit method with an e-
value of ≤ 1e-20. Paralogs were inferred with a BLAST
identity of ≥ 70% and an e-value of ≤ 1e-50. Moreover,
TF targets were also collected from the Transcriptional
Regulatory Element Database (TRED) [50] and Embry-
onic Stem Cell Atlas from Pluripotency Evidence (ES-
CAPE) [51]. Gene expression profiling of human and
mouse TFs in various normal cell types/tissues and at
various developmental stages were generated using the
same method as that described for MFs prediction.

Developmental ontology terms
In order to gain insight into the roles of TFs and MFs dur-
ing development, the developmental process-associated
gene ontology terms were extracted from the Gene Ontol-
ogy Consortium. These developmental ontology terms
would be specifically useful for developmental biology stud-
ies. According to their anatomical hierarchies, developmen-
tal ontology terms were categorized into four groups: cell,
tissue, organ and system (Figure 3). Each of the four groups
included many terms other than non-metazoan terms, such
as root, leaf and spore germination. Also, all child nodes
(e.g. 'is_a' and 'part_of') of the terms were merged.

Web interface
To facilitate the use of this resource, a user-friendly
web interface (Figure 4) was developed, which can be
accessed at http://www.bioinformatics.org/regulator/. By

http://www.bioinformatics.org/regulator/


Figure 2 Selected features and performance curves. (A) Performance of prediction in the LOOCV. (B) Clustering of the 4,666 features according
to the similarity score and categories. Blue color indicates the score in ENZ, red color indicates the score in MEM, yellow indicates the score in
OTS and green color indicates the score in TFS.
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clicking the "Browse" menu, species of all metazoan
taxonomic classes used in this study are listed in the left
panel. By choosing a species of interest in a certain class,
detailed information on the species, including photos,
taxonomic classification (kingdom, phylum, class, order,
family, genus and species), and the Wikipedia link are
shown in the right panel. TFs of all families identified in
the species can be accessed via a panel at the bottom.
TF families were designated according to the best Pfam
DNA-binding domain in the panel. Lists of all TF fam-
ilies are displayed for each species, even when some
families are not found in the species, in order to facili-
tate comparison between species. Using "taxonomic
search" at the bottom of the left panel, TFs of selected
taxon can be summarized and sorted by their prevalence
according to Pfam DBDs (also shown in Additional
file 3). Members of each TF family for all available
species grouped by the best Pfam DNA-binding domain
can also be accessed via the "TF Family" menu. Entire
lists of TFs for each species can be accessed via the
"Species" menu. MFs of Homo sapiens and Mus muscu-
lus can be accessed via the "Maternal" menu. Expression
profiles of the annotated genes in Homo sapiens and
Mus musculus in various tissues and at different devel-
opmental stages are also represented in the form of
graphs. In addition, ontological representation of every
TF and MF was categorized at the cell, tissue, organ, and
system levels, and can be searched via the "Ontology"
menu. Comprehensive annotations are provided for
every TF and MF, including basic information, InterPro,
Pfam, Gene ontology annotation, and cross-reference
links to many public databases. Users can also search a
gene of interest by entering the Gene ID, Ensembl ID,
RefSeq ID, gene name, and full name via the "Search"
menu. Moreover, InterPro ID, Pfam ID, Gene Ontology
ID or key words of their functional annotation are also



Table 2 Numbers of transcription factors predicted in 77 metazoan species

Class Tax ID Organism TF numbers Total genes Percentage (%)

Aves 9103 Meleagris gallopavo 809 14,123 5.73

9031 Gallus gallus 941 15,455 6.09

59729 Taeniopygia guttata 1,291 17,441 7.40

Sauropsida 13735 Pelodiscus sinensis 1,211 18,170 6.66

Reptilia 28377 Anolis carolinensis 1,588 18,575 8.55

Mammalia 9258 Ornithorhynchus anatinus 1,009 21,669 4.66

9813 Procavia capensis 1,103 16,057 6.87

9785 Loxodonta africana 1,231 20,003 6.15

9371 Echinops telfairi 1,106 16,575 6.67

9986 Oryctolagus cuniculus 1,141 19,213 5.94

9978 Ochotona princeps 1,029 16,006 6.43

10141 Cavia porcellus 1,179 18,641 6.32

10020 Dipodomys ordii 968 15,798 6.13

10029 Cricetulus griseus 1,307 60,626 2.16

10090 Mus musculus 1,678 22,716 7.39

10116 Rattus norvegicus 1,491 22,401 6.66

43179 Ictidomys tridecemlineatus 1,236 18,786 6.58

9544 Macaca mulatta 1,593 21,859 7.29

9555 Papio anubis 1,585 21,785 7.28

9595 Gorilla gorilla 1,537 20,873 7.36

9606 Homo sapiens 1,757 22,030 7.98

9597 Pan paniscus 1,416 20,476 6.92

9598 Pan troglodytes 1,498 18,672 8.02

9601 Pongo abelii 1,505 20,370 7.39

61853 Nomascus leucogenys 1,451 18,534 7.83

9483 Callithrix jacchus 1,520 20,935 7.26

39432 Saimiri boliviensis 1,462 19,344 7.56

9478 Tarsius syrichta 961 13,628 7.05

30608 Microcebus murinus 1,128 16,319 6.91

30611 Otolemur garnettii 1,490 19,447 7.66

37347 Tupaia belangeri 1,005 15,471 6.50

9615 Canis familiaris 1,402 19,786 7.09

9669 Mustela putorius furo 1,342 19,872 6.75

9646 Ailuropoda melanoleuca 1,360 19,317 7.04

9685 Felis catus 1,321 19,459 6.79

9739 Tursiops truncatus 1,266 16,550 7.65

9913 Bos taurus 1,402 19,900 7.05

9823 Sus scrofa 1,353 21,390 6.33

30538 Vicugna pacos 730 11,765 6.20

132908 Pteropus vampyrus 1,219 16,990 7.17

59463 Myotis lucifugus 1,248 19,679 6.34

9365 Erinaceus europaeus 843 14,601 5.77

42254 Sorex araneus 713 13,187 5.41

9796 Equus caballus 1,343 20,408 6.58
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Table 2 Numbers of transcription factors predicted in 77 metazoan species (Continued)

9361 Dasypus novemcinctus 988 22,711 4.35

9358 Choloepus hoffmanni 822 12,393 6.63

9305 Sarcophilus harrisii 1,354 18,779 7.21

13616 Monodelphis domestica 1,666 21,299 7.82

9315 Macropus eugenii 973 15,290 6.36

Amphibia 8364 Xenopus tropicalis 1,241 18,346 6.76

Sarcopterygii 7897 Latimeria chalumnae 1,225 19,562 6.26

Actinopterygii 8090 Oryzias latipes 1,281 19,677 6.51

8083 Xiphophorus maculatus 1,450 20,375 7.12

8128 Oreochromis niloticus 1,551 21,420 7.24

69293 Gasterosteus aculeatus 1,317 20,787 6.34

31033 Takifugu rubripes 1,359 18,484 7.35

99883 Tetraodon nigroviridis 1,408 19,602 7.18

8049 Gadus morhua 1,309 20,095 6.51

7955 Danio rerio 2,376 26,239 9.06

Petromyzontida 7757 Petromyzon marinus 534 10,415 5.13

Ascidiacea 7719 Ciona intestinalis 485 16,652 2.91

51511 Ciona savignyi 441 11,616 3.80

Echinoidea 7668 Strongylocentrotus purpuratus 763 21,156 3.61

Enteropneusta 10224 Saccoglossus kowalevskii 526 22,077 2.38

Arachnida 34638 Metaseiulus occidentalis 554 11,451 4.84

Insecta 7070 Tribolium castaneum 519 9,761 5.32

7227 Drosophila melanogaster 662 13,792 4.80

7463 Apis florea 488 9,137 5.34

7460 Apis mellifera 318 10,618 2.99

30195 Bombus terrestris 529 9,433 5.61

132113 Bombus impatiens 530 9,859 5.38

143995 Megachile rotundata 530 9,178 5.77

7425 Nasonia vitripennis 528 11,450 4.61

7029 Acyrthosiphon pisum 717 15,611 4.59

Chromadorea 6239 Caenorhabditis elegans 782 20,541 3.81

Hydrozoa 6087 Hydra magnipapillata 441 16,826 2.62

Demospongiae 400682 Amphimedon queenslandica 227 9,768 2.32
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acceptable. Download and help services and external
links to relevant websites are provided.

Discussion
In this study, we selected the most relevant features that
are useful for gene classification from both conserved
Pfam domains and sequence similarity-based GO terms.
A total of 4666 representative features were obtained,
as shown in Additional file 3. As expected, most
well-known features of TFs were included among the
top 100 features. For example, PF00046 (Homeobox do-
main), PF00104 (Ligand-binding domain of nuclear hor-
mone receptor), PF00250 (Fork head domain), PF00170
(bZIP transcription factor), GO:0003700 (sequence-specific
DNA binding transcription factor activity), and GO:
0006355 (regulation of transcription, DNA-dependent)
were evident TF features. Furthermore, some other features
were also found to be widely present in TFs. For instance,
PF01352 (Krüppel associated box) domain-containing pro-
teins were reported as transcriptional repressors in previous
studies [52,53]. In addition, reasonable Pfam IDs and GO
terms were also found among the top features of other
groups (ENZ, MEM, OTS), such as PF00001 (7 transmem-
brane receptor), GO:0022857 (transmembrane transporter
activity) and GO:0004930 (G-protein coupled receptor ac-
tivity) in the MEM group, and PF07714 (Tyrosine kinase)



Figure 3 An overview of developmental ontology terms in REGULATOR database. Terms were categorized according to four different development
levels: cell, tissue, organ and system.
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in the ENZ group. Thus, our statistical information similar-
ity method was capable of distinguishing proteins of differ-
ent categories.
We then compared our results with other transcrip-

tion factor databases. Among those whose genome se-
quences are available, we used 77 metazoan species in
the current REGULATOR database, compared with
more than 700 species in the DBD database (last up-
dated in 2010) [54] (including eukaryotes, bacteria and
archaea) and 50 animal species in the AnimalTFDB (last
updated in 2012). Table 3 summarizes the transcription
factors of the five model species and compares our pre-
diction with the AnimalTFDB and DBD databases. In
human and mouse for example, 1,706 and 1,628 TFs, re-
spectively, were predicted in this study, among which
1,491 and 1,427 TFs were annotated with a previously
known Pfam DBD, respectively. The total numbers in
REGULATOR are also greater than the 1,494 human
and 1,415 mouse TFs in the DBD database [54], and the
1,567 human and 1,507 mouse TFs in the AnimalTFDB
database (Ensembl ID being converted to the NCBI
GeneID if available). Some genes newly predicted as TFs
using our approach might be true TFs. For example,
ZBED6 (Zinc finger BED domain-containing protein 6)
has been reported to be a transcription factor that can
regulate the expression of IGF2 [55,56]. Protein Gm5294
contains a fork-head DNA-binding domain, and may be
a transcription factor, although no literature is currently
available (57, 58). Similar situations were also found for
Danio rerio, Caenorhabditis elegans and Drosophila mel-
anogaster. We retained these newly predicted genes in
our dataset because they share some common features
with known TFs.
Further investigation revealed that 111 human and 111

mouse TFs in the AnimalTFDB were not found in our
dataset (obsolete gene IDs were not considered). Simi-
larly, 68 human and 77 mouse TFs in the DBD dataset
were absent in our data. A manual check of these miss-
ing genes revealed that some of them are cofactors or
chromatin remodeling factors, rather than true TFs. For
example, MBF1 (Endothelial differentiation-related
factor 1, ENSMUSP00000015236) in DBD and ATAD2
(ATPase family AAA domain-containing protein 2,
ENSG00000156802) in AnimalTFDB were suggested



Figure 4 Web interface of REGULATOR. (A) Examples of TF families in REGULATOR. (B) Available species in REGULATOR. (C) Development
ontology annotations for Both TFs and MFs. (D) Basic information for gene annotations.

Table 3 Comparison of transcription factors predicted in this study with those listed in AnimalTFDB and DBD in the
five model species

Total Common

R A D R∩A R∩D A∩D R∩A∩D

Homo sapiens 1,706 1,567 1,494 1,389 1,097 1,084 1,051

Mus musculus 1,628 1,507 1,415 1,312 1,095 1,093 1,053

Danio rerio 2,376 1,959 1,289 1,564 803 748 688

Caenorhabditis elegans 782 668 736 592 636 582 555

Drosophila melanogaster 662 631 600 513 461 457 425

Note: R: REGULATOR, A: AnimalTFDB, D: DBD.
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to be transcriptional coactivators in previous studies
[57,58]. ZZZ3 (ZZ-type zinc finger-containing protein
3, ENSG00000036549) is a protein of the histone ace-
tyltransferase complex [59], and there is insufficient
evidence for it to be a true TF, despite the fact that it
is listed in the AnimalTFDB. However, some reliable
TFs were still missing from our data, e.g. NFYB, NFYC
(Nuclear transcription factor Y subunit beta and
gamma). This may have been due to the limited num-
ber of features assigned to these proteins. In such
cases, we entered them into our database manually. In
the sponge, only 227 TFs were predicted (Table 2).
The number and proportion of TFs were significantly
lower than in other animals. Therefore, the efficiency
of our prediction appears to be relatively low for basal
metazoans.
We also compared the TFs of Drosophila melanogaster

in our data with FlyTF database [60] and that of mouse
with TFCat database [19], which are curated databases.
Among the total 1,168 TFs curated in FlyTF, 581 (50%
of FlyTF and 88% of our dataset) were also discovered in
our database in which 662 TFs are listed. Manual-check
of the 81 TFs only present in our database showed some
of them are not TFs. While some others would be genu-
ine TFs [e.g. Tpl94D (geneid:318658) has a HMG-box
domain and Aatf (geneid:33943) is an apoptosis antagon-
izing transcription factor], however, these are not found
in the FlyTF. As to the TFs only exist in FlyTF, some of
them are TFs [e.g. Mute (FBgn0085444, geneid:2768848)
was not predicate by us for lack of predicted TF domain
or GO term]. Others may be not TFs [e.g. Blos1
(FBgn0050077, geneid:246439) is a component of bio-
genesis of lysosome-related organelles complex: Med18
(FBgn0026873, geneid:31140) is coactivator, rather than
a TF]. We guess that TFs in the FlyTF database could
contain many non-TF proteins because the numbers of
Drosophila TFs listed in the AnimalTFDB and DBD are
comparable to our data (Table 3). In TFCat, there are
568 mouse TFs that were manually confirmed as reliable
TFs. Among them, 429 (76% of TFCat and 26% of our
dataset) were commonly shared with our database in
which 1,628 TFs are listed. 139 TFs are only exist in
TFCat, including both TFs and non-TFs [e.g. Mynf1
(myeloid nuclear factor 1, geneid:104338) is a cell type-
restricted transcription factor that is not predicted by us.
Trrap (geneid:100683) which belongs to a kinase protein
family is not TF. Topors (geneid:106021) is a E3
ubiquitin-protein ligase]. It is likely that TFs in the
TFCat database contains only firmly confirmed TFs of
limited number, because the numbers of mouse TFs
listed in the AnimalTFDB and DBD are relatively similar
to our data (Table 3).
The numbers of TFs for each species sorted on the

basis of prevalence according to Pfam DBDs are shown
in Additional file 4. Among a total of 77 species,
26,300 (31% of total 85,561) in the zf-C2H2 family,
10,955 (13%) in the Homeobox family, 5,307 (6%) in the
HLH family, and 3,209 (4%) in the HMG box family
were found to be present in our data. This order of
prevalence in the top 4 families is well conserved across
species.
We also listed MFs specifically expressed in eggs, and

provided development ontology annotations. Although
many papers have reported the important roles of MFs
in various development processes, a large number of
MFs are still being investigated and no database has
been available to date. In view of their importance and
the limited extent of current knowledge, developmental
ontology was adopted with the aim of providing a special
annotation for these genes. The developmental ontology
terms describe developmental processes at four different
levels: cell development, tissue development, organ de-
velopment and system development. All of these terms
were extracted from the Gene Ontology consortium
[61].
Finally, we have provided a well-annotated database of

transcription factors and maternal factors, with cross-
database links, functional annotation, protein-protein in-
teractions, gene expression profiles in various tissues
and development stages (for human and mouse only).

Conclusion
In this study, we improved a previous method to detect
transcription factors and developed a database include
both transcription factors and maternal factors. Onto-
logical representation at the cell, tissue, organ, and sys-
tem levels has been specially designed to facilitate
development studies. This is the original and new in
REGULATOR and is not available in other TF databases.
We anticipate that these resources will be useful, and
will facilitate developmental studies.

Availability of database
http://www.bioinformatics.org/regulator/
Additional files

Additional file 1: Collected known representative Pfam IDs of
transcription factors. Note: GO:0003700: sequence-specific DNA binding
transcription factor activity. GO:0000981: sequence-specific DNA binding
RNA polymerase II transcription factor activity. GO:0000982: RNA polymerase II
core promoter proximal region sequence-specific DNA binding transcription
factor activity.

Additional file 2: Examples of mathematical details used in this study.

Additional file 3: Selected representative features for the four
categories.

Additional file 4: Numbers of TFs in each species sorted by
prevalence according to Pfam DBDs.

http://www.bioinformatics.org/regulator/
http://www.biomedcentral.com/content/supplementary/s12859-015-0552-x-s1.xls
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