Proxies Considered
Harmful

Applying afterthought to the design of Grid permission
delegation.



Foreworo

This presentation was originally written as a condensation
of some historical thoughts around late June 2014.

This version includes later development of the ideas, and
some specific sections to address specific concerns.

In the interests of maintaining the original design of the
document, most additions are constrained to the end of
the presentation.

All additions are flagged with the corner note as so:

Note: added in Rev 2 of this document.



The Problem

* Jobs sent to remote services need to have the right
to act on behalt of the job sulbmitter.

* Access VO/user specific software.

* Read/Write VO/user specific data.



Nalive Solution

e Send a copy of our identity (Credential) along with
our |ob, so It can act as us.

e This has security implications if the credential is
compromised.

e SO sign a short-lived credential with our
credential, blessing it.

e Call this a “Proxy credential”



Implementing VOMS

* A |ob also needs to be able to choose which VO
(and Role/Group) it acts as.

e Since we are already signing short-lived
credentials, add VO information to the proxy

e But this should also be short-lived, so it doesn't
cause too many problems with security.



The Problem

As Proxies have unlimited capabilities to act as the
signer, we limit their lifespan.

What happens if our job doesn’t get run/complete
before the proxy lifetime runs out”?

Inconvenient for user to keep on making new
proxies for jobs as they expire.

(And same for VOMS extensions)



Naive Solution (2)

 Maybe it would be okay to have longer lived
oroxies If they were “securely” stored by a trusted
service.
 "MyProxy” server.

e | et the MyProxy server sign (2nd level proxies) with
its proxy, on receipt of a shared secret (password).

 Now we can automate our proxy lifetime extension!



Naive Solution (3)

* Big VOs like Pilot Frameworks.
e [hese need to act as other users...

 But we authenticate other users with delegated
proxies.

* Invent a new framework for user account switching

. glExec!



Why you've Just made Bruce
Schneier sad.

* We started with a secure infrastructure, with public

key cryptography, and one copy of each users’
credential.

 \We now have a system with many entities that can
act with the users’ capabillities, and a weakly-

secured (password-only!) factory for making more
of them!

 We've then patched it up repeatedly to try to
recover some semblance of our original security...

9



Requirements for a Better
Solution.

* Delegate only capabilities that a job needs.
 Not omnicapable tokens.

* Bind the capabillity delegation to the job’s tasks.

e Avoid limits that are not part of the task.

* No lifetime for tokens (artificial impression of
security)

10



A Less Naive Solution

Start with a job “payload”.
SIGN the payload with user credential (private key).

Distribute the payload to job management system
along with the user certificate (public key).

Distribution 1S over a channel authenticated with the
user credential (prevents replay attacks).

11



Why is this sate”

* The User Certificate (Public Key) is always safe to
distribute everywhere.

* The Signed Payload is proof that the User
authorised the job.

* Jogether, the pair is a bound copy that only allows

the Payload to be run - nothing else can be
authorised by the parr.

12



Adding VOMS

* The only purpose of VOMS extensions is to bind a
DN to a specific (authorised) membership.

* Sign copies of the USER CERTIFICATE (Public key)
with the VOMS key + extension for specific role.

* One new Public VOMS Certiticate for each (VO,
Role, Group) the User wants.

* (Manage these in a keyring)

13



Adding VOMS (2)

Now, rather than distributing the bare User
Certificate with the Payload, we can substitute the
Public VOMS Certificate with the appropriate group
binding.

These cannot sign anything either.
And they are useless without a signed Payload.

(VOMS bindings therefore don’'t need to expire!)

14



Job Instantiation

e Signed Payload + Certificate arrive at Job
Execution Endpoint (CE, Pilot, whatever).

e 3 verifications:
» Verity Certiticate against CA Certs.
e Verify VOMS signature against VOMS Cert.

» Verity Payload signature against Certificate.

15



Job Instantiation (2)

Create a new container, with throw-away user. Map
VO-specific filesystems, User-specific filesystems
within container.

Unpack payload into container.
Execute payload.
Specifically, we avoid long lists of user/group

mappings as they are hard to maintain, and
introduce unavoidable eventual consistency issues. ]

Note: modified in Rev 2 of this document.
16



What about Storage”

e Storage often requires more levels of delegation
than job execution

 We don’t know/can’t specity the actual name of
our destination file before we perform metadata

operations. (Although, of course, we know its
catalog name.)

* [here are two problems here.

Note: modified in Rev 2 of this document.
17



The simple problem: Output
Sandbox.

e |f job simply writes output locally for staging back.

e Secure output by signing/encrypting with user
certificate (public key).

* Allow user to retrieve (authenticate with
credential, only user can decrypt sandbox with
their private key).

18



The hard problem: LFC/SE/
etc

* Well written code will always know which files it will
need before execution, and which files it expects to
produce when complete.

 We can therefore map these to a series of
Transactions : Source -> Destination

e Sign Transactions and distribute as part of payload.

 We can bind the Transactions to the payload
signature for better capability limitation and make
them “one time”.

Note: modified in Rev 2 of this document.
19



ITransaction Binding

* As a minimum, the user agent can sign each
ransaction including a hash of the Payload in the
resulting Signed Transaction.

e Storage agents can require proof that the Payload
'S present before allowing Transactions.

e (This is easier it the Payload is a script which
executes preinstalled binaries, for example.)

Note: added in Rev 2 of this document.
20



ITransaction Binding

 |f we are prepared to trust the CE/Batch system:

 The CE can also add additional signed bindings
to the Transaction, binding the Transaction to a
particular originating IP (a container, vm or
worker node, for example).

* [he storage agent in this case will have to trust
the CE (but we assume this is handled via the
usual X509 trust hierarchy).

Note: added in Rev 2 of this document.
21



Read/Write asymmetry

e |t we implement Grid Storage as immutable object
placement, then Write requests are automatically
idempotent (as each Write to the same name after
the first fails).

 Read requests are not automatically idempotent,
but are also not potentially polluting of the storage.

* Deletion requests should not be delegated (or
allowed to be).

Note: added in Rev 2 of this document.
DD



Negotiating Capability
Delegation with Storage.

e Stage-In Transactions can potentially be resolved
to local SE on submission (removes need for
delegation).

e Stage-Out Transactions potentially need to support
redirection by a catalogue service, and then by an
SE.

 How do we let the SE know that its storage name is
the same as the LFN in the Transaction”

23



Capability Delegation (2)

e Assumption: SEs trust a limited number of “File
Catalogues”

e FC receives Transaction
* (Verifies signature)

* Append (SE,SURL) pair, and sign set with FC
key.

* Agent sends augmented Transaction to SE.

24



An Alternative”

We could also avoid the need for Storage transaction
delegation by avoiding the need for FCs.

Algorithmic SE,SURL generation (¢t RADOS, Rucio, etc etc).

May require consistent knowledge of World SE status
between SE and Payload, if we want to locate SEs
algorithmically as well.

(Verification by performing same mapping at payload and
SE)

This has big problems with scaling the consistency tratftic.

25



An optimisation

e Remove indirection levels in SEs in favour of bare
object store interfaces (object names are hashes of

the FC path).

 Now it is the *Storage™ that performs the
algorithmic authentication process to confirm that
the object hash matches the FC name.

 (The FC in this case does hierarchical redirection to
an SE that definitely has the file, but does not have
to know its name there, just sign the request.)

e Note: added in Rev 2 of this document.



Revoking Rignts

User Banning

* Works as normal - we still verity against the
oublic certificate and DN.

User Credential Revocation

 Works as normal - we still verity the public
certificate against the CA + CRLs.

27



Revoking Rights (2)

* Revoking VO Membership and Roles.

 Change: VOMS server distributes CRLs as CAs
do.

e Servers check against CRLs to validate VO
signatures.

28



Additional notes

e “Grid Proxies” do currently provide a capability
[imitation mechanism (they can be limited in their
scope to sign other proxies, for example).

« VOMS “roles™ and “groups” etc can be used to
emulate other capability limitations (in supporting
middleware), by restricting particular capabilities
(“get files”) to particular roles or groups.

Note: added in Rev 2 of this document.
29



Additional notes

* The problem is that:

e GGrid Proxies only allow the restriction of capabillity,
they do not enforce |it.

* As such, they are vulnerable to the “lazy user”
security hole (“Wouldn't it be easier if we could all
just look at anything?”)

* Actual user experience on the grid, and numerous
talks during the NGS era (from sysadmins as well as
users) underline the above problem.

Note: added in Rev 2 of this document.
30



Additional notes

« VOMS Capabillities:

* While there is some scope for limiting classes of activity
to VOMS sub-hierarchies, there is no scope for
“transaction specific” limitation.

 VOMS just doesn’t scale to that, as it is not designed to.
* (And most entities using VOMS quickly try to reduce the

complexity of their group/role hierarchy anyway, thanks
to the “lazy user” and “operational complexity” issues.)

Note: added in Rev 2 of this document.
31



Security Holes.

* [his mechanism is not resilient against a root-level
entity controlling the destination site, or the
execution host (VM/VM host/container host).

 However, the cost of a job hijacking in this model is
less than with proxy-based systems.

* [he hijacker only gains the ability to execute the
payload in question, or perform the data access
actions associated with specific files only (and
potentially only from a particular [P!)

Note: added in Rev 2 of this document.
32



Security Mitigation

 WORM/immutable files after placement removes much of
the vulnerability for Write Transactions being hijacked
(reducing it to a race condition, which is easily
detectable if triggered).

 “One-use” Transactions similarly reduce the vulnerability
for all storage Transaction hijacking (particularly as a job

itselt might acquire read tokens immediately on
execution).

e (This also makes the Payload itself less vulnerable, it
hijacked after some Transactions have been spent.)

Note: added in Rev 2 of this document.
33



