
Proxies Considered
Harmful

Applying afterthought to the design of Grid permission
delegation.

1

Foreword
• This presentation was originally written as a condensation

of some historical thoughts around late June 2014.

• This version includes later development of the ideas, and
some specific sections to address specific concerns.

• In the interests of maintaining the original design of the
document, most additions are constrained to the end of
the presentation.

• All additions are flagged with the corner note as so:

Note: added in Rev 2 of this document.
2

The Problem

• Jobs sent to remote services need to have the right
to act on behalf of the job submitter.

• Access VO/user specific software.

• Read/Write VO/user specific data.

3

Naïve Solution
• Send a copy of our identity (Credential) along with

our job, so it can act as us.

• This has security implications if the credential is
compromised.

• So sign a short-lived credential with our
credential, blessing it.

• Call this a “Proxy credential”

4

Implementing VOMS

• A job also needs to be able to choose which VO
(and Role/Group) it acts as.

• Since we are already signing short-lived
credentials, add VO information to the proxy

• But this should also be short-lived, so it doesn’t
cause too many problems with security.

5

The Problem
• As Proxies have unlimited capabilities to act as the

signer, we limit their lifespan.

• What happens if our job doesn’t get run/complete
before the proxy lifetime runs out?

• Inconvenient for user to keep on making new
proxies for jobs as they expire.

• (And same for VOMS extensions)

6

Naïve Solution (2)
• Maybe it would be okay to have longer lived

proxies if they were “securely” stored by a trusted
service.

• “MyProxy” server.

• Let the MyProxy server sign (2nd level proxies) with
its proxy, on receipt of a shared secret (password).

• Now we can automate our proxy lifetime extension!

7

Naïve Solution (3)
• Big VOs like Pilot Frameworks.

• These need to act as other users…

• But we authenticate other users with delegated
proxies.

• Invent a new framework for user account switching

• glExec!

8

Why you’ve just made Bruce
Schneier sad.

• We started with a secure infrastructure, with public
key cryptography, and one copy of each users’
credential.

• We now have a system with many entities that can
act with the users’ capabilities, and a weakly-
secured (password-only!) factory for making more
of them!

• We’ve then patched it up repeatedly to try to
recover some semblance of our original security…

9

Requirements for a Better
Solution.

• Delegate only capabilities that a job needs.

• Not omnicapable tokens.

• Bind the capability delegation to the job’s tasks.

• Avoid limits that are not part of the task.

• No lifetime for tokens (artificial impression of
security)

10

A Less Naïve Solution
• Start with a job “payload”.

• SIGN the payload with user credential (private key).

• Distribute the payload to job management system
along with the user certificate (public key).

• Distribution is over a channel authenticated with the
user credential (prevents replay attacks).

11

Why is this safe?
• The User Certificate (Public Key) is always safe to

distribute everywhere.

• The Signed Payload is proof that the User
authorised the job.

• Together, the pair is a bound copy that only allows
the Payload to be run - nothing else can be
authorised by the pair.

12

Adding VOMS
• The only purpose of VOMS extensions is to bind a

DN to a specific (authorised) membership.

• Sign copies of the USER CERTIFICATE (Public key)
with the VOMS key + extension for specific role.

• One new Public VOMS Certificate for each (VO,
Role, Group) the User wants.

• (Manage these in a keyring)

13

Adding VOMS (2)
• Now, rather than distributing the bare User

Certificate with the Payload, we can substitute the
Public VOMS Certificate with the appropriate group
binding.

• These cannot sign anything either.

• And they are useless without a signed Payload.

• (VOMS bindings therefore don’t need to expire!)

14

Job Instantiation
• Signed Payload + Certificate arrive at Job

Execution Endpoint (CE, Pilot, whatever).

• 3 verifications:

• Verify Certificate against CA Certs.

• Verify VOMS signature against VOMS Cert.

• Verify Payload signature against Certificate.

15

Job Instantiation (2)
• Create a new container, with throw-away user. Map

VO-specific filesystems, User-specific filesystems
within container.

• Unpack payload into container.

• Execute payload.

• [Specifically, we avoid long lists of user/group
mappings as they are hard to maintain, and
introduce unavoidable eventual consistency issues.]

Note: modified in Rev 2 of this document.
16

What about Storage?
• Storage often requires more levels of delegation

than job execution

• We don’t know/can’t specify the actual name of
our destination file before we perform metadata
operations. (Although, of course, we know its
catalog name.)

• There are two problems here.

17
Note: modified in Rev 2 of this document.

The simple problem: Output
Sandbox.

• If job simply writes output locally for staging back.

• Secure output by signing/encrypting with user
certificate (public key).

• Allow user to retrieve (authenticate with
credential, only user can decrypt sandbox with
their private key).

18

The hard problem: LFC/SE/
etc

• Well written code will always know which files it will
need before execution, and which files it expects to
produce when complete.

• We can therefore map these to a series of
Transactions : Source -> Destination

• Sign Transactions and distribute as part of payload.

• We can bind the Transactions to the payload
signature for better capability limitation and make
them “one time”.

19
Note: modified in Rev 2 of this document.

Transaction Binding
• As a minimum, the user agent can sign each

Transaction including a hash of the Payload in the
resulting Signed Transaction.

• Storage agents can require proof that the Payload
is present before allowing Transactions.

• (This is easier if the Payload is a script which
executes preinstalled binaries, for example.)

Note: added in Rev 2 of this document.
20

Transaction Binding
• If we are prepared to trust the CE/Batch system:

• The CE can also add additional signed bindings
to the Transaction, binding the Transaction to a
particular originating IP (a container, vm or
worker node, for example).

• The storage agent in this case will have to trust
the CE (but we assume this is handled via the
usual X509 trust hierarchy).

Note: added in Rev 2 of this document.
21

Read/Write asymmetry
• If we implement Grid Storage as immutable object

placement, then Write requests are automatically
idempotent (as each Write to the same name after
the first fails).

• Read requests are not automatically idempotent,
but are also not potentially polluting of the storage.

• Deletion requests should not be delegated (or
allowed to be).

Note: added in Rev 2 of this document.
22

Negotiating Capability
Delegation with Storage.

• Stage-In Transactions can potentially be resolved
to local SE on submission (removes need for
delegation).

• Stage-Out Transactions potentially need to support
redirection by a catalogue service, and then by an
SE.

• How do we let the SE know that its storage name is
the same as the LFN in the Transaction?

23

Capability Delegation (2)
• Assumption: SEs trust a limited number of “File

Catalogues”

• FC receives Transaction

• (Verifies signature)

• Append (SE,SURL) pair, and sign set with FC
key.

• Agent sends augmented Transaction to SE.

24

An Alternative?
• We could also avoid the need for Storage transaction

delegation by avoiding the need for FCs.

• Algorithmic SE,SURL generation (cf RADOS, Rucio, etc etc).

• May require consistent knowledge of World SE status
between SE and Payload, if we want to locate SEs
algorithmically as well.

• (Verification by performing same mapping at payload and
SE)

• This has big problems with scaling the consistency traffic.

25

An optimisation
• Remove indirection levels in SEs in favour of bare

object store interfaces (object names are hashes of
the FC path).

• Now it is the *Storage* that performs the
algorithmic authentication process to confirm that
the object hash matches the FC name.

• (The FC in this case does hierarchical redirection to
an SE that definitely has the file, but does not have
to know its name there, just sign the request.)

Note: added in Rev 2 of this document.
26

Revoking Rights
• User Banning

• Works as normal - we still verify against the
public certificate and DN.

• User Credential Revocation

• Works as normal - we still verify the public
certificate against the CA + CRLs.

27

Revoking Rights (2)

• Revoking VO Membership and Roles.

• Change: VOMS server distributes CRLs as CAs
do.

• Servers check against CRLs to validate VO
signatures.

28

Additional notes

• “Grid Proxies” do currently provide a capability
limitation mechanism (they can be limited in their
scope to sign other proxies, for example).

• VOMS “roles” and “groups” etc can be used to
emulate other capability limitations (in supporting
middleware), by restricting particular capabilities
(“get files”) to particular roles or groups.

Note: added in Rev 2 of this document.
29

Additional notes
• The problem is that:

• Grid Proxies only allow the restriction of capability,
they do not enforce it.

• As such, they are vulnerable to the “lazy user”
security hole (“Wouldn’t it be easier if we could all
just look at anything?”)

• Actual user experience on the grid, and numerous
talks during the NGS era (from sysadmins as well as
users) underline the above problem.

Note: added in Rev 2 of this document.
30

Additional notes
• VOMS Capabilities:

• While there is some scope for limiting classes of activity
to VOMS sub-hierarchies, there is no scope for
“transaction specific” limitation.

• VOMS just doesn’t scale to that, as it is not designed to.

• (And most entities using VOMS quickly try to reduce the
complexity of their group/role hierarchy anyway, thanks
to the “lazy user” and “operational complexity” issues.)

Note: added in Rev 2 of this document.
31

Security Holes.
• This mechanism is not resilient against a root-level

entity controlling the destination site, or the
execution host (VM/VM host/container host).

• However, the cost of a job hijacking in this model is
less than with proxy-based systems.

• The hijacker only gains the ability to execute the
payload in question, or perform the data access
actions associated with specific files only (and
potentially only from a particular IP!)

Note: added in Rev 2 of this document.
32

Security Mitigation
• WORM/immutable files after placement removes much of

the vulnerability for Write Transactions being hijacked
(reducing it to a race condition, which is easily
detectable if triggered).

• “One-use” Transactions similarly reduce the vulnerability
for all storage Transaction hijacking (particularly as a job
itself might acquire read tokens immediately on
execution).

• (This also makes the Payload itself less vulnerable, if
hijacked after some Transactions have been spent.)

Note: added in Rev 2 of this document.
33

