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the sum being taken over all the lattice-points. To get the intensity,
we have to take the square of the modulus of Y, which we do by
multiplying the series on the right-hand side of (I.23) by the corres-
ponding series in which i is replaced by - i. This gives for the intensity
Jo due to the undisturbed lattice the double summation

JoJ ~zlz~ 2:eUc(rn-rm·s).
n m

Each summation has to be extended over all values of nand m, which
range from 1 to N, N being the total number of lattice-points. Equa-
tion (I.24) is, of course, quite general for any array of scattering points,
and does not depend on their being arranged in a lattice. For the
parallelepipedal space-lattice it readily reduces to the form (1.13).
Let us now assume small vector displacements U1, Uz, .•• Un' Um' ••• of

the lattice points from the ideal positions. The vectors fn and fm in
(I.24) then have to be replaced by r n + Un and rm + Om, and the expression
for the intensity becomes

J J eI>0 IZ Y Y eilC(rn-rm·S) eilC(un-um'S)RZ .;;..J ,

n m
If we are dealing with oscillations of the points, such as occur in thermal
movement, it will be necessary to take the mean of (1.25), which
represents the intensity due to some instantaneous configuration of
points, over a period long compared with the period of vibration of
any point. The first factor under the summation signs does not vary
with time, and it is the second that has to be averaged. Expression
(I.25) can only be used if the frequency of oscillation of the points is
small compared with that of the incident radiation, so that any given
configuration can be considered as persisting over a time long compared
with the period of the wave, an assumption which is fully justified in
the cases we shall consider.
To discuss the mean of the factor involving the displacements of the

atoms nand m, we put, for brevity,
K (un - Om·S) =Pn,m. (I.26)

If we write, for the moment, P for any of the quantities Pn,f'"

--:- -=-' pZ ip3 pZ p4
e'P = 1+ lp - 2! - 3! + ... = 1 - 2 + 24 - ... ; (I.27)

for the mean value of the terms involving odd powers of P will be zero,
since positive and negative values of the difference of the displacement
of the two points parallel to any given direction will be equally likely.
Equation (I.27) may, to a close approximation, be written in the form

eip =riPS, (I.28)
a result given by Debye and by Waller, but first rigorously derived by
Ott 9 in 1935.
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The mean value of (I.25) therefore becomes
1eI>/2 ---

j =-.T 2: 2: eilC(rn-rm·S) riP~.m, (I.29)
R n m

47T sin 8
Pn,m =--.:\- (uns - umS),

where UnS and UmS are the components of the displacements of the two
lattice-points nand m parallel to the direction of the vector S defining
the reflecting plane. We have therefore to calculate the mean value of
(uns -ums)z, We may write

(uns - UmS)2= uni + umsz - 2unsums· (I.3l)
The assumptions made by Debye in his first papers on the temperature
effect were equivalent to the supposition that the oscillations of the
different lattice-points were independent, and that all possessed the same
mean energy. If this were so, we could put

UnSUmS=0; unsz = umsz = ui, (I.32)
where usz is the mean-square elongation of any point of the lattice from
its mean position in a direction parallel to the vector S. Now, as
Debye himself pointed out in a later paper, the assumption of the
independence of the lattice-points is not justifiable in considering the
thermal vibrations of a real lattice. The atoms of the lattice are
coupled together by the lattice forces, and the direction of vibration
of one point must influence those of its neighbours. We cannot
therefore put UnSUmS=0, and the value of p;:;;' will depend on the pair of
lattice-points that are being considered. This leads to important con-
sequences, which will be discussed in detail in Chapter V, but to com-
plete our preliminary account of the geometrical theory of diffraction
by a simple lattice we shall consider the case of a set of points all of
which do vibrate independently, and in the same way, so that equations
(I.32) may be taken as applicable.
We return now to equation (1.29). The double summation contains

NZ terms, N being the total number of lattice-points. In N of these
terms n =m, and for each of these the exponential factor is equal to
unity. For all terms involving a pair of different lattice-points !~
is the same, and by (I.30), (1.3l), and (I.32) is equal to 2M, if

M =87T2 usz (sinZ 8}/.:\z. (1.33)

Equation (I.29) may thus be written

- leI> 1
2

{ " }J = ;'z N +r2M ~ ~ eilC(rn-rm·S) , (1.34)

where the dashes denote that terms for which n =m are not to be
included in the summations. If this restriction were removed, the


