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The average change of intensity due to adding a heavy atom to a protein crystal is calculated for 
both the centrie and the acentric reflections. The amount by which small shifts of the molecules 
change the intensities is obtained for the monoclinic and orthorhombie systems, and formulae are 
given for the changes caused by small translations and rotations of the molecules, by alterations of 
the lattice parameters, and by 'breathing' movements. The effects always increase linearly with 
1/d. It is shown that quite small molecular shifts would interfere with the isomorphous-replacement 
method for proteins at the higher values of 1/d, but not at the lower values. 

Introduction 

The work of Perutz and his colleagues (Green, Ingram 
& Perutz, 1954; Bragg & Perutz, 1954) has shown that  
the method of isomorphous replacement can be ap- 
plied to protein crystals provided a sufficiently heavy 
atom is used. Since other methods of attack on protein 
crystals have so far either failed or been inconclusive, 
it seems probable that  no serious progress can be 
made unless this method is used. This series of papers 
deals with some of the theoretical problems which 
have arisen in connection with the method. 

Two problems are considered in this paper. The first 
concerns the average change in intensity produced by 
adding extra atoms to the crystal, the rest of the unit 
cell remaining the same. The second deals with the 
average change of intensity produced by small shifts 
of the protein molecules, or by slight changes in the 
dimensions of the unit cell. We have considered the 
second problem because it has been shown for ribo- 
nuclease that  such changes occur (King, Magdoff, 
Adelman & Harker, 1956; Magdoff & Crick, 1955) and 
may make it difficult to use isomorphous replacement 
very far out in reciprocal space. 

The isomorphous replacement method 

As is well known, there are two methods of using 
'heavy' atoms to determine crystal structures (see, 
for example, Lipson & Cochran, 1953, pp. 206-20). 
In the heavy atom method proper, only a single form 
of the crystal is required and the phases used to cal- 
culate the first trial Fourier are those calculated for 
the heavy atom alone. The problem of how heavy an 

* This work was s t a r t ed  when bo th  au thors  were members  
of the  Pro te in  St ruc ture  Project ,  Poly technic  In s t i t u t e  of 
Brook lyn ,  N.Y.,  U .S .A .  

atom is needed has been considered by Luzzati (1953). 
Because protein molecules are large (molecular weights 
> 10,000) an impossibly heavy atom would be re- 
quired for this method, and although, at some later 
stage, it may be possible to add a large number of 
heavy atoms, we shall for the moment leave this 
possibility on one side. 

In the isomorphous replacement method, on the other 
hand, two forms of the crystal are required. The unit- 
cell dimensions and the protein molecule must be 
essentially the same in both, but one of them must 
have one or more heavy atoms at some point where 
the other has either none, or very much lighter atoms. 
The position of the extra atoms must first be found by 
some Patterson method. Then for any reflection the 
amplitude and phases of the contribution of the extra 
atoms can be calculated, and in favourable cases the 
phase of the protein contribution can be found from 
the observed change of intensity produced by adding 
the extra atoms. 

The advantage of this method for proteins is that  
although atoms of relatively high atomic number 
must be used, the size required is within the bounds of 
possibility for the smaller proteins. For horse haemo- 
globin, with a molecular weight of 34,000 for the 
asymmetric unit, it has proved possible to determine 
the signs of 87 out of 94 hO1 reflections (1/d < 0.15), 
using silver and mercury atoms for isomorphous re- 
placements (Green et al., 1954). 

I t  is worth noting that  for work on proteins various 
combinations of the two basic methods are very at- 
tractive. For example it may eventually be possible 
to add a large number of heavy atoms, say 20 iodines, 
to a protein molecule. Though it may prove difficult 
to locate these unambiguously from a Patterson syn- 
thesis, an isomorphous replacement of a mercury atom, 
for example, might enable the positions of all of them 
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to be determined. Once these positions were found, 
the heavy atom method could be attempted. Alter- 
natively, the contribution of the heavy atoms could 
be used to decide between the two alternative phases 
given for an acentric reflection by a single isomorphous 
replacement. These possibilities, also, we shall leave 
for future consideration. 

A s s u m p t i o n s  m a d e  

I t  is known that  the intensity distribution obtained 
from a protein crystal does not strictly obey the 
statistics expected from a random distribution of 
atoms, which we shall refer to here as 'Wilson sta- 
tistics' (Wilson, 1949; for a general account see Lipson 
& Cochran, 1953). Not only is the curve of <I) against 
l i d  not a monotonic one (see, for example, Perutz, 
1949), but a set of intensities, all having similar values 
of l /d ,  does not always have the Wilson distribution 
(Luzzati, 1955). Nevertheless, we have developed the 
theory assuming that  Wilson statistics are obeyed, 
and that  the shape of the curve of <I> against l i d  is 
gaussian. This is because we wish at this stage only 
to obtain results of a general nature, and these are the 
simplest assumptions possible. For the same reason 
we have considered the oxygen and carbon atoms to 
be equivalent to nitrogen, and have ignored the hy- 
drogen atoms. We have also ignored the solvent in the 
crystal. To correct for the abnormal values of <I> an 
'effective' value for the number of atoms contributing 
to the intensities should be used in the formulae. 

We have also assumed without special justification 
that  in obtaining mean values we can simply average 
over all possible values of the trigonometrical func- 
tions. This will usually be sufficiently accurate if the 
sample of intensities is large enough, if the region 
near the origin of reciprocal space is avoided, and if 
the atomic positions are random. 

N o m e n c l a t u r e  

The usual crystallographic conventions. In addition: 

F = A + i B  for all terms (i.e. h~l and hkl); 

I = IFI~; 
P = protein; 

E = extra atoms, i.e. the isomorphous 
Bllffix¢~; replacement atoms; 

P E =  protein plus extra atoms; 

n = the nth atom of the protein; 

N, total number of effective atoms in the unit cell 
(not merely those in one asymmetric unit); 

~bzJI = ((Z]I)2}½/I, where AI = change in I due to the 
effect under consideration; 

~bzJI is read as 'the fractional change in intensity; 

x, y ,  z ,  fractional coordinates of the unit cell; 

x, y, z, (non-fractional) coordinates of an orthogonal 
frame in real space, in A; 

X, Y, Z, coordinates of an orthogonal frame in recip- 
rocal space, reciprocal to x, y, z, in /I-1. 

(For the orthorhombic case x, y and z, are parallel 
to x, y, and z respectively. For the monoclinic case 
x, y and z are parallel to x, y and z* respectively, 
where z* is reciprocal to z.) 

/~2 = X ~ + y2 + Z 2; 

xb, Yb, Zb, coordinates of the breathing point (defined 
on p. 904); 

xc, yc, z¢, coordinates of the 'centre of gravity' of 
the protein molecule. 

Symbols used only close to their place of definition 
are omitted here. 

I n t e n s i t y  c h a n g e s  d u e  t o  t h e  e x t r a  a t o m s  

The simplest measure to calculate is 

{(AI)2}½iip, where A I = I p E - I p .  

We require this so often that  we propose to designate 
it by a special symbol, and write it ~ A I ,  to be read 
'the fractional change of intensity'. 

For the centric case, when the amplitudes are real, 
we have 

A I  = 2 F p F s + F ~ ,  

(AI)2 ~ ~. 3 4 = 4 F ~ F ~ + 4 F ~ , F E + F  E . 

Now we shall assume for the moment that  Fp  and 
FE are uncorrelated. Therefore we can write 

2 i ~ ~ F ~ F ~ = O  F~,F z = F p F E ,  

We thus obtain 

~ i l I  - { ( / I / ) 2 } ½  - 

L> 

_ - , .  

F ~  

G v (1) 

For the acentric case, with complex amplitudes, we 
have 

A~,E = A z , + A E ,  BpE = B y + B E .  

~'hence we have 

A I  = 2 A ~ A g + A ~ + 2 B p B E + B ~ .  

Assuming as before that  F~ and F s  are uncorrelated, 
we can write 
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B ~ B ~ =  O, 

A p A E B ~  = O, 

B e B E B ~  = O, 

A p B p A E B E  = O. 

This last relation depends upon A B  = O, which is 

always true if our set of reflections includes hkl when- 
ever hkl is included. 

Writing down the expressions for (AI) 2 and making 
the above substitution, we easily obtain 

( A / ) 2  __ 2 ' 2  2 o 4 2 2 4 4A pA  E + 4 B p B ~ +  A E+ 2A EBE+ BE . 

Since A~ = B~ = ½[Fpl 2, this becomes 

( A i r  = 2 ]Fp] 2 IF~I2+ IFE] 4 
and so 

¢ A I  = (2 IFpI 2 IFz[~+ [FEI~)½ 
F~ 

= / 
~ i_~_~p i~ ] 2 IY--~ ~ IF~EI 2 ] (2) 

l/2(z~/zp)½. 
I t  can be shown that  though these formulae are 

not exact the corrections are small compared with the 
main term. I t  should be noted that  we have tacitly 
assumed that  </) does not change with 1/d, and so 
in using the formulae the averages should strictly go 
over only a small range of l id.  

Now since proteins consist of L amino acids the 
only permissible symmetry elements are rotation and 
screw axes. For such space groups we always have 
(Wilson, 1949; Rogers, 1950) the statistical result 

5r 

( I )  = .a~, f~  = N f  2 , 

assuming all the atoms the same. N and I both refer 
to the primitive cell. Thus our approximate results 
become 

• )AI  ~ 2 (NE/Np)½ (fE/fP),  centric, (3) 

~]/2(NE/Np)½ (fE/fP),  acentric. (4) 

The full formulae depend on the value of I~, but 
the correcting terms (under the square root, equations 
(1) and (2)) will usually be small. 

As an example, consider the case of a single mercury 
atom added to a protein containing about 1600 atoms 
(other than hydrogen) and therefore having a molec- 
ular weight of about 24,000. For those reflections whose 
amplitude is real we obtain, using equation (3), 

¢ A I  ~ 2 ( r ~ ) ½  × ~o = 0 .57,  

so that  the average change of intensity would be a 
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little over 50%. However, in practice this value has 
to be corrected for three effects. First, the mercury 
atom may not have been added to every molecule in 
the crystal, and thus an 'effective' atomic number 
should be used. Second, the average intensity from 
the protein may differ from the value expected from 
the Wilson statistics. To allow for this an effective 
value of N should be used. Thus if the average inten- 
sity of the protein in the above example is only half 
that  expected on statistical grounds, the effective 
number of atoms in the protein should be taken as 
800. Both these effects have been found by Green et al. 
(1954) in their studies of horse haemoglobin. Third, 
we should strictly speaking use the ratio of (fE/fP) 
for the range of l id  considered, rather than the values 
at 1/d = 0. 

In tens i ty  c h a n g e s  due  to sh i f t s  of the  m o l e c u l e  

As in the previous case, we shall take as our measure 
of the change of intensity the value of ~ A I  = 

{(AI)2}½/[. For those interested only in the results, 
numerical examples are given in Table 1. 

Consider first the centric case. For some particular 
reflection we can write A I  = 2F(AF) ,  since we shall 
be considering only very small changes and thus the 
(AF) ~ term can be neglected. Therefore 

(AI) 2 = 4F2(AF) ~ . 

Our problem therefore consists in expressing the right- 
hand side of this equation in terms of the usual 
structure-factor formulae, and then averaging. 

For the acentric case we have 

I = A 2 + B  2 , 

A I  = 2 A ( A A ) + 2 B ( A B ) ,  
( A i r  = 4A2(AA )2 + 8 A B ( A A  )(AB) + 4 B 2 ( ' ~ )  2 , 

and again our problem is to find the average value 
of the terms on the right-hand side. We shall assume 
that  N, the total number of atoms in t h e  unit cell, 
is large. 

To enable us to express our results in a compact 
form we use the parameter },, where ~, = 1 for the 
centric case and }, = 2 for the acentric ones. 

We have worked out the formulae for all monoclinie 
and orthorhombic space groups in which proteins can 
occur (i.e. lacking centres of symmetry, mirror planes 
or glide planes). We find that  the three possible mono- 
clinic space groups (P2, P21 and C2) all give the same 
formula, whereas the orthorhombic space groups give 
a slightly different formula, which is the same for all 
of them. Our results are" 

Monoclinic- 

# A I  = 

(4g/I@) [ (hAxn+lAzn)2+ k2{ (Ay.) ~ -  (Ay.) (Ay..)} ]½. (5) 
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Orthorhombic:  

qVAI = (47r/~?)[h~(Axn) ~+kg(Ayn)2+lg(Az~)~] ½. (6) 

In  (5) and  (6) ? = 1 for centric reflections and ? = 2 
for acentric reflections. 

The average values are taken over all the atoms 
in  one asymmetric unit  of the crystal,  and then  over 
all  the  reflections in the set being considered. 

The difference between the term containing h and 1 
in the two formulae reflects the fact tha t  there is no 
unique choice of the a and c axes in the monoclinic 
case as there is in the orthorhombic.  

There is no difficulty in working out the results for 
the  other crystal  classes al though the algebra would 
be laborious. We have not done this as the great 
ma jor i ty  of protein crystals are either monoclinic or 
or thorhombic and our main  purpose is to obtain the 
order of magni tude  of the different effects. I t  is worth 
noting tha t  for centric cases an al ternat ive measure 
to take is 

(which for the cases considered above is half  qSAI) 
as this can be evaluated rather  more easily than  qSAI. 

The formulae given so far are very simple and easy 
to grasp, bu t  they  are not  in the best form for detailed 
application. Ra the r  t han  the indices (h, k, l) and the 
fract ional  co-ordinates ( x , y , z , )  one would prefer 
reciprocal co-ordinates (X, Y, Z,), having dimensions 
A -1, and actual  (not fractional) co-ordinates (x,y,z,) 
for real space. In  addition, one would wish these two 
frames to be orthogonal. This presents no difficulties 
for the or thorhombic case, but  for the monoclinic 
cases, when fl 4= 90 °, it  causes complications. We will 
therefore consider the two crystal  systems separately.  

qSAI = (4z~/V?)[X2(Axn)~ + Y~ (Ay,~)2 +Z~(Azn)~] ½. (8) 

Suppose we consider all the  re levant  reflections with 
similar  values of 1/d = R. Then for the general reflec- 
tions we shall have 

X~ + y~ + Z 2 = R2 ; 
therefore 

X ~.= y ~ . = Z  ~.=½R 2. 

If we now call the shift  of the molecule At, where 

(Ar)2 = (Axn)~-,- (Ay~)~+ (Az,~) 2 for all n ,  

our formula for the average value of all the  general  
reflections ( l id  ~ R) becomes 

4~R 
~bAI = ~ (Ar).  

For a centric zone of reflections, say /c = 0, we shall  
have 

X 2 = Z 2 = ½R 9. 

and if the projected shift of the molecule is Arp, where 

(Arv) 2 = (Axe)9+ (Azn) 9" for all n ,  

we obtain for this zone, for all reflections having  
l id  -"-R, 

4zrR 
~)AI = - ~  (Arv).  

Notice tha t  these two results are independent  of the 
size or shape of either the uni t  cell or the protein 
molecule, as might  be expected from an e lementary  
argument.  Notice also tha t  they  are for the average 
effects. Special areas of the reciprocal latt ice m a y  show 
higher local averages, especially if the t ransla t ion is 
parallel  to an axis of the cell. 

The orthorhombic system 
Since 

Xn = a X n  and X = h /a ,  
we can write 

h(Axn) -- hA(xn/a) = h (Azn ) /a -hxn (Aa /a  ~) 
= X ( A x n ) - X x n ( A a / a ) ,  

and s imilar ly  for 

k(Ay,) and l (Az~).  

Thus our general  formula  (equation (6)) becomes 

~ A I - -  (47c/~ ' )[X2[Axn-xn(Aa/a)]  2 

+ y2[Ayn-yn(Ab/b)]2 --~Z2[Azn-zn(Ac/c)]2] ½. 
We now consider a number  of cases in detail. 

(7) 

(1) Pure translations 
The molecule is t ransla ted a small  distance without  

rotation, and the lattice parameters  are unchanged. 
Thus Aa = Ab = Ac = O. From equation (7) above 
we derive 

(2) Pure lattice changes 
The molecule remains  f ixed with respect to the  

origin of co-ordinates, but  the dimensions of the  uni t  
cell alter. Thus, 

A x n = A y n = A z n = 0  for a l l n .  

Equat ion  (7) becomes 

qSAI = (4ze/~?)[X2x~(Aa/a) 2 

+ y2y~(Ab/b)2+Z2z~(Ac/c)2]½. 

Notice tha t  in this  case the disposition of the mater ia l  
in the unit  cell mat ters  somewhat.  If  the atoms of 
one asymmetr ic  uni t  were all grouped very  near  the 
origin then q~AI would be smaller  t han  if they  were 
more evenly distr ibuted.  

(3) Breathing movements 
This term describes a .movement in which the cell 

dimensions change, and s imul taneously  the molecules 
suffer a pure t ranslat ion (without rotation) such tha t  
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one chosen point (Xb, Yb, Zb) maintains the same frac- 
tional co-ordinates. :For this case 

h(Axn) = hA(xn/a) = hA ((xn-xb)/a) 

since A (xb/a) is zero by definition. 
Because (Xn-Xb) does not change, we obtain 

h(Ax,)  = h(x,~--xb) (--Aa/a 2) = X(x ,~-xb) ( -Aa/a)  , 

and similar expressions for k(/ly~) and l(Azn). 
Thus equation (7) becomes 

qSAI = (4rc/ (~) [X2(x,,-xb)2(Aa/a)~ 

+ y2(yn-yb)e (zJb/b) 9 + Z~(z~,-zb)9(zJc/c)g] ½ . 

I t  can be shown tha t  ~ A I  is a minimum when the 
breathing point coincides with the centre of gravity.  

I t  should be clearly realized tha t  the choice of origin 
in these examples is not  completely arbitary.  While it 
is true tha t  a change of origin makes no difference to 
the intensities, it does alter the formulae used to cal- 
culate the structure factors. These are based on the 
assumption tha t  only one asymmetric unit  need be 
inserted in them, the symmetry  taking care of the 
others. Thus the origin should always be tha t  given 
in the International Tables. 

(4) Separating rotations and translations 
In this section we shall consider the lattice para- 

meters as constant. Thus the relevant formula is tha t  
given in equation (8). 

Any arbi t rary  movement  of a body can be regarded 
as composed of a pure translation plus a rotation about 
some axis passing through its centre of gravity.  I t  is 
easy to show tha t  we can compound the effects of 
translations and rotations about the centre of gravi ty  
as random errors are compounded, tha t  is, by  taking 
the square root of the sum of their squares. 

(5) Rotations 
In this section the lattice parameters are considered 

to be constant. For  an infinitesimal rotation of 0 
radians about an axis through the point (x0, Y0, z0), 
and having direction cosines cos C<x, cos ~y, cos ~z, it is 
well known tha t  if the point (xl, Yl, Zs) moves to 
(Xl + AXl, yI + Ayl,  zl + Azl) then 

/ l X l  ---~ 811 (Xl --X0) -lt-812 (Yl -Y0) +ei3(zl-%) , 

Ayl  = e,l (x l -xo)  + e , , (y l -yo)  +e,3(zl-zo) ,  
A z 1 = e31 ( x l -  xo) + e32 ( Y l -  Yo) + e33 ( z l -  zo) , 

where 
e l l  = 822 ~--- 833 ~--~ 0 , 

and 
832 ---~ --823 ---- 0 COS ~ x ,  

~la = --831 = 0 c o s  o~y, 

821 ---~ ~812  ~ 0 COS ~ z .  

These equations can be used both to find the movement 
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(Axe, Aye, Az~) of the centre of gravi ty  and also to 
obtain '(Axn, Ayn, Azn). 

Consider as an example the case of a rotation about 
an axis through the centre of gravi ty  and parallel to 
the b axis. Then 

cosay = 1, cOSax=  cOSaz = 0 .  

Thus we have 

Axn = O(z,,-z~), Ayn = O, Azn = - O ( x n - x ~ ) .  

If we consider all the general reflections with 1/d -"- R, 
we obtain 

qS•I = (4~R/V6)O [ (zn-z~)2 + (xn_xc)2]½. 

For  the centric zone perpendicular to the axis of rota- 
tion (i.e. k = 0) we derive for all reflections having 
1/d -"- R 

~ 1  = ( 4 ~ R / V 2 ) o [ ( z n - z c ) 2 +  (x~-xc)2]~, 
and for a centric zone which is not perpendicular to 
the axis of rotation, but  contains it, say the zone 
h = 0, we have 

~ A I  = (4~R/~2)O[(xn-Xc)2] ½. 

For  more complicated rotations it  is worth noting 
tha t  there is a close analogy (for those cases where 
we are averaging over all the general reflections having 
1/d-"-R) between the problem we have to consider 
and tha t  of deriving the radius of gyration of a body 
about an arbi t rary  axis, which is tackled by means 
of the ' inertia ellipsoid' of the body, as explained in 
books on mechanics. 

The monocl inic  sys tem 

Owing to the fact tha t  in general f l .  90 ° and tha t  it 
can change, the monoclinlc system is potentially 
more complicate(] than the orthorhombic. We have 
been unable to find a general formulation which is not 
algebraically cumbersome. We have thus contended 
ourselves with presenting only the special cases for 
which the solution is relatively straightforward. 

(1) Lattice parameters f ixed 
We choose our orthogonal axes in real space (x, y, z) 

so tha t  x is parallel to x, y to y, and z to z* (the axis 
reciprocal to z). The frame (X, Y, Z) is as usual re- 
ciprocal to (x, y, z). We easily obtain 

x = a x + c z c o s f l ,  I X - - h / a ,  } 
z = cz sin f l ,  Z = 1/c sin f l - h / a  tan  f l ,  

and, therefore, hx+lz  = X x + Z z ,  as might have been 
expected. We also have y = by and Y = k/b, as in 
the orthorhombic case. Since our axes are fixed 

h(Ax)+l(Az)  = X ( A x i + Z ( A z ) ,  
and thus 

A C 9  61 



906 T H E  M E T H O D  OF I S O M O R P H O I J S  R E P L A C E M E N T  F O R  P R O T E I N  C R Y S T A L S .  I 

[h (A x.) + 1 (Az.)] ~ 

= X~(Ax, , )~+ZZ(Az, , )~+2XZ(Axn)(Az , , ) .  (9) 

We can also show tha t  in the general case (axes 
varying) 

k ~{ (Ayn) ~ -  (Ay,,)(Ay,,,)} 

= Y~[A(y , , -yc)]2+YZ(y , , -y~)2(Ab/b)2 .  (10) 

Thus, as we should except, a pure t ransla t ion of the 
molecule, paral lel  to the y axis, produces no change 
in the intensities, since (y~-y~) is invar ian t  under  
such a change, for all n. Wi thou t  loss of generali ty,  
therefore, we can restrict  ourselves to motions in 
which the y co-ordinates Of the centre of gravi ty  
remains  unchanged.  Let  us fur ther  arbi t rar i ly  restrict 

ourselves to sets of intensit ies for which X Z  = 0, for 
example  by  always including the reflection at ( - X ,  Z) 
whenever tha t  at  (X, Z) is includedt .  Then, making  
these restrictions, and subst i tu t ing equat ion (9) and 
(10) into equat ion (5) we obta in  

¢)AI  = (4s~/]/r) [X2(Ax,,)2+ r~ (Ay,,) ~ + Z~ (Az,,)2] ½, 

and this is identical  with the expression derived for 
fixed axes in the  orthorhombic case (equation (8)). 
Thus the results a l ready derived for t ranslat ions and 
rotations of the molecules, the axes being fixed, in the  
orthorhombic system carry s traight  over into the 
restricted monoclinic cases. We shall  therefore not  
discuss them further.  

(2) Breathing movements 
In  the monoclinic case we cannot derive a breathing 

point  (whose fractional co-ordinates do not change) 
in a manner  independent  of the choice of axes unless 
fl is constant,  and Aa/a  = Ac/c. With  this restriction 
it  is easily shown that ,  the  orientation of the molecules 
remaining constant,  

h (Ax,)  +l  (Az,,) = - (Aa/a) [ X ( x , - x b )  + Z  (z,-zb) ] . 

Once again, it  is found tha t  if the averaging is such 

tha t  X Z  = 0 we obtain, with these restrictions, exact ly  
the same formulae as in the orthorhombic case, except 
tha t  Yb must  be taken  to be equal  to Yc, as might  
have been expected. As before, ¢ A I  is a m i n i m u m  
when the  breathing point  coincides with the centre 

of gravity, or, more correctly, falls on a line, parallel 
to the b axis, which passes through the centre of 
gravity.  

(3) c ~ n g e  o / r  
We shall  deal only with the very  restricted case in 

which the molecules remain  fixed with respect to the 
origin, and the axes s tay  the same length but  change 

their  positions slightly. We shall  assum.~ the x axis 
to ro ta te t  through an angle Aflx and the  Z axis through 
Ariz. Since the co-ordinates of the  molecule in the  
(stationary) x, y, z f rame remain  unchanged we have 

A (Xx,~+Zzn) = xnAX+z ,~AZ;  

moreover, A Y = 0 and we thus  have to obtain the 
values of A X  and A Z  in the s ta t ionary  X, Y, Z f rame 
for a latt ice point  which main ta ins  the  same indices 
(h, k, 1). These changes are found to be 

A X  = (Ar, , ) .Z ,  

- A Z  = ( A r z ) . X + Z ( A r x - A r z ) / t a n  r . 

The algebra becomes somewhat  complicated, so we 
select as an i l lustrat ion the special case fl = 90°. Then 

A X  = (Arx)Z,  A Z  = - ( A r ~ ) X ,  
and so 

[h(Ax, ,)+l(Azn)] 2 

= x~Z2(Afl , , )2+z~X2(Aflz)2-2x, ,z , ,XZ(Afl: , )(Aft , , ) .  

If we average over all the  re levant  values of l i d  ~ R,  
so tha t  X Z  = 0, and if we have  the  special ease 
[Aflx [ = IAflz [, we see tha t  our result  is the same as 
for the case where the axes are kept  f ixed and  the 
molecule is rotated by  an angle (Aflx) about  an axis 
parallel  to b and passing through the origin. 

G e n e r a l  r e m a r k s  

The results we have derived are all of a s tat is t ical  
nature,  and if exact answers were required the  for- 
mulae would have to be used with caution. They 
should certainly not  be applied to the very  low orders, 
for example,  which are influenced by  the shape of the  
molecule and by the nature  of solvent in the crystal.  

Our stat is t ical  assumptions real ly imply  tha t  the  
' lumpiness '  of the protein is fa i r ly  evenly dis t r ibuted 
wi thin  it, and is roughly the same near, say, the out- 
side of the molecule, as near  the inside. Such assump- 
tions will occasionally break down bu t  it is difficult  
to see any  l ikely way in which our answers could be 
sys temat ica l ly  wrong by  a large factor. 

The analogy developed above between the mono- 
chnic and the orthorhombic cases is not  complete. 
A ~impl~ t ransla t ion of the molecule, perpendicular  to 

the b axis, will always give, in the  monoclinie system, 
a zone of the reciprocal latt ice where the in tens i ty  
changes are very  small  or zero. This is t rue for the  
orthorhombic case when the t ransla t ion is parallel  to 
one of the axes, bu t  if, for example,  the direction of 
t ransla t ion is midway  between two axes there is no 
zone for which the in tens i ty  changes are near ly  zero. 
This i s  because the movement  of one molecule in one 

t This is not a severe restriction, because we have a choice t Our convention for the direction of rotation is such that 
for the x axis of the unit cell in the monoclinic case. A~ = A~x--Llflz. 
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Table 1. Average ~ A I  for spacings of 3 A 

~ A I  ~_ (A~-f )½] i ;  prote in  molecule assumed to be a sphere, radius 17 A. 

Centrie zone 
Nature  of the  shift  (hO1) 

Displacement  of the  molecule by  0-1 /k, perpendicular  to the  b axis 
(cell dimensions and or ientat ion of molecule unchanged) t  30 % 17 % 

Molecule fixed with its C. of G. 12 /~ f rom 
Change of all cell dimensions by  ½ % the  origin in a direction perpendicular  to b 24 15 

(orientation of the  molecules unchanged)  Brea th ing  movement1:,  wi th  the  brea th ing  
point  at  the  C. of G. 16 11 

Ro ta t ion  of the  molecule by ½o about  an axis th rough  the  C. of G. and parallel to  the  b axis ) 
(cell dimensions unchanged)  28 / 16 

Ro ta t ion  of the  molecule by  ½° about  an axis th rough the  C. of G. and perpendicular  to the  
b axis (cell dimensions unchanged)  20 

Ro ta t ion  of the molecule by ½° about  an  axis 12 A f rom its C. of G. parallel to the  b axis 
(cell dinmnsions unchanged)  42 24 

Change of fl of the  monoclinie cell, f l-~-90 °, ]Zi~x [ = IA~zl = ½° (axes cons tan t  length ;  
molecule fixed wi th  its C. of G. 12 A f rom the  origin) 42 24 

This case is independent  of both  the  size of the  molecule and the  uni t  cell. The remainder  depend on the  former,  b u t  no t  
on the  latter.  

:~ The meaning  of this t e rm  is explained on page 904. 

General 
reflections 

direction implies movements of the other molecules in 
different directions, which in such a case are not 
parallel to one another. 

I t  may  be worth pointing out tha t  in every case we 
are really calculating the effective value of some 
length or other. I t  is thus not surprising tha t  in cases 
of rotation, for example, we need to estimate the 
'radius of gyration'  of the protein molecule. For this 
reason the effects are not very sensitive to the molec- 
ular weight of the protein, generally increasing only 
as the cube root of the molecular weight. They are 
of course also influenced by the shape of the protein, 
being least, in general, for a spherical molecule. 

Examples 
As might be expected, all the effects increase linearly 
with lid. As long as the changes are small, as assumed 
in the theory, the effects due to rotation are all 
proportional to the angle of rotation, and those due to 
breathing movements or pure translations are also 
proportional to the amount of change imposed. These 
points should be remembered in studying the examples 
provided here. 

To simplify presentation we have calculated all the 
numerical examples for spacings of 3 J~ (R = ½ /~-1), 
and for a spherical protein molecule of radius 17 •, 
which corresponds to a molecular weight around 
15,000. One molecule per asymmetric unit is assumed. 
The results are the average values for ~5AI for all the 
relevant reflections having R ~ ½/~. Special areas in 
the reciprocal lattice may  have higher local averages. 
All the results given in Table 1 (except the last) apply 
to both the monoclinic and the orthorhombic cases. 
The other centric projections of the orthorhombic cases 
can be obtained by analogy. 

In studying the table the results obtained in the 
first par t  of the paper for the values of q~A1 produced 
by a heavy atom should be borne in mind. I t  will be 

possible to determine only a rather limited number of 
phases unless ¢ A I  for the heavy atom is several times 
tha t  due to the shifts of the molecules. 

Conclusion 
Our general conclusion is quite clear. :Fairly small 
shifts of the molecules may  produce sufficient changes 
in the intensities seriously to interfere with the iso- 
morpheus-replacement method at the higher values of 
1/d. That  such changes can occur in certain circum- 
stances has already been shown from an examination 
of the hO1 intensities from monoclinic ribonuclease 
(P21) crystallised from different solvents (Magdoff & 
Crick, 1955). I t  remains to be seen how great they 
will be in an isomorphous replacement and whether 
other proteins will show any such shifts. 

On the other hand, if two unit cells have identical 
cell dimensions to within, say, 1 part  in 500 it is 
unlikely tha t  the molecule will have moved sufficiently 
to affect appreciably the lower orders of the diffraction 
pattern.  I t  is thus a sensible precaution to measure 
cell dimensions as accurately as possible. 

I t  is not yet  clear exactly what is the best method 
for detecting a lack of strict isomorphism in an at- 
tempted isomorphous replacement, but  an obvious 
way would be to s tudy how the changes of intensity 
varied with 1/d, collecting data  from as far out in 
reciprocal space as possible. If qSAI increased rapidly 
at high I/d, for example, this would suggest tha t  some 
shift had taken place. I t  should be possible in this 
way to estimate approximately the range of lid over 
which the effects were too small to matter.  

Another possible method would be to examine how 
AI  varied with intensities of different magnitude (but 
with similar values of R). The value of AI  due to the 
extra atoms is on the average greater for a large in- 
tensi ty than for a small one. On the other hand a lack 
of strict isomorphism is loosely equivalent to sampling 

61" 
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the continuous transform of the protein at slightly 
different points, so that  A I  will be largest when the 
gradient of I in reciprocal space is greatest. Statisti- 
cally this is likely to be correlated with the smaller 
values of I. In other words, on the average the extra 
atoms produce the bigger changes in the larger in- 
tensities, whereas shifts of the protein produce the 
bigger changes in the smaller intensities. We have not 
yet  developed the exact theory for this approach. 
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Crystals of the carbon monoxide compoLmd of ox haemoglobin, grown in ammonium sulphate, are 
orthorhombie; space group P212121. The asymmetric unit consists of one haemoglobin molecule 
(molecular weight ~-~ 68,000). A study of the very low order intensities shows the approximate 
positions of the molecules in the unit cell. 

The Patterson projection along one axis resembles that of the a-axis projection of monoclinic 
horse haemoglobin, and suggests that the molecules of the two species may have certain broad 
featm'es in common. 

Introduction 
This short paper presents preliminary X-ray work 

on ox haemoglobin. I t  forms part of a Ph.D. thesis 
accepted by the University of Cambridge (Crick, 1953). 
Further X-ray work on this protein is being under- 
taken by Dr D. W. Green, and will be reported else- 
where. 

The crystals were very kindly supplied by Mr G. S. 
Adair. This appears to have been the first occasion 
on which crystals were grown successfully. The haemo- 
globin had been dissolved in half-saturated ammonium 
sulphate, and converted from oxyhaemoglobin to 
c~rbonmonoxyh~emoglobin by bubbling carbon mon- 
oxide through the solution. The saturated solution 
was then stored in a cold-room at 0 ° C. and as the 
solution became more concentrated, owing to slow 
evaporation, crystals were deposited. 

1. Exper imenta l  resul ts  

In order to avoid takdng X-ray pictures at 0 ° C. some 
mother liquor was first equilibriated at room tempera- 
ture for a few days. As the protein is less soluble at 
higher temperatures, some of it precipitated and was 

filtered off. The crystals were then transferred to this 
new mother liquor. The density of the mother liquor 
was 1.159 g.cm. -a, so the concentration of the am- 
monium sulphate was about 2½ M. 

More recently Dornberger-Schiff (1954) has obtained 
similar, but not identical, crystals by a method in 
which crystals were formed by allowing alcohol vapour 
to diffuse into a concentrated aqueous solution of the 
protein in the oxy form. 

The crystals, some of which had dimensions of 1-2 
mm., were tabular. Their shape and crystallographic 
properties are shown in Fig. 1. The most significant 
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Fig. 1. Properties of crystals of ox haemoglobin. 


