
VOMS-aware Middleware Deployment :
Assessment of Loose Ends ∗

Oscar Koeroo, Ronald Starink, Jeff Templon

June 27, 2007

Contents

1 Introduction 1

2 FQAN and ACBR format 2

3 FQAN matching 3

4 Use Cases 3
4.1 Storage . 3

4.1.1 Writes . 4
4.1.2 Reads . 4

4.2 Workload Management Systems . 4
4.3 Scheduling . 5
4.4 Execution . 6
4.5 Accounting . 9

5 Technical Decisions 9
5.1 Syntax of ACBRs . 9
5.2 Reporting by Information Provider . 10

Recent deployment of VOMS-aware middleware components such as the gLite WMS
and lcg-info-dynamic-scheduler have uncovered several undefined (or equivalently,
“multiply-defined” constructs related to VOMS FQANs. This document attempts to
concisely and clearly state the problem and give some concrete examples.

1 Introduction

The question that the authors would have liked to have answered in this document
is, “what do the various constructs found in the CE ACBRs (AccessControlBaseRules)

∗Id : V depl − summ.tex, v1.42007/05/1014 : 20 : 54templonExptemplon

1

mean?” Unfortunately, the answer appears to be the empty set : there is no well-defined
meaning, in practice there are only various (different) conventions.

This situation leads to the following issues:

• it is not clear how to interpret the meaning of an ACBR

• it is not clear how a “match” between FQANs should be defined

• it is not clear to users or WMSes, how they should select resources based on ACBRs

• it is not clear to site administrators, how they should configure YAIM, LCMAPS,
the batch system, and the information providers.

An attempt was made by most parties to follow what was understood as the “LCMAPS
model”, which means that when a user tries to do something, the first FQAN in her proxy
gets inspected, the “best match” for this FQAN is found amongst all the possibilities,
and this best match gets used.

What was overlooked is that the LCMAPS model involves

• the FQAN syntax and rules for matchmaking

• an algorithm that boils down to a switch statement

• the order of the switch statement (which is the order of the lines in the LCMAPS
groupmapfile.)

This means that knowing the FQAN syntax and semantics, and FQAN matching rules, is
not enough; in order to be able to choose the “right” ACBR for matchmaking, all products
must implement the same switch statement as is done on the site in question. Stated
otherwise, unless all middleware makes the same assumption about all three of these items,
different products will get incompatible matchmaking results. What is particularly nasty
is that to really get it right (assuming we stick with this model), every site will have to
publish, as part of the ACBR construct, a value which indicates the relative order of this
ACBR in the site-local groupmapfile, or we will have to design a set of ACBRs which
ensures that a given FQAN will never match more than one.

2 FQAN and ACBR format

The expression of an access control statement in a VOView is not clearly defined. Consider
the following list:

Example set of ACBRs:

1. VOMS:/atlas

2. VOMS:/atlas/*

3. VO:atlas

4. VOMS:/atlas/Role=NULL/Capability=NULL

5. VOMS:/atlas/Role=production/Capability=NULL

2

6. VOMS:/atlas/*/Role=production/Capability=NULL

There are a few problems with these items in the list. Row number one states an
incomplete FQAN and thus invalid FQAN. The string /atlas might mean the equivalent
of /atlas/Role=NULL or /atlas/*. In the first case, only the base VOMS group can
match that line. In the latter, any FQAN belonging to the ATLAS tree can match.

3 FQAN matching

Thus for the first line, it’s unclear whether this would only match /atlas/Role=Null/Capability=Null,
or whether it would match any FQAN (unlimited groups and/or roles/capabilities) as long
as it begins with atlas.

The second row expresses a very clear wildcard statement. This line will match all
FQANs that start with /atlas/. The star character is a wildcard that can match all the
possible characters that are allowed by the VOMS system (explained in the document
VOMS Memo version 10, located at OGF OGSA AuthZ docs online).

Row number three expresses the old-style (pre-VOMS) notation. This has always
meant that it will match everybody in the ATLAS VO, regardless of whether VOMS
credentials (or old-style grid proxies) have been used. In reality this is not the whole
story. The next section will describe this problem in more detail.

The fourth, fifth and sixth row are also very clear in what they express. The fourth
and fifth row require an exact match of the FQAN; the sixth line can only be matched by
an FQAN that starts with /atlas/ and has a /Role=production part in it (the group
part is not constrained). For one of the authors, even this FQAN is not clear; does it
match if the FQAN being presented as a candidate is

/atlas/soft-valid/Role=lcgadmin/Role=production/Capability=NULL?
With this in mind, what should we get if we match the following single FQAN
/atlas/Role=production/Capability=NULL

against the list?
This FQAN must match with lines 2, 5 and 6. Line 3 should match as well, if we

decide that VO:atlas really means ”everything in ATLAS”; line 1 will or will not match
according to whether one believes in the ”implicit wildcard”.

It will never match line 4.

4 Use Cases

Examples from various systems of what actually happens in practice with the VOMS or
VO information.

4.1 Storage

How storage elements treat a proxy, should depend on the operation that is performed.
Furthermore, since there are various storage element types (Classic SE, DPM, d-Cache,
Castor), each of them may have its own implementation.

It is not clear how the various storage elements deal with VOMS proxies at this
moment. As a first step, this should be investigated in more detail. On the longer term,

3

all storage elements should follow the same mapping rules, in order to make it predictable
for users, VO managers and system administrators where data will be written (i.e., how
much space should be allocated) and which users (or better, VOMS proxies) will have
access to read that data.

4.1.1 Writes

When a storage element receives a put request, it should only consider the primary VOMS
role for the mapping. This is needed to guarantee consistency in the location (e.g. a disk
pool or file system) where the data is stored. That is not only relevant to manage the
available disk space for the various groups and roles, but also to prevent pollution of
storage space.

Although the following example is somewhat artifical, it clearly indicates why only
the primary VOMS role should be considered for write operations. Suppose a user is
member of 2 VOs, say Atlas and LHC-b. For both VOs, she is just a regular user without
membership of any special groups (or roles). Let’s assume that her primary VOMS role
is Atlas, implying that she wants to do Atlas work. Now she wants to store data on a
storage that only supports LHC-b. If the SE would take any other than the primary
role into account, the Atlas data would be stored in the LHC-b disk storage, and would
consequently be accounted to LHC-b. The same situation could occur if the storage
element would support Atlas, but there is no space available for Atlas.

Note that the above example is also valid if the user is not member of two VOs, but of
two different groups in the VO. For instance, a user could have the following VOMS groups
and roles in her proxy: /VO=Atlas/NL/Role=Null and /VO=Atlas/Role=production.
It would still be undesirable to mix data from the generic Atlas production with data
from local analysis.

4.1.2 Reads

For read operations, all VOMS roles and attributes should be considered. If the user has
permission to read data through the presence of a certain VOMS attribute, then that
should be sufficient. It is not particularly important if that corresponds to the primary
role at the moment of working. Reading is after all an operation that does not modify
the contents of the data or affect the available space on the storage element.

4.2 Workload Management Systems

The workload management systems (WMS), i.e. the lcg-RB and the glite-WMS, consult
the information system to determine which grid sites match the requirements for a given
job. The job requirements may be specified by the user, but part of them are determined
by the VOMS roles and groups in the grid proxy. During the matching process, the
workload management systems filter all grid sites that satisfy the requirements for the
job. That results in a list of all queues, spread over all accessible computing elements, to
which the job could be submitted.

The final step in determining to which site the job should be submitted, is to evaluate
the ranking. The user may specify what criterium to use for ranking. By default, it is
the estimated response time (ERT), i.e. the estimated time after which the job could
run, attempting to minimize the waiting time before the job starts to run. The ERT

4

is published in the information system in a view. Each view has its associated Access
Control Base Rule (ACBR), that determines to which VOMS roles and groups it applies.

Using the default ranking, the workload management system will determine the mini-
mum ERT from all views to which the user got access. Once the view with the minimum
ERT is chosen, the WMS will redirect the job to the computing element and queue as-
sociated to that view. It is important to note, that if there are multiple matches for one
computing element, the selection by the WMS does not necessarily correspond to the
actual ERT on the site; more details on this are found in the section on Scheduling.

4.3 Scheduling

For the dynamic-scheduler program, various data are published (job counts, estimated
response times) in various views, to which ACBRs are attached. The current imple-
mentation assumes that a single ACBR is attached (not counting DENY tags which are
currently ignored by the program).

In practice, the information provider has a map (vomap in the program’s config file)
which maps unix groups onto specific FQANs. It is possible to map multiple groups onto
a specific FQAN, but in the current implementation it is not possible to map a single
unix group onto multiple FQANs. In the best of all worlds, the FQAN to group mapping
in the config file would be the same as that in the LCMAPS group map file.

The concept of “inclusive” matches is well-defined in the information provider; it
consistently makes the most pessimistic assumption. If multiple unix groups are mapped
to a single construct like “VO:lhcb”, then the estimate printed by the program is the worst
estimate amongst all the mapped groups. The rationale is that the site is publishing this
information to the outside world and not in control of how it will be used; it is better
from an application point of view to have your wait be shorter than expected, so the
longest estimate is printed.

To illustrate how this should work, suppose we have

• /lhcb/prd mapped to group lhcbpr

• /lhcb/Role=lcgadmin mapped to group lhcbsgm

• the rest of lhcb (via LCMAPS switch statement) mapped to group lhcb.

Suppose we have the following info for the unix groups:

• group lhcb : 27 running jobs, ERT 543 sec

• group lhcbsgm : 3 running jobs, ERT 23 sec

• group lhcbpr : 49 running jobs, ERT 1234 sec

Then we should see the following:

View 1:

VO:lhcb

RunningJobs : 79

ERT: 1234 sec

5

View 2:

VO:lhcb

DENY:/lhcb/prd

RunningJobs: 30

ERT: 543 sec

View 3:

VOMS:/lhcb/prd

RunningJobs: 49

ERT: 1234 sec

View 4:

VO:lhcb

In order to print this information, some modification is needed to the program, not
because of the “inclusive” concept being absent, but because the assumption “single unix
group only mappped to one single ACBR” is built into the program’s input stage.

4.4 Execution

At the computing element, all mapping is handled by LCAS/LCMAPS. From the perspec-
tive of the system administrator, there is a well-defined order of the mapping. However,
the mapping is not published. For the outside world, meaning both users who want to
create a VOMS proxy with a certain primary role as well as workload management sys-
tems, that implies that it is not a priori clear how the mapping will happen. This is
particularly true if the information system contains more than one view with an ACBR
that matches for the VOMS proxy.

An operating system can’t use grid credentials directly. The system will only be
able to work with its own numerical representation for users and groups. On Unix(-like)
systems these numerical representations can be split into three different types:

• Unix User ID (UID)

• Unix Group ID (GID or PGID)

• Secondary Unix Group ID (SGID)

An executing process has variaty of different attributes. Here we need to focus on the
attributes that hold the UID, PGID and SGID of a process. In reality there is a difference
between the real and effective UID, PGID and SGID, but for the ease of the explenation
we’d like to pretent that there is no such difference.

When a user submits a job to the Grid it will eventually end up at a compute cluster.
This is done through the submission to a globus gatekeeper. With a focus set on the
LCG-CE this will mean that the job has been submitted to the edg-gatekeeper. The
edg-gatekeeper differce from the orginial globus 2.4 gatekeeper in the effect that it will
call an external Authorization and Mapping framework.

The Local Center Authorization Service (LCAS) framework is an authorization frame-
work that can execute various plugins that will examine the jobs properties and the user’s

6

used credentials for this job. If the user is authorized based upon his provided creden-
tials then the Local Credential MAPping Service (LCMAPS) will take over. LCMAPS
will call various plugins that each have a specific task to acquire information from the
provided credentials, acquire information from the local system and result in a mapping.
In the LCMAPS sense: mapping is to make a Unix representation of all the provided
credentials.

LCMAPS uses a bunch of files but I’d like to focus on the grid-mapfile and groupmap-
file because these files describe how LCMAPS should map a given set of credentials to
Unix credentials.

[...grid-mapfile...]

"/O=dutchgrid/O=users/O=nikhef/CN=Oscar Koeroo" .mypool

"/atlas/Role=production/Capability=NULL" .atlb

"/atlas/Role=NULL/Capability=NULL" .atlas

"/atlas/*" .atlas

[...groupmapfile...]

"/atlas/Role=production/Capability=NULL" atlb

"/atlas/Role=NULL/Capability=NULL" atlas

"/atlas/*" atlas

[...voms-proxy-info example (shortend)...]

/atlas/Role=production/Capability=NULL

/atlas/Role=NULL/Capability=NULL

/atlas/somespecialgroup/Role=NULL/Capability=NULL

The grid-mapfile can be used in multi-mode mixing DNs and FQANs. The plugins of
LCMAPS will nicely keep the difference between them, but effectively there is a difference
in how this works. The DNs and FQANs can be mixed up through the file, but since the
grid-mapfile and groupmapfile are read from top to bottom the list must be ordered in a
”most specific FQAN first”. LCMAPS will not order it prior to its use to avoid ’magical’
(read: hard to reproduce inside the human mind) mappings.

When VOMS isn’t used only the DN will be considered for mapping and only the grid-
mapfile will be read. The first full string match of that DN is used and the localaccount or
the poolaccount is selected. In the example grid-mapfile the DN of Oscar will map to the
pool called mypool, resulting in an account like mypool001. This method only selected
to account mypool001. To be able to fully enforce this account into the properties of the
current process of the edg-gatekeeper the active LCMAPS plugin will also acquire the
PGID and optional SGID from the system. It depends on the system configuration if the
password-file, LDAP directoy or something else is utilized for this information completion.
When the UID and PGID is known the final stage of LCMAPS can be called to enforce
these acquired Unix credentials into the properties of the process. In the case of the
edg-gatekeeper the process is running with root priviledges. These priviledges will be
squashed after the enforcement of the mapping. If they can’t be squashed then that is
a failure condition. Nobody should be able to submit a job and execute with local root
priviledges.

When VOMS is used to submit a job, then a lot of routines are used in the same
way as without VOMS. But now we’ll need two files. The first file is the grid-mapfile

7

that describes how VOMS FQANs must be mapped to a specific localaccount1 or a pool
of accounts. The second file is the groupmapfile. That file contains the same type of
information but to be used to determain the Unix group on to wich the grid credentials
(the FQANs) need to be mapped. The groupmapfile can describe how to map an FQAN
to a (regular) localgroup or a pool of groups. The poolgroups feature is not used in
production so I will not describe it here to avoid overcomplexity.

First the Unix Group IDs will be acquired from the FQANs. Given the attributes from
the voms-proxy-info example and the given groupmapfile file will LCMAPS try to map
each FQAN to a Unix Group ID. First the FQAN /atlas/Role=production/Capability=NULL

will be evaluated. This FQAN has an explicit mapping and will result into a map-
ping to the Unix Group ID atlb. The numerical representation of the Unix Group
is stored into the LCMAPS framework. This first found and mapped FQAN will re-
sult into the Primary Group ID of the process. This is important since most of the
cluster schedulers can only evaluate a process upon the Unix User ID and Unix Group
ID. Since the UID can be any in the pool and the GID is actually telling something
more about the group affiliation of the user, that Unix-type credential will be used to
make a scheduling descision (more about that later in the document). All the FQANs
will result into Secondary Unix Group IDs. The second FQAN in the list to evaluate is
/atlas/Role=NULL/Capability=NULL. In the example groupmapfile we can see a specific
mapping of this FQAN and it will result into a mapping to the Unix Group called atlas.
The numerical representation will be stored into the LCMAPS framework. The last
FQAN /atlas/somespecialgroup/Role=NULL/Capability=NULL does not have a spe-
cific mapping. It does match the wildcarded /atlas/* line in the groupmapfile. Therefor
the resulting mapping is the Unix Group ID for atlas again.

Effectively the acquired groups atlb, atlas and atlas could have been named differently
and still be using the same Group ID numerically. That’s why we’ve chosen to store the
acquired numerical representation only.

In the next stage LCMAPS will launch a plugin to acquire the Unix User ID regarding
the grid-mapfile and the credentials of the user. In this VOMS specific case the poolac-
count selection will be triggered not by the DN but by the first FQAN in the list of
provided FQANs. In this case the FQAN /atlas/Role=production/Capability=NULL

will map to the pool atlb which can result in the Unix account atlb001.
Since that in the final stage a poolaccount is selected from a specific pool instead

of the statically acquirable groups, the gridmapdir mapping between the DN and the
poolaccount will be done. With the regular poolaccount hardlinking to a URL encoded
string in the designated gridmapdir will the VOMS variant of this perform the same kind
of hardlinking to the URL encoded DN and the numerically respresented set of GIDs.
These GIDs are ordered PGID first, then SGIDs and the SGIDs are ordered numerically
(from low to high numbers). This is done so because users might be mapped to the same
effective Unix credentials and may thus return to the same poolaccount. If the set of
FQANs differs a bit and the mapping to Unix credentials results into a different set of
credentials then this user should be mapped to a new account. The granularity can be
configured. We advise at least to have the account change on an alteration of the first
two Group IDs. Each numerical GID can only be listed once because having two or more
times the same SGID enforced is nonsence.

1Mapping VOMS FQANs to one specific local Unix account is regarded dangerous for possible legal
implication because your mapping a group of people into one account and thus dismissing auditability.

8

At the moment all the production sites are configured in such a way that users are
able to failover from the VOMS mapping plugins (when they fail or don’t have VOMS
attributes) in to the old style poolaccount mapping plugins. This will succeed if old style
DNs are listed in the grid-mapfile for that plugin.

4.5 Accounting

5 Technical Decisions

This segment is lifted directly from the EGEE Job Priorities conclusions document. We
are inclined to believe that the wrong choice was made in picking “exclusive” reporting, as
it yet again introduces entanglement : it’s not clear what VO:atlas means at a site, unless
you know the entire list of ATLAS views at the site, and even this may not be enough.

This segment is included from the report of the EGEE Job Priorities Working Group
to document certain deployment choices. An example is the syntax with which YAIM
should print the VOMS FQANs.

A number of implementation choices need to be made regarding the entire scheme.
Here we list those made so far. These are meant to be pragmatic — we don’t know
enough to make a definitive statement, but we do know that we want to begin quickly.
These choices are hence weighted towards easy implementation and need to be reviewed
once we have sufficient experience.

5.1 Syntax of ACBRs

All code that needs to parse the AccessControlBaseRules should conform to the following
syntax:

GlueCEAccessControlBaseRule:<OWS><SNC>:<SNC>

where <SNC> means “string containing no colons” and <OWS> means “optional whites-
pace”. Whitespace is forbidden between the GlueCEAccessControlBaseRule tag and
the semicolon that follows, but in general is OK elsewhere. Here are examples of “good”
syntax:

GlueCEAccessControlBaseRule: VO:atlas

and similarly with VOMS stuff. What is *not* OK is

GlueCEAccessControlBaseRule: VO :atlas

GlueCEAccessControlBaseRule: VO: atlas

GlueCEAccessControlBaseRule: VO : cms

due to spaces around the colons (basically handling spaces requires a rewrite of various
classads matching functions scattered throughout the WMS code). The following

GlueCEAccessControlBaseRule: VOMS:/atlas/Role=sys:admin

is also not OK because this has a second colon, and then the split becomes ambiguous.
Similarly this is also not OK:

GlueCEAccessControlBaseRule: SERVICE:CLASS:lhcb_bronze

9

5.2 Reporting by Information Provider

If a certain queue (GlueCE) supports both CMS as a whole, as well as a special CMS
share, there are choices to be made in how to report this. One might make the choice
that “CMS as a whole” should mean to report everything belonging to CMS, including
the jobs belonging to the special share supported by the same queue.

We decided to make the reporting exclusive: “VO-as-a-whole” VOView blocks should
report numbers corresponding to all jobs / shares for that VO that aren’t explicitly
reported by more specific blocks.

To be concrete, if we have VO : atlas and VOMS: /atlas/Role=production sup-
ported by a single CE, in the VOView block for the production role, job counts and
response-time estimates are reported specifically for the production role; for the VO :

atlas VOView, counts and estimates are reported for all of atlas except the production
role.

Note there is some work to be done here in matchmaking, since you might have a
VOMS proxy that matches more than one of the published FQANs. We need to develop
a matching-precedence hierarchy for the long term so that the concept “most specific
match” is meaningful.

10

