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2Outline

1. Block-Matching and 3D filtering (BM3D) algorithm
Grouping and collaborative filtering, block-based algorithm and shape-adaptive PCA im-
plementation.

2. Extension and applications
V-BM3D for video and multiframe data, image sharpening, image deblurring, iterative
reconstruction algorithms for inverse imaging (compressive sensing, upsampling, and super-
resolution)



3Block-Matching and 3D filtering (BM3D)
denoising algorithm

Generalizes NL-means (Buades, Coll, Morel) and overcomplete transform methods.

A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new
one”, Multisc. Model. Simulat., vol. 4, no. 2, pp. 490-530, 2005.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-matching
and 3D filtering”, Proc. SPIE El. Imaging 2006, Image Process.: Algorithms and Systems
V, no. 6064A-30, San Jose (CA), USA, January 2006.

– , “Image denoising by sparse 3D transform-domain collaborative filtering”, IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080-2095, August 2007.

V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-
model image denoising”, Int. J. Computer Vision, vol. 86, no. 1, pp. 1-32, January 2010.



4Observation model for the image denoising problem

z (x) = y (x) + η (x) , x ∈ X ⊂ Z2,

z : X → R observed noisy image

y : X → R unknown original image (grayscale)

η : X → R i.i.d. Gaussian white noise, η (·) ∼ N
¡
0, σ2

¢
Notation

Given a function f : X → R, a subset U ⊂ X, and a function g : U → R, we denote by:

f|U : U → R the restriction of f on U , f|U (x) = f (x) ∀x ∈ U ;

g|X : X → R the zero-extension of g to X,
¡
g|X

¢
|U = g and g|X (x) = 0 ∀x ∈ X \ U ;

χU = 1|U|X the characteristic function (indicator) of U ;

|U | the cardinality of U (i.e. the number of its elements of U);

~ the convolution operation.



5Block-matching

Let x ∈ X and denote by B̃x ⊂ Z2 be the square block of size l × l “cen-
tered” at x. Let B be the collection of all such blocks which are entirely contained

in X, B =
n
B̃x : x ∈ X, B̃x ⊂ X

o
. Equivalently, define XB =

n
x ∈ X : B̃x ∈ B

o
=n

x ∈ X : B̃x ⊂ X
o
⊂ X.

For each block B̃x ∈ B, (i.e. for each point x ∈ XB), we look for “similar” blocks B̃x0 whose
range distance dz (x, x0) with respect to B̃x,

dz (x, x
0) =

°°°z|B̃x − z|B̃x0
°°°
2
,

is smaller than a fixed threshold τmatch ≥ 0.

Thus, we construct the set Sx that contains the central points of the found blocks:
Sx = {x0 ∈ XB : dz (x, x

0) ≤ τmatch} .
The threshold τmatch is the maximum dz-distance for which two blocks are considered
similar.

In case of heavy noise, we embed a coarse prefiltering within dz (e.g., 2-distance of thresh-
olded spectra). Otherwise, we need to increase l.



6Block-matching

To a fixed “reference” block B̃xR ∈ B associate a collection (disjoint union) eBxR of neigh-
borhoods: eBxR =

a
x∈SxR

B̃x =

=
n³

B̃x, x
´
: x ∈ SxR

o
⊂ X × SxR ⊂ X ×X.



7Group

collection of the noisy patches z|B̃x , B̃x ∈ eBxR
(Compact notation) ZxR :

eBxR → R.

The patches can be stacked together into a 3-D data array
defined on the square prism B × {1, . . . , |SxR |}.



8Why groups are good and why do we need to be careful

Groups are characterized by both:
¦ intra-block correlation between the pixels of each grouped block (natural images);
◦ inter -block correlation between the corresponding pixels of different blocks (grouped
block are similar);

Warnings:
¦ blocks are not necessary flat or smooth but can be anything;
◦ “similar” does not mean “identical”.

Goals:
¦ exploit intra-block correlation whenever possible, without smoothing away the unex-
pected;
◦ exploit similarity in the forms in which it exists, without forcing dissimilar blocks to
become identical.



9Collaborative filtering

• each grouped block collaborates for the filtering of all others, and vice versa.
• provides individual estimates for all grouped blocks (not necessarily equal).

Realized as shrinkage in a 3-D transform domain.

Typically separable transform: T 3D = T 2D ◦ T 1D .

E.g.: 2D-DCT ◦ DCT = 3D-DCT
or, restricting h and |SxR | to powers of two,

biorth. 2D-DWT ◦ Haar 1D-DWT
shrinkage: hard-thresholding

bYxR = T 3D−1 (shrink (T 3D (ZxR)))

The group estimate bYxR :
eBxR → R is composed of

slices with local block estimates ŷx,xR : B̃x → R for each B̃x ∈ eBxR .
Total variance of bYxR can be estimated as tsvar

nbYxR

o
≈ σ2Nhar

xR ,

Nhar
xR is number of coefficients of T 3D(ZxR) that survive thresholding

(so-called “number of harmonics”).



10Collaborative filtering



11Aggregation

For each reference point xR ∈ X, grouping and collaborative filtering generate a groupbYxR of |SxR | distinct local estimates of y.

Overall, we have a highly redundant and rich representation of the original image y com-
posed of the estimates a

xR∈X, x∈SxR
ŷx,xR , where ŷx,xR : B̃x → R.

Note: different groups ZxR and Zx0R can lead to different estimates ŷx,xR and ŷ
x,x0

R
even

when these estimates are defined on the same block B̃x !

In order to obtain a single global estimate ŷht : X → R defined on the whole image
domain, all these local estimates are averaged together using adaptive weights wxR > 0 in
the following convex combination:

ŷht =

X
xR∈X

X
x∈SxR

wxR ŷx,xR
|XX

xR∈X

X
x∈SxR

wxRχB̃x

wxR =
1

σ2Nhar
xR

.



12Wiener filtering stage

Denoising can be improved by performing matching within this estimate and replacing
hard-thresholding by empirical Wiener filtering in the collaborative shrinkage.

Block-Matching

Noise in ŷht is significantly attenuated: more accurate matching by replacing the distance
dz by a distance dŷh t :

dŷh t (xR, x) =
°°°ŷht |B̃xR − ŷht |B̃x

°°°
2
,

The sets SxR are redefined as
SxR =

©
x ∈ XB : dŷh t (xR, x) ≤ τmatch

ª
.

These new sets SxR lead to new collections (disjoint unions) of blocks eBxR = `
x∈SxR

B̃x.

Grouping: two groups

ZxR :
eBxR → R, built by stacking together the noisy patches z|B̃x , B̃x ∈ eBxRbYht

xR :
eBxR → R, built by stacking together the estimate patches byht|B̃x , B̃x ∈ eBxR



13Collaborative Wiener filtering

Group Wiener estimate bYxR = T 3D−1 (WxRT
3D (ZxR))

Wiener attenuation factors WxR =
(T 3D (Yh t

xR
))

2

(T 3D (Yh t
xR
))

2
+σ2

Estimate of total variance tsvar
nbYxR

o
≈ σ2 kWxRk

2
2.

Aggregation

Global estimate ŷwie =

P
xR∈X

P
x∈SxR wxR ŷx,xR

|XP
xR∈X

P
x∈SxR wxRχB̃x

, wxR =
1

σ2 kWxRk
2
2

.



14BM3D flowchart

B Process overlapping blocks in a raster scan. For each such block, do the following:
(a) Use block-matching to find the locations of the blocks that are similar to the cur-

rently processed one. Form a 3D array (group) by stacking the blocks located at
the obtained locations.

(b) Apply a 3-D transform on the formed group.
(c) Attenuate the noise by shrinkage the 3-D transform spectrum.
(d) invert the 3-D transform to produce filtered grouped blocks.

B Return the filtered blocks to their original locations in the image domain and compute
the resultant filtered image by a weighted average of these filtered blocks (aggregation).



15BM3D with Shape-Adaptive PCA (BM3D-SAPCA)

Main ingredients:

• Local Polynomial Approximation - Intersection of Confidence Intervals
(LPA-ICI) to adaptively select support for 2-D transform;

• Block-Matching to enable non-locality;
• Shape-Adaptive PCA (SA-PCA);
• Shape-Adaptive DCT low-complexity 2-D transform on arbitrarily-shaped domains
(when SA-PCA is not feasible).

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D Image Denoising with Shape-
Adaptive Principal Component Analysis”, Proc. Workshop on Signal Processing with
Adaptive Sparse Structured Representations (SPARS’09), Saint-Malo, France, April 2009.



16BM3D-SAPCA

At each pixel:
1. Group together square image blocks that are similar to the block centered at the current
pixel.



17BM3D-SAPCA

2. Obtain the anisotropic neighborhood at the current pixel using 8-directional LPA-ICI.
Apply its shape on each of the grouped blocks, producing a group of adaptive-shape
neighborhoods.



18BM3D-SAPCA

3. Use this group as training data for computing Shape-Adaptive PCA (SVD of the empir-
ical second-moment matrix estimated from the group of similar adaptive-shape neigh-
borhoods).



19BM3D-SAPCA

3b. Keep only the eigenvectors (PC) whose corresponding eigenvalues are greater than a
threshold proportional to the noise variance (trimmed PCA).
The overall 3-D transform is a separable composition of the PCA (applied on each
image patch) and a fixed orthogonal 1-D transform in the third dimension.



20BM3D-SAPCA

4. Apply the 3-D transform on a group of adaptive-shape neighborhoods.
5. Attenuate noise by shrinakage (hard-thresholding or empirical Wiener filtering).



21BM3D-SAPCA

6. Apply the inverse 3-D transform to obtain filtered neighborhoods,
7. Return the filtered neighborhoods to their original locations and aggregate in case of
overlapping.



22BM3D-SAPCA

The scheme is implemented in three iterations:
I: hard-thresholding, BM and PCA on noisy data
II: hard-thresholding, BM and PCA on estimate from I.
III: empirical Wiener filtering, BM and PCA on estimate from II.



23Directional varying-scale LPA estimates
ŷh,θk = z ~ gh,θk

scales: h ∈ {h1, . . . , hJ} = H

directions: θk =
(k−1)
4 π, k = 1, . . . , 8

ICI directional adaptive scales
{h+ (x, θk)}8k=1

Adaptive neighborhood of the origin
U+x = polygonal_hull

©
supp gh+(x,θk),θk

ª8
k=1

Adaptive neighborhood
of estimation point x
(mirror-translates)

Ũ+x =
= {v ∈X : (x−v)∈U+x }



24Intersection of Confidence Intervals (ICI ) (Goldenshluger&Nemirovski, 1997)
(for each fixed direction θk)

The estimates ŷh(x) are calculated for a set H = {hj}Jj=1 of increasing scales. The ICI rule
yields a pointwise adaptive estimate ŷh+(x), where for every x an adaptive scale h+ (x) ∈ H
is used such that ŷh+(x) ≈ ŷh∗(x)(x).

ICI rule: Consider the intersection of confidence intervals

Ij=
j\

i=1

Di, where Di =
h
ŷhi(x) − Γσŷhi , ŷhi(x)+Γσŷhi

i
and Γ>0 is a threshold parameter, and let j+ be the largest of the indexes j for which Ij
is non-empty, Ij+ 6=∅ and Ij++1=∅. Then, h+ is defined as h+=hj+ and the adaptive
estimate is ŷh+(x).



25Block-matching

Adaptive neighborhoods can be too small for reliable matching!

Matching for Ũ+x needs to be carried out for a superset.

We use square blocks of size (2hmax − 1)× (2hmax − 1) centered at x, hmax = max {H}.

Adaptive neighborhoods Ũ+x ∀x ∈ X

Blocks B̃x ∀x ∈ XB ( X

To every x ∈ X we associate xB ∈ XB such that kδB (x)k2 of δB (x) = xB − x is minimal.

The mapping x 7→ xB and δB (x) are univocally defined (for convex X).

δB (x) 6= 0 only for x sufficiently close to the boundary ∂X of X.



26Shape-adaptive grouping

For given points x, xR define the translate of Ũ+xR
Ũ+x,xR =

©
v ∈ X : (x− v) ∈ U+xR

ª
=
n
v ∈ X : (xR − x+ v) ∈ Ũ+xR

o
.

Ũ+x,xR is an adaptive neighborhood of x which uses the
adaptive scales of the “reference point” xR.

It can happen that Ũ+x,xR 6= Ũ+x .

To a given “reference” point xR we can now associate not only its own adaptive neighbor-
hood Ũ+xR , but a collection (disjoint union)

eUxR of neighborhoods defined aseUxR = a
x+δB (xR)∈SxR+δB (xR)

Ũ+x,xR =
n
Ũ+x,xR : x+ δB (xR) ∈ SxR+δB (xR)

o
,

where SxR+δB (xR) is the result of block-matching for B̃xR+δB (xR)
.

All neighborhoods in eUxR have the same shape, completely determined by adaptive scales
{h+ (xR, θk)}8k=1 at xR.



27Shape-Adaptive PCA



28Shape-Adaptive Discrete Cosine Transform (SA-DCT) (Sikora et al., 1995)

Shape-Adaptive Discrete Cosine Transform (SA-DCT) and its inverse. Transformation
is computed by cascaded application of one-dimensional varying-length DCT transforms,
along the columns and along the rows.



29Shape-Adaptive Discrete Cosine Transform (SA-DCT)

• direct generalization of the classical block-DCT (B-DCT);
• on rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;
• the same computational complexity as the B-DCT (separable);
• SA-DCT is part of the MPEG-4 standard;
• efficient (low-power) hardware implementations available;

• shape must be coded separately (constitutes some overhead).

Orthonormal SA-DCT does not have a DC term and works best if applied on zero-mean
data: “Orthonormal SA-DCT with DC separation and ∆DC compensation”, Kauff et al.
1997.



30

SA-DCT (forward transform)
[as used in Pointwise SA-DCT denoising algorithm (Foi et al., IEEE TIP 2007)]

Shape-adaptive collaborative filtering (forward transform)



31Experimental comparison



32Experimental comparison



33Experimental comparison



34

Original Noisy, σ = 35 BM3D (27.82, 0.8207)

P.SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)



35Independent benchmarking of
BM3D denoising performance

Perceptual/Subjective

• Van der Weken, D., E. Kerre, E. Vansteenkiste, and W. Philips, “Evaluation of fuzzy
image quality measures using a multidimensional scaling framework”, Proc. 2nd Int.
Workshop Video Process. Quality Metrics Consum. Electron., VPQM2006, Scottsdale,
AZ, Jan. 2006.

• Vansteenkiste, E., D. Van der Weken, W. Philips, and E. Kerre, “Perceived image
Quality Measurement of state-of-the-art Noise Reduction Schemes”, Lecture Notes in
Computer Science 4179 - ACIVS 2006, pp. 114-124, Springer, Sep. 2006.

PSNR & SSIM

• Lansel, S., D. Donoho, and T. Weissman, “DenoiseLab: A Standard Test Set and
Evaluation Method to Compare Denoising Algorithms”,
http://www.stanford.edu/~slansel/DenoiseLab/.

• F. Estrada, D. Fleet, and A. Jepson,
http://www.cs.utoronto.ca/~strider/Denoise/Benchmark/
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2. Extensions and applications



37Collaborative sharpening

Introduce alpha-rooting immediately after shrinkage, before inverting the T 3D transform.
Modify aggregation weights (sharpening changes the total variance of the estimate group).

Alpha-rooting (Aghagolzadeh&Ersoy, 1992)

Transform spectrum t of a signal with DC coefficient t (0), α ≥ 1 sharpening exponent

tsharp (i) =

 sign [t (i)] |t (0)|
¯̄̄̄
t (i)

t (0)

¯̄̄̄ 1
α , if t (0) 6= 0

t (i) , otherwise.



38Aggregation weights for sharpening

Variance of sharpened coefficients (using first order approximations)

var {tsharp (i)} '
µ
1− 1

α

¶2
|t (0)|−

2
α |t (i)|

2
α σ2 +

1

α2
|t (i)|

2
α−2 |t (0)|2−

2
α σ2 =

= ωiσ
2.

Total variance of the thresholded and sharpened group bYs h a rp
xR is approximated as

tsvar
nbYsh a rp

xR

o
= σ2 +

X
t(i)6=0,i>0

ωiσ
2.

Hence, aggregation weights are

wxR =
1

tsvar
nbYs h a rp

xR

o .



39Collaborative sharpening: experiments

Noisy House, σ = 10



40Collaborative sharpening: experiments

BM3D-SH3D, α = 1.2



41Collaborative sharpening: experiments

BM3D-SH3D, α = 1.4



42Collaborative sharpening: experiments

BM3D-SH3D, α = 1.6



43Collaborative sharpening: experiments

BM3D-SH3D, α = 1.8



44Collaborative sharpening: experiments

BM3D-SH3D, α = 2.0



45Collaborative sharpening: experiments

Noisy Fundus σ = 20 BM3D-SH3D



46BM3D Deconvolution (non blind)

Approach:

standard Tikhonov regularized deconvolution coupled with BM3D regularization
(in practice the filtering is equivalent to colored noise removal)

References:

K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, “Image restoration by sparse 3D transform-
domain collaborative filtering”, Proc. SPIE El. Imaging 2008, Image Process.: Algorithms
and Systems VII, 6812-06, San Jose (CA), USA, January 2008.

A. Foi, K. Dabov, V. Katkovnik, and K. Egiazarian, “Shape-adaptive DCT for denoising
and image reconstruction”, Proc. SPIE El. Imaging 2006, Image Process.: Algorithms

and Systems V, 6064A-18, San Jose (CA), USA, January 2006.



47V-BM3D for video and multiframe data

1a. Grouping. Searching within all images in the sequence, find blocks that are similar to
the currently processed one, and then stack them together in a 3-D array (group).



48V-BM3D for video and multiframe data

1b. Collaborative hard-thresholding. Apply a 3-D transform to the group, attenuate noise
by hard-thresholding of the spectrum, invert the 3-D transform to produce estimates
of all grouped blocks, and return the estimates of the blocks to their original place.



49V-BM3D for video and multiframe data

2. Aggregation. Compute the estimates of the output images by weighted averaging all of
the obtained block-wise estimates that are overlapping.



50Iterative image reconstruction

Ω is the support of the available portion of the spectrum y

y = y1 + y2 = χΩy + (1− χΩ) y

Recursive algorithm

(
ŷ
(0)
2 = 0, (initialization) k = 0,

ŷ
(k)
2 = ŷ

(k−1)
2 − γk

h
ŷ
(k−1)
2 − (1− χΩ)T

³
Φ
³
T −1

³
y1 + ŷ

(k−1)
2

´´´
+ (1− χΩ) ηk

i
, k ≥ 1.

T transform T = F Fourier
Φ spatially adaptive filter Φ = BM3D
ηk excitation noise ηk = N

¡
0, α−k−β

¢
γk step size γk = 1



51Possible interpretations:

stochastic optimization (Robbins-Monro type),
random search,

simulated annealing,
randomized alternated projections / POCS,

etc.



52Compressive sensing toy examples:
Radon inversion from sparse projections and limited-angle tomography

Shepp-Logan phantom

T =F Fourier transform



53Compressive sensing toy examples:
Radon inversion from sparse projections and limited-angle tomography

11 radial lines 11 radial line limited angle (61 lines)

χΩ

image
(b.p.)



54Compressive sensing toy examples:
Radon inversion from sparse projections and limited-angle tomography

In all three cases we achieve exact reconstruction (PSNR'260dB)



55Towards image upsampling

χΩ image (b.p.)



56Towards image upsampling

extrapolating missing high-frequencies



57Upsampling and super-resolution

Image upsampling or zooming, can be defined as the process of resampling a single
low-resolution (LR) image on a high-resolution grid. Different resampling methods can be
used to obtain zoomed images with specific desired properties, such as edge preservation,
degree of smoothness, etc.

However, fine details missing or distorted in the low-resolution image cannot be re-
constructed in the upsampled one. There is no sufficient information in the LR image to
do this.

When a number of LR images portraying slightly different views of the same scene
are available, the reconstruction algorithm can try to improve the spatial resolution by
incorporating into the final HR result the additional new details revealed in each LR image.

The process of combining a sequence of undersampled and degraded low-resolution
images in order to produce a single high-resolution image is commonly referred to as a

Super-resolution (SR) reconstruction.



58Classical approach and problem of registration



59From NLM to V-BM3D

Modern SR methods (e.g., Protter et al. 2008, Ebrahimi and Vrscay 2008) are based on
the nonlocal means (NLM) filtering paradigm (Buades-Coll-Morel, 2005).

No explicit registration: one-to-one pixel mapping between frames is replaced by a one-
to-many mapping.

Multiple pixels can be assigned to a given one, with weights typically defined by the
similarity of the patches/blocks surrounding the pixels. The HR image is estimated through
a weighted average of these multiple pixels (or of their surrounding patches) with their
corresponding weights.

The BM3D and V-BM3D (Dabov et al. 2007) algorithms share with the NLM the idea
of exploiting nonlocal similarity between blocks. However, in (V-)BM3D a more powerful
transform-domain modeling is used. These turn out to be a much more effective filter than
the NLM not only for denoising, but also for super-resolution.

M . E b ra h im i , E . R . Vr s c ay, “M u l t i - f r am e s u p e r - r e s o lu t io n w it h n o e x p l i c i t m o t io n e s t im a t io n ” , Proc. Int. Conf. on Image Process.,

Computer Vision, and Pattern Recognition, IPCV 2008 , L a s Veg a s , N e va d a , U SA , J u ly. 2 0 0 8 .

M . P ro t t e r , M . E la d , H . Ta k e d a , a n d P. M i la n fa r , “G e n e r a l i z in g th e N o n -L o c a l -M e a n s t o S u p e r -R e s o lu t io n R e c o n s t ru c t io n ” , IEEE

Trans. Image Process., v o l . 1 8 , n o . 8 , p p . 1 8 9 9 -1 9 0 4 , J a n . 2 0 0 9 .



60Preliminaries: scaling family of orthonormal transforms

(a) DFT (b) Block DCT

(c) DWT, DCT

{Tm}Mm=0 family of orthonormal transforms of increasing sizes
xhm × xvm, xhm < xhm0 , xvm < xvm0 ∀m,m0, m < m0

the whole Tm-spectrum can be considered as a smaller portion of the Tm0-spectrum.

Supports Ωm of the Tm-transform coefficients form a nested sequence of subsets of ΩM :
Ω0 ⊂ · · · ⊂ ΩM .

Examples: DCT, DFT,
DWT associated to one common scaling function,
block DCT, DFT and DWT.



61Notation

For m < m0 we define three operators:

• the restriction operator |Ωm,m0 - given Tm0 -spectrum, extracts smaller portion
defined on Ωm, which can be considered as the Tm-spectrum of a smaller image;

• the zero-padding operator Um,m0 - expands a Tm-spectrum defined on Ωm to the
Tm0-spectrum defined on the superset Ωm0 ⊃ Ωm by introducing zeros in the comple-
mentary Ωm0 \ Ωm;
Um,m0 is “dual” operator of |Ωm,m0

• the projection operator P⊥m,m0 - zeroes out all coefficients of Tm0-spectrum defined
on Ωm.

Um,m0 (A)|Ωm = A for any Tm-spectrum A

B = P⊥m,m0 (B) + Um,m0
¡
B|Ωm

¢
for any Tm0 -spectrum B.



62Observation model

Given:
sequence of R low-resolution images {ylow r}Rr=1 of size xh0 × xv0

ylow r = T −10

³
β−10,M TM (yhi r)|Ω0,M

´
, (1)

SR reconstruction problem:
to reconstruct {yhi r}Rr=1 from {ylow r}Rr=1.

Constraint:
for a fixed r, an estimate ŷr of yhi r must have its Ω0 subband equal to

β0,MT0 (ylow r) = TM (yhi r)|Ω0,M .

Remark:
R = 1 gives image upsampling problem



63Multistage iterative reconstruction


ŷr,0 = ylow r (algorithm input)

ŷr,m = ŷ
(kfi n a l m)
r,m (stage input)

ŷ
(0)
r,m = T −1m

¡
Um−1,m

¡
βm−1,mTm−1 (ŷr,m−1)

¢¢
ŷ
(k)
r,m = T −1m

µ
U0,m

¡
β0,mT0 (ylow r)

¢
+ P⊥0,m

µ
Tm
¡
Φ
¡
r,
n
ŷ
(k−1)
r,m

oR
r=1

, σk,m
¢¢¶¶ (2)

m stage number m = 1, . . . ,M
k iteration number k = 0, . . . , kfinal m
ŷ
(k)
r,m estimate for ŷr on iter. k of stage m
Tm transform
Φ spatially adaptive filter (V-BM3D)
σk,m parameter controlling the strength of the filter σk,m = σk,m−1 −∆m



64Image upsampling 4× in wavelet domain (Danielyan et al. EUSIPCO 2008)



65Video super-resolution

Results for the 23rd frame from the Foreman sequence. From left to right and from top
to bottom: pixel-replicated low-resolution image; original image (ground truth); super-
resolved by the algorithm by Protter et al.; super-resolved by the proposed algorithm.



66Video super-resolution

Results for the 23rd frame from the Suzie sequence. From left to right and from top
to bottom: pixel-replicated low-resolution image; original image (ground truth); super-
resolved by the algorithm by Protter et al.; super-resolved by the proposed algorithm.



67Video super-resolution

Results for the 23rd frame from the Miss America sequence. From left to right and from
top to bottom: pixel-replicated low-resolution image; original image (ground truth); super-
resolved by the algorithm by Protter et al.; super-resolved by the proposed algorithm.



68Image super-resolution

Super-resolution result for the Text image. From left to right: original high-resolution
image (ground truth); pixel-replicated low-resolution image; image super-resolved by the
proposed algorithm.
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