Print

Print


Dear Jiangang,

I got somewhat confused of the definition and selection of the fixed-effects and the random-effects analysis in the DCM analysis, especially after reading some recent papers about DCM analysis. In such papers, I could not make sure which analysis, fixed- or random- effect was used in a study. Three examples are illustrated in the following:

Example 1:

In Summerfield et al. (2006, Science 314:1311-1314), only one model was used (thus no Bayesian model selection), and the intrinsic and bilinear parameters were averaged across subjects, whose statistical significance was assessed using a t-tests with a threshold p < 0.05. My question is: Was the Bayesian random effect approach used in this paper?

No, this paper used classical inference based on the summary statistic approach to make an inference about the parameters
of a single model (i.e., summarize the effect of interest with a subject-specific statistic; here coupling parameter estimates from
single-subject analyses and then use classical tests).


Example 2:

In Acs and Greenlee (2008, NeuroImage 41:380-388), fifteen models with the same intrinsic connections but different bilinear connections were used, and the average intrinsic and bilinear parameters were obtained using DCM-average routine provided by SPM5. In this study, individual model comparison was performed by Bayesian model selection, and the group model comparison was determined based on Group Bayes Factor and Positive Evidence Ration. My question is: Was the Bayesian fixed effect approach used in this paper?

No; this used the conventional (fixed-effects) Bayesian model selection (BMS). This is fine if, a priori, you think that
each subject's data were generated under the same (unknown) model. Random effects analyses allow for random
model effects.


Example 3:

In Fairhall and Ishai (2007, Cereb. Cortex 17:2400-2406), a number of models were used, and the intrinsic and bilinear parameters were averaged across subjects, whose statistical significance was assessed using a t-tests with a threshold p < 0.05. In this study, individual model comparison was performed by Bayesian model selection, and the group model comparison was determined based on Group Bayes Factor. My question is: Which approach, fixed effect or random effect approach was used in this paper?

Again, because they used the group Bayes factor, this is a conventional BMS procedure; pooling data from different subjects.
(i.e. fixed effects).  Note that the tests of the model parameters represent an inference on the parameters (conditional on a
specific model), not an inference on models.



It seems that the fixed effect approach was usually used in combination with Bayesian model selection and DCM-average method provided by SPM5, while random effect approach was used in combination with t test for investigation of the statistical significance of intrinsic and bilinear parameters (sometimes, only one model was assumed). Is it true?.

I will not try to answer this question became Klaas Stephan et al are preparing a Ten Simple Rules paper for DCM that
will cover good practice for inference at the group level.  I will say:

i) If there is only one model, then between-subject inferences are based on the parameters of that model. This can
proceed using classical (e.g. t-tests or ANOVA) or Bayesian (e.g. DCM averaging) techniques.

ii) If there are a number of models, one has to first make an inference about models (and, if necessary, proceed to
inference on the parameters of the model selected, as above). Inference on models can again use classical (e.g., ANOVA
of the log-evidences for each model per subject) or Bayesian (fixed or random effects) procedures. One would only use
random effects BMS if there was some reason to suppose that different subjects might use different models (e.g
responders and non-responders in a drug study). Fixed effects BMS reduces to comparing the group Bayes factors,
whereas random effects analyses are newer and add an extra (group) level to the generative model. If you use a fixed
effects BMS, it is not unusual to supplement this with a classical analysis to ensure there are no outliers (in terms of the
Free-energy approximation to the log-evidences).


   With respect to our work, we are now using DCM analysis to investigate the effective connectivity between six cortical regions that were distributed in primary and higher visual cortex, and frontal cortex. The method of DCM analysis in our study is described as following:

   First, a model with reciprocal and hierarchical intrinsic connection was assumed.

   Second, on the basis of such model, several alternative models were generated by varying the number and location of bilinear effect. As a result, all the models assumed in our study have the same intrinsic connection but different assumption of bilinear effect.

   Third, Bayesian selection was used for the selection of the best explanatory model.

   Finally, the parameters of the best model were averaged and assessed across subjects. Here, my question is: how to assess statistical significance of these parameters across subjects, using DCM-average or t test?

I believe that many new DCM users have the similar confusion to me.

There is no need to establish that parameters are significant because you have already made the inference that the model with these parameters
was more likely than any competing model - this is the inference. However, as with all inferences it is good practice to report quantitatively what you
are making an inference about,  This would entail reporting the average coupling strengths (or % change for bilinear effects) in a graph or table.

Having said this, you may want to make the inference that the coupling strengths (or changes) were in the same direction over subjects.
This is an inference on parameters (given the best model selected). In this instance, one could use either classical or Bayesian inference. Although
it would be more consistent to use Bayesian inference, most readers will find a simple t-test (or ANOVA) easier to understand and I personally,
would be happy to use classical inference.


I hope this helps - Karl