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Abstract 
The theory of cities, which has grown out of the use of space syntax techniques in 
urban studies, proposes a curious mathematical duality: that urban space is locally 
metric but globally topo-geometric. Evidence for local metricity comes from such generic 
phenomena as grid intensification to reduce mean trip lengths in live centers, the fall of 
movement from attractors with metric distance, and the commonly observed decay of 
shopping with metric distance from an intersection. Evidence for global topo-geometry 
come from the fact that we need to utilize both the geometry and connectedness of the 
larger scale space network to arrive at configurational measures which optimally 
approximate movement patterns in the urban network. It might be conjectured that there 
is some threshold above which human being use some geometrical and topological 
representation of the urban grid rather than the sense of bodily distance to making 
movement decisions, but this is unknown. The discarding of metric properties in the 
large scale urban grid has, however, been controversial. Here we cast a new light on 
this duality. We show first some phenomena in which metric and topo-geometric 
measures of urban space converge and diverge and in doing so clarify the relation 
between the metric and topo-geometric properties of urban spatial networks. We then 
show how metric measures can be used to create a new urban phenomenon: the 
partitioning of the background network of urban space into a network of semi-discrete 
patches by applying metric universal distance measures at different metric radii, 
suggesting a natural spatial area-isation of the city at all scales. On this basis we 
suggest a key clarification of the generic structure of cities: that metric universal 
distance captures exactly the formally and functionally local patchwork properties of the 
network, most notably the spatial differentiation of areas, while the topo-geometric 
measures identifying the structure which overcomes locality and links the urban 
patchwork into a whole at different scales.  

Introduction: The Dual Urban Network 
The theory of cities, which has grown out of the use of space syntax 
techniques in urban studies, proposes that urban street networks have 
a dual form: a foreground network of linked centres at all scales, and a 
background network of primarily residential space in which the 
foreground network is embedded. (Hillier 2001/2) The theory also 
notes a mathematical duality. On the one hand, measures which 
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express the geometric and topological properties of the network at an 
extended scale, such as integration and choice measures in axial 
maps or segment angular maps, are needed to capture structure-
function relations such as natural movement patterns (Hillier & Iida 
2005). We can call these measures topo-geometric. On the other, at a 
more localised level, an understanding of structure-function relations 
often requires an account of metric properties – for example the 
generic, but usually local, phenomenon of grid intensification to 
reduce mean trip lengths in live centres (Siksna 1997, Hillier 1999), 
the fall of movement rates with metric distance from attractors, and the 
commonly observed decay of shopping with metric distance from an 
intersection. In terms of understanding structure-function relations, 
urban space seems to be globally topo-geometric but locally metric. 

Here we propose to link these two dualities in a more thorough-going 
way. We show first that the large scale foreground network of space in 
cities, in spite of the claims of critics (Ratti 2004), really is not metric. 
On the contrary, the substitution of metric for topo-geometric 
measures in the analysis has catastrophic effects on the ability of 
syntax to account for structure-function relations at this scale. At the 
same time, topo-geometric measures turn out to capture some 
interesting metric properties of the larger scale urban network. But we 
then show that the background network of space really is metric in a 
much more general sense than has been thought, in that metric 
measures at different radii can be used to partition the background 
network of urban space into a patchwork of semi-discrete areas, 
suggesting a natural metric area-isation of cities at all scales as a 
function of the placing, shaping and scaling of urban blocks.  

On this basis we suggest a clarification of the dual structure of cities: 
that metric ‘universal distance’ (distance from all points to all others – 
Hillier 1996) measures can capture the spatial differentiation of the 
background urban network into a patchwork of local areas, while the 
topo-geometric measures identify the structures which overcomes 
locality and links the urban patchwork into a whole at different scales. 
The patchwork theory is in effect a theory of block size and shape, 
picking up the local distortions in urban space induced by the placing 
and shaping of physical structures. More generally, we can say that 
the local-to-global topo-geometric structure reflects the visual and so 
non-local effects of placing blocks in space, while the patchwork 
structure reflects metric and so local effects. 

The patchwork theory extends and generalises the concept of grid 
intensification, meaning the reduction of block size to reduce mean 
distance from all points to all others in a space network. As shown in 
(Hillier 2000), holding total land coverage and travellable distance in 
free space constant, a grid in which smaller blocks are placed at the 
centre and larger blocks at the edge has lower mean distance from all 
points to all others in the space network than a regular grid, while if 
larger blocks are placed at the centre and smaller blocks at the edge, 
then the mean distance from all points to others in the space network 
is higher than in a regular grid. This follows from the partitioning 
theory set out in Chapter 8 of Space is the Machine. (Hillier 1996) 

In general in urban grids, live centres and sub-centres (‘live’ in the 
sense of having movement dependent uses such as retail and 
catering) tend to the grid intensified form to maximise the inter-
accessibility of the facilities within in the centre, residential areas tend 
to larger block sizes, reflecting the need to restrain and structure 
movement in the image of a spatial culture, while the linkages 
between centres tend to an even larger block size again, an effect of 
the directional structuring of routes, so that the network of linked 
centres which dominate the spatial structure of cities tend to oscillate 
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between a relatively large and relative small block size, with the 
residential background occupying the middle range. This block size 
pattern is explained more fully in (Hillier 2001/2). 

In this paper we: 

• First review the duality of urban space in three ways: geometrically 
to establish its empirical existence as a key dimension of urban 
form, functionally to show its implications in terms of movement and 
land use patterns, and syntactically to show the relations between 
the two. 

• We then explore some of the suggestions that have been made 
about reducing the distance between syntax and more traditional 
metric approaches, in particular by examining the suggestion of 
Ratti that we should add metric weightings to the main syntax 
measures. We show the consequences of these suggestions for 
any theory which seeks to identify functionally meaningful 
structures in urban space 

• We then suggest a general method for showing the metric effect on 
space of block placing and shaping, both visually and in terms of 
patterns in scattergrams, by showing theoretical cases 

• We then apply this method to some cities and show its ability to 
identify if not natural spatial areas then at least a natural periodicity 
in city networks through which they tend to a natural spatial area-
isation at all scales, reflecting the ways in which we talks about 
urban areas and regions at different scales.  

Metric and Geometric Properties of the Grid 
First, we consider the urban duality geometrically by looking sections 
of metropolitan Tokyo and London, shown in Figure 1. As shown in 
(Hillier 2001/2) and later formalised in (Carvalho & Penn 2004), we 
must first remind ourselves of the fractal nature of urban least line 
networks: all are made up at all scales, from the local area to the city 
regions, of a small number of long lines and a large number of short 
lines. But there is more to be said. Longer and shorter lines form 
different kinds of geometric patterns. If we look for patterns in the 
section of Tokyo, the first thing the eye notes are line continuities. 
What we are seeing in effect is sequence of lines linked at their ends 
by nearly straight intersections with other lines, forming a visually 
dominant pattern in the network. But in general, the lines forming 
these nearly straight continuities - as Figueredo calls them (Figueredo 
2003) - are longer than other nearby lines. This has the effect that if 
we find a locally longer line it is likely that at either end it will lead to 
another to which it will be connected by a nearly straight connection, 
and these lines will in turn be similarly connected. Probabilistically, we 
can say the longer the line, the more likely it is to end in a nearly 
straight connection, and taken together these alignments form a 
network of multi-directional sequences. Intuitively, the value of these 
in navigating urban grids is obvious, but here, following (Hillier 1999) 
we are making a structural point. 

What then of the shorter lines? Again, in spite of a highly variable 
geometry, we find certain consistencies. First, shorter lines tend to 
form clusters, so that in the vicinity of each longer line there will be 
several shorter lines. These localised groups tend to form more grid-
like local patterns, with lines either passing through each other, or 
ending on other lines, at near right angles. We can say then that the 
shorter the line, the more likely it is to end in a right angle or near right 
angle and in general to be embedded in a nearly rectilinear local 
structure. So organic grids like Tokyo and London tend to have a kind 
of probabilistic geometry, which in (Hillier 1999) we called the hidden 
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geometry of deformed grids. Consulting (Hillier 2001/2) we can see 
that, substituting lines for near-straight alignments (or continuities), 
similar arguments apply to the more geometrical interrupted grids 
which also share these fractal line length properties. It should not be 
forgotten that these complex and consistent patterns arise only from 
the placing and shaping of urban blocks. This raises an interesting 
question. So far syntax has identified these in terms of spatial 
configurations. But is there also a sense in which they can be 
interpreted as the outcome of block patterns. The analysis of urban 
block patterns set out in Hillier 2001/2 suggests this could be the case. 
We will see below that it is the case. 

 

 

 

 

 

 

 

 

 

 

 

What then of the functional correlates of such patterns. We can find 
two kinds: antecedent and consequent. For the antecedent we need 
to understand the origins of the urban grid in a functionally informed 
process. In (Hillier & Hanson 1984, Hillier 2001/2) it was suggested 
that given the basic generative process for settlements by which 
dyadic cells representing buildings joined by their entrances to cells 
representing a piece of open space, aggregate by joining their open 
spaces, such dual patterns would be generated by following the rule: 
don’t block a longer local line when you can block a shorter one. This 
in itself will create a network of longer alignments set into a 
background of shorter line patches. Such considerations are then 
antecedent functional correlates of the dual grid. 

The consequent are also set out in (Hillier 2001/2). The functional 
patterns of cities are created by a dual process: a micro-economic 
process which, seeking to maximise movement and co-presence, 
creates the main, local-to-global structure of the grid with its longer 
lines and nearly straight connections; and a socio-cultural process 
which, seeking to modulate and structure movement and co-presence 
to reflect specific cultural norms, creates the background, primarily 
residential, patchwork of more local areas with shorter lines and more 
grid like connections. Thus cities tend to have a universal global form 
and a culturally specific local form.  

The syntactic correlates of the dual pattern are that syntax identifies, 
through its measures, configurational structures in the network that 
reflect this duality. Until now, of course, syntactic measures have 
identified the main structure of the grid. If we can say that cities are 
made of two kinds of elements: local elements which play little or no 
role in linking the local parts into the larger scale system, and local-to-
global elements which do play such a role, then we can say that until 
now syntactic measures have highlighted the local-to-global elements 
through structures such as integration cores and choice networks. 
Here we suggest how we can turn our attention to the local, 

Figure 1: 

Sections of the Tokyo and 
London street networks 
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background network. We show that although metric measures can be 
shown to play no part in the local to global structure, metric measures 
are exactly what we need to identify the patchwork of differentiated 
areas that make up the local background structure of the urban grid in 
terms of how they are formed by the block structure. We demonstrate 
the former first by examining the suggestion that we should improve 
our measures by assigning them metric weightings.  

Metricising the Integration Measure 
We begin with the integration measure. There are two ways in which 
we might consider metric weighting. One is simply to weight the root 
segment (or line) for each calculation with its metric length, and so in 
effect to multiply the integration value by the length of the segment. 
The best that can be said of this strategy is that it is harmless. The 
weighted and unweighted measures are barely distinguishable, and 
statistically the two measures correlate very closely indeed - for 
example .9996 for London within the north and south circular roads. 
This is also the case for radius restricted versions of the measure.  

The second method would be to weight each relation in the integration 
measure for the metric length of the segment (or line), so in effect 
substituting a measure of the length of the segment or line for the 
topological values of 1. The effects this are dramatic, but have the 
effect of trivialising the measure, and on reflection this must be the 
case. As soon as any kind of closeness measure is metrically 
weighted, the only effect can be to produce a more or less smooth 
concentric pattern from centre to edge, reflecting the simple and 
obvious fact that in any system the most metrically integrated location 
is the centre, next the ring immediately around the centre and do on. 
The effect of metricising the measure is then to conceal the 
functionally sensitive differentiations that are shown in a normal 
integration map, and replace them with a trivial analysis that at best 
states the obvious and has at best only the broadest possible 
sensitivity to functional differentiation. In terms of movement prediction, 
the effect of metrically weighting the root is to make little difference, 
whereas weighting each relation destroys the ability of the measure to 
predict movement. This is shown in detail in (Hillier & Iida 2005) where 
the average correlation for metrically weighted integration in four 
densely observed areas of London was ‘shortest path’ measures was 
much lower than for ‘fewest turns’ or ‘least angle change’ change 
measures. 

But there is another way of looking at this: topo-geometric measures 
of integration can be show to absorb certain non-trivial metric 
properties of the system. For example, whether we define the radius 
from a segment in metric (up to a certain distance along all streets), 
topological (up to so many turns away) or geometric (up to a certain 
amount of angular change away) terms, as we increase radius the 
integration measure increasingly well approximates the total length of 
street within that radius. For example, angular integration at angular 
radius 4 (up to four right angles from each root segment) for London 
and total street length from each segment within the radius, gives an 
r2 .97. Figure 2 This measure closely approximates (and pre-dates) 
Peponis’s measure of ‘directional reach’ (Peponis forthcoming). For 
metric radii, correlations are less good, but still strong, for example the 
r2 i s.954 at a 5km radius in the case shown in Figure 2 It should be 
noted, of course, that without restriction on radius, the total street 
length from each segment (or line) must be the same, since it refers to 
the whole system. 

There are two reasons why we must expect this agreement between 
angular (or topological) and metric measures. The first is what we 
might call the averaging effect: that with the increasing number of 
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segments with increasing radius, the differences in segment lengths 
average themselves out, so that the total segment length very closely 
approximates simple segment count. Simple segment count is, as 
Dalton shows (Dalton 2005), the strongest component of the 
integration measure with restricted radius. The second reason for the 
closeness of the two measures is what we might call the overlapping 
effect: with increasing radius the radius fields from the different root 
segments overlap with each other, so increasingly overlapping groups 
of segments are being used to calculate the measure. So in a 
significant sense, least angle or topological integration measures 
contain more useful metric information than their metrically weighted 
versions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metricising the Choice Measure 
Let us now consider the effects of metricising the choice, or 
betweenness, measure. It was shown in (Hillier & Iida 2005) that 
metrically weighted - and so in effect shortest path - choice measures 
without radius restriction were markedly less good predictors of 
movement than the same measures with geometrical (least angle 
change) or topological (fewest turns) weightings. This study did not 
however consider choice measures with restricted radius, and, in view 
of the fact that in the ‘dual’ theory of urban space outlined above, at a 
sufficiently localised level space is expected to operate metrically, we 
might expect some improvement in movement prediction from 
metrically weighted choice with more localised radius. Here we show 
that we must discard this possibility. Local radius metrically weighted 
choice measures have far less pattern similarity with observable 
functional patterns (in this case land use patterns) than geometrically 
or topologically weighted measures. In Figure 3, we show in the 
darker colour the pattern of shops in one of the unplanned areas of 
Jeddah. On the right, in the context of the whole of Jeddah, we see 
the least angle choice measure at radius 3000 metres, with the colour 
spectrum adjusted to show the range of values in the area. The 
correspondence between the two patterns is not exact, but 
remarkable for a single measure. 

Figure 2: 

The correlation between 
segment angular integration 
and total street length at 
angular radius 4 (left) 
r2= .970, and metric radius 
5km (right) r2= .955 for 
London within the M25 
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We then vary the radius of the least angle choice measure. Reading 
left to right in the top row of Figure 4, radius 500m picks outs all the 
main centres, radius 1000m links the main centres together, radius 
2500m shifts the focus to two main shopping streets closer to the 
Mecca Road in the south and radius 5000m shifts the focus to the 
Mecca Roads itself and its main intersector, though still maintaining a 
sketch of the smaller scale system of centres to the north. This is a 
very persuasive analysis of the relation between urban scale and the 
functional pattern. But if we repeat the exercise substituting metric, or 
shortest path choice analysis for least angle, as in the bottom row of 
Figure 4, then at all levels, the network identified is much more 
complex and diffused, and has very little relation to the pattern of 
shops. More bizarrely, with high radius the measure increasingly 
identifies highly complex routes through the system, with, apart from a 
focus on a section of the Mecca Road at high radius, absolutely no 
relation to the shop pattern. 

 

 

 

 

 

 

 

 

 

 

 

The difference between the two measures persists at radius-n. Figure 
5 While least angle choice continues to sketch the main functional 
structure of the area, metric choice identifies a network of highly 
complex routes with virtually no reference to the evidence provided by 
the shop pattern of how people actually move about the area. The 
dominant route - the dark diagonal - has dozens of changes of 
direction, and it is inconceivable that this could operate even as a 
main pedestrian route across the area. What might be suggested is 
that metric choice find the shortest paths that very highly 
knowledgeable movers such as taxi-drivers learn and use to avoid the 
highly uses routes in the area.  

Figure 3: 

On the left the pattern of 
shops in an unplanned area 
of Jeddah is shown, on the 
right the radius 3000m 
segment angular choice 
measure for the same area 

Figure 4: 

Least angle (top) and metric 
(bottom) analysis at 500m, 
1000m, 3000m and 5000m 
left to right 
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We can show why such complex routes will frequently – but arbitrarily 
– be identified by metric choice by a simple experiment. In Figure 6, 
we consider on the left three ways of diagonalizing a grid. In the top 
case, the diagonal is regular and so the length of the diagonal route is 
identical to that of the right side peripheral route. Bottom left, we then 
create an upward kink on of the line elements, with the effect of 
marginally increasing the length of the diagonal route compared to the 
peripheral route. Bottom right, we create a downward kink on one line, 
so marginally shortening the diagonal route compared to the 
peripheral route, which we show following our usual colouring 
convention. It follows that with the most marginal changes of this kind, 
shortest routes will find complex diagonals or simple peripheral routes 
more or less arbitrarily. This is confirmed in the right figure where we 
construct a system in which the two diagonals compete, and 
movement shifts decisively to the downward link and so the shortest 
path route. In real situations, then, which route is selected by the 
shortest path algorithm will often then depend on very minor 
differences in angles, and so be virtually arbitrary. 

 

 

 

 

 

 

 

 

 

This arbitrary selection of complex diagonals as shortest paths will 
feature particularly strongly where a more regular grid system is 
associated with complex internal structures within grid islands. For 
example, in Beijing, shortest path choice analysis – right above - does 
not find the eight-lane boulevard between the Forbidden City and 
Tianamin Square, a boulevard which crosses Beijing east to west and 
is one of the busiest routes in Beijing. This is then a remarkable failure. 
It is not that the shortest path structure is not interesting, but it is quite 
unrealistic in terms of real flow patterns. In general, the more a grid is 
deformed, the more shortest path choice tends to resemble least 
angle change choice. However, even in a highly deformed grid such 
as London, shortest path choice, unlike least angle choice, does not 

Figure 5: 

Least angle choice (left) and 
metric choice analysis (right) 
at radius-n 

Figure 6: 

Different ways of 
diagonalising the grid, 
showing why minor 
geometrical changes can 
lead to near arbitrary 
changes in shortest paths 
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highlight Oxford Street (the main shopping street), but a section of 
Aldgate east of the City of London, and then, even more strangely, 
Camberwell Green, a down-market inner urban centre well to the 
south of the central areas.  

Where a certain kind of metric weighting does play an important role, 
and is often necessary, is in restricted radius choice measures. If the 
least angle choice measure is calculated at a low radius, then it will be 
very powerfully affected by small block structures, since by definition 
in these areas there will be very large numbers of segments acting as 
origins and destinations, and this will create local cluster of high local 
choice which would not be realistic in terms of the real numbers of 
buildings in those areas to act as origins and destinations. This can be 
eliminated by weighting each choice calculation by the product of the 
origin and destination segments. This is in effect a Newtonian move 
since what we are doing is weighting the amount of movement 
between the two segments by the combined ‘mass’ (in this case 
length) of the two segments. This will mean that where block sizes are 
small the weightings will be small, and so the choice values within the 
small block areas will realistically reflect the scaling of origins and 
destinations in these areas. Low radius choice should not be used 
without this Newtonian weighting, but as radius increases the need for 
it diminishes. 

The Local Metric Patchwork 
We have shown then that metric factors play only a very limited role in 
the foreground, or local-to-global, topo-geometric structure of urban 
space. Theoretically, the foreground structure can be seen as arising 
from the impact on visual structure of placing and shaping objects in 
space (Hillier 2001/2). Because vision is not affected by distance, but, 
as it were, overcomes distance, the effects of placing objects in space 
is from a visual point of view global. In contrast the metric effects are 
largely local. If we take a set of identical urban block arranged on the 
on hand to allow visual connection between spaces and on the other 
to limit these as far as possible, then comparing the figures we see 
the visual structure is completely changed by the moving of the blocks, 
while the metric structure remains very similar.  

But if we treat the metric effects as local and analyses metric inter-
segment relations at restricted radii, a wholly new type of urban 
pattern appears: a patchwork of local areas. By patchwork we mean 
that whole areas acquire similar values and so similar colouring, 
seemingly representing some natural division of the background urban 
network into areas. The patchwork phenomenon was first brought to 
light by Dalton (Dalton 2007), who took each line in a network and 
calculated syntactic intelligibility and synergy values for each line up to 
a given topological distance away from the segment. Groups of local 
lines often acquired similar values, giving rise to the patchwork effect 
when values were translated into colours, suggesting spatially defined 
areas based on some kind of hard-to-see discontinuities in the urban 
grid structure. This followed earlier work by Yang who plotted first 
intelligibility and synergy values with increasing radius from each line, 
suggesting a relation between the structure of an area and its quite 
remote embedding in the larger system (Yang 2005). Yang then 
sought to identify these discontinuities by looking at the rate of change 
of node count with increasing radius from each line or segment (Yang 
2007). Hillier then showed that a more or less identical patchwork 
could be identified by simply calculating the metric mean depth from 
segments within a metric radius. Figure 7 shows the 500m and 1500m 
patchworks, which are hard to distinguish from those identified by 
node count 750/250m and 2000/1000. 
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If we increase the radius of either measure, the scale of the patchwork 
increases proportionately, eventually yielding a large scale 
regionalization of the urban system. What exactly is then happening? 
Appendix 1 by Park show mathematically why these measures give 
such similar results. But theoretically it is clear that both are reflecting 
discontinuities in the urban grid at whatever radius is selected. The 
rate of node count change measure, as it were, explains the metric 
mean distance measure. Here we propose that what we are 
identifying is an extension of the partitioning theory set out in Chapter 
8 of Space is the Machine, by which the local metric effects of 
different partitionings of the grid are predictable from a small number 
of simple rules. In effect, we have here a way of showing the pattern 
of local metric effects that come from different ways of placing and 
shaping urban block in space. We now explain some of the basics of 
this theory. 

 

 

 

 

 

 

 

 

 

 

 

Theoretical Foundations 
Let us first look at theoretical foundations. The generative component 
of space syntax theory shows that as objects are placed in space, a 
structure of some kind emerges in that space. It is this spatial 
structure that then impacts of movement and co-presence patterns. 
This is a vital principle. It is not the built forms that create the pattern 
of co-presence, but the distortion in space created by the presence of 
those objects. In this sense syntax is comparable to relativity theory 
rather than classical physics, since there also it is the effect of objects 
on space that accords agency to space itself rather than to the 
physical structures.  

The structures emerging in space from the placing and shaping of 
physical objects is then the key subject matter of syntactic analysis. A 
branch of syntax theory now deals with the laws governing the ways in 
which different kinds of structure emerges in space from the placing 
and shaping of objects (Hillier 2001/2). In a sense, all the 
representational techniques of space syntax are attempts to capture 
the structure of spatial field created by dispositions of objects. 
Typically, syntax has represented these patterns in two ways: as 
pattern of colours representing configurational values; and as plots 
(such as intelligibility and synergy scattergrams) of the relationships 
between these values.  

Is there then way of capturing the effects on the metric structure of 
space of placing and shaping object in that space? We suggest that 
the answer lies in the key fact that the impact of objects on metric 
structure is localised compared with the effects of visual structure, 
while the metric structure of the large scale system of space is little 

Figure 7: 

Showing the local metric 
patchwork for London at 
radius 500m and 1500m 
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affected by local metric variations. This we suggest guides us towards 
a proper assessment of the role of metric structure in urban systems: 
that its effects are for the most part localised, but that these localised 
effects constitute one of the critical dimensions of urban spatial 
morphology. 

Consider a simple square space within a boundary. Bearing in mind 
that the boundary of a system is its first partitioning, is there any 
sense in which we can find metric structure in the space? We propose 
the theory of metric signatures. Metric signatures are brought to light 
in two stages. First we analyses mean metric distance from each 
spatial element to all other within a series of rising radii. This produces 
a pattern of colours which change with increasing radius. We then plot 
scattergrams with the mean metric distance values at increasing radii 
on the y-axis and mean metric distance values at radius-n on the x-
axis. The resulting pattern expresses the local metric distortion 
introduced into space by that partitioning against the metric pattern of 
the whole object. The sequence of scattergrams is then the metric 
signature of a distribution of objects in space.  

If we take the simple square shape, and calculate metric mean depth, 
MMD, from all points to all others without radius restriction, MMD-n, 
with a Moore neighbourhood (8 adjacent neighbours for each cell), 
and colour up the results from dark for low through to light for high, we 
of course find (left above) a pattern in which the centres has the 
lowest values and the corners the highest. But if we calculate MMDr 
with a radius of 1 (in this case up to 3 cells away), MMD1, we find a 
pattern with the highest values in the centre, followed by the centre 
edges, and patches of low MMD1 near each of the corners, but with 
higher values in the corner itself. What exactly is happening? 

 

 

 

 

 

 

 

 

If we start with the central node, with each added level of depth with a 
Moore neighbourhood we find a ring of 8 additional nodes. For a 
corner, the added number is 2. These two rates of increase are then 
constant and linear. But if we multiply the node count at each level by 
its depth, then the total depth increases at a faster rate from a central 
node than a corner node because more node are being added at the 
deepest level. This is reflected in slightly higher mean depth in the 
centre compares with the corner. The difference are quite slight, and 
diminish from just under 6% at radius 1 to 1% at radius 24, and 
converge on a mean depth of 2/3 of the radius (see Appendix 1 by 
Park). The non-corner edges are midway in between. This is why the 
central area nodes are darker, and the corner nodes less dark and the 
edge non-corner nodes in between. Just in from the corner, however, 
another factor comes in. At low radius, near-corner node acquire 
shallow nodes all round, but the boundary prevents the acquisition of 
deeper nodes, so the differences in mean depth are greater (about 
16% less than central nodes) for near-corner than for at-corner nodes. 
So we see that the position of nodes in relation to the boundary of the 
system creates the kind of structure in MMD at low radius that we see 
above right, and these effects become smaller as radius increases, 

Figure 8: 

Radius-n and radius 1 (3 
cells) metric means depth in 
a square shape 
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eventually converging on the radius-n pattern. These patterns of MMD 
are then low radius, and so local effects, which vanish as the analysis 
becomes more globalised. 

 

 

 

 

 

 

 

We can picture the distortions in space that appear with restricted 
radius MMD by scattergrams plotting the MMD pattern at that radius 
on the y-axis against MMD at radius-n on the x-axis. Figure 9 In this 
case we use a much denser analysis, and in this case in fact we use 
DepthMap segment analysis rather point analysis. The coloration in 
the scattergram is vertical and so shows low radius-n MMD in dark 
through to high in light. The vertical fluctuation show the fall and rise 
of MMD at radius 2 in this case, meaning a radius of a quarter of the 
diameter of the system. The points high on the left are the central 
segments, the central, slightly lower peak, points are the edges and 
the lower third peak on the right are the corner segments. The falling 
curve represents the four near corner low MMD peaks. The 
scattergram thus shows the metric distortion in the pattern of space 
created by the simple fact of the boundary. These effects would 
disappear if the bounded shape were rendered unbounded by rolling 
the shape up into a torus in the manner discussed in Chapter 8 of 
Space is the Machine. Figure 9 shows the scattergrams for a simple 
square shape, and then the same shape with a central and then 
corner square object.  

With a little practice, we can learn to interpret the scatters in terms of 
the shadings (or colours) and what they mean. However, we shade 
the scattergram left right for the MMDn pattern to establish a 
convention in which the shades show the radius-n pattern and the rise 
and fall the restricted radius, MMDr, pattern. This means that the 
colours in the scattergram are the opposite of the colours in the 
colouration, but it seems better to make the colours and shapes show 
the different dimensions of the scatter. The pattern in space that we 
see in the first case is the effect of the boundary, which we should see 
as the first partitioning of the system. With increasing radius, the 
scatter will of course converge on the radius-n pattern.  

We can explore increasing radius first by experimenting with boundary 
shapes in this case using the two smallest ‘sound-alike drums’ as in 
Figure 10 and showing their metric signature as the sequence of 
scattergrams. 

We can then use the technique to explore the metric distortions of 
space brought about by placing multiple objects in space by looking at 
their pattern of shading, or coloration, at different radii. We have 
already shown that the patterns that come to light are brought about 
by the discontinuities in the space established by local variations in 
the block structure. The scattergrams show the metric shape of space 
of the patchwork through the metric signatures at different radii and 
the pattern of peaks and troughs that are found in the scattergram. In 
Figure 11, for example, we show the colouration pattern and metric 
signatures for 10 objects placed randomly in a square. 

Figure 9: 

Colouration and 
scattergrams for metric 
mean distance at radius 2, 
MMDr2, for a square shape, 
then the shape with a central 
and then corner object 
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Metric Signatures of Urban Spatial Networks 
We can now use this technique to clarify and explore the patchworks 
that appear in urban systems under restricted radius mean metric 
distance analysis. In Figure 12 we show the patchworks at radii of 
500m, 1500m and 3500m for part of Central London, with MMDn on 
the horizontal axis, and MMDr on the vertical. The darker patches, 
which are metrically integrated zones, show initially as thin peaks, and 
these become broader with increasing radius, and at higher radii yield 
a large scale regional picture of the city. 

But do these represent real patterns? The test of structure is function, 
so we must ask if the patchwork corresponds in any sense to 
functional differentiations. Intuitively, this does seem to be the case. In 
Figure 13 left we take the radius .5 kilometre analyses of part of 
central London. 1 is the immediate area of Marylebone High Street, 
and the blue colour indicates local grid intensification. 2 is the 
adjacent residential and non-live business area of north Marylebone. 3 

Figure 10: 

The ‘metric signatures’ of the 
two smallest ‘sound-alike 
drums’: radius 1 top left, 
radius 2 right, radius 3 
bottom left, radius 4 right. A 
radius is ¼ of the object 
radius 

Figure 11: 

The metric signatures of ten 
randomly place objects 
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is the live area of Goodge Street, and 4 the live Coptic Street area 
south of the British Museum, and the adjacent live Seven Dials area. 5 
is the South Bank Cultural Centre with its two level grid, 6 is the very 
different adjacent Coin Street area while 7 is the area beyond which 
has been subject to a quite successful urban regeneration.8 is then 
the Roupell Street residential area of small terraced houses, 9 is the 
live St Andrews’s Hill local area in the City of London, while 10 is the 
upmarket but non-live area of St James. At an intuitive level then there 
seems quite a strong agreement between the patchwork and 
functional variation, even at this small scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the right of Figure 13, with MMD set at radius 2km, much larger 
areas are of course identified. 1 corresponds to the City of London 
(UK’s financial centre) plus its northern business extensions, 2 is the 
area around Borough Market, a highly active regenerated area, 3 is 
Pimlico, 4 is the very upmarket area bounded by Knightsbridge and 
the Kings Road, 5 corresponds to the part of London north of 
Trafalgar Square most heavily populated with tourists including 
Leicester Square, Picadilly Circus, Soho and Covent Garden, 6 is the 

Figure 12: 

The metric signature of part 
of Central London at radii 
0.5km, 1.5km and 3.5km 

Figure 13: 

Central London patchworks 
at 0.5km and 2km with 
patches numbered 
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gentrifying area of Clerkenwell, and 7 is a popular and active area 
around The Cut on the South side of the river. Again the larger 
patches seem to be broadly reflected in functional differentiation. 

But of course, we can also use the scattergrams to explore areal 
differentiations, either by selecting peaks or troughs in the scattergram 
and seeing where they are in the maps, or vice versa. If we take the 
intermediate level of analysis of central London, as in Figure 14, the 
small leftmost peak in the scattergram corresponds very closely with 
the main tourist area of London, as we saw in Figure 13. The second, 
higher peak is the City of London, the financial centre and historic 
core of London. This peak turns out to conceal another. If instead of 
selecting the peak in the scattergram we select an area from the map, 
in this case the very active residential, tourist and shopping area 
between the Kings Road and the Fulham Road in Chelsea, we find it 
take the form of a peak hidden by the higher peak of the City of 
London. The higher peaks to the right should be treated with caution, 
since their location may subject them to the edge effect by which the 
system boundary cuts deeper nodes from peripheral locations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What about more regular grids, say Manhattan island? Figure 15 
shows the patchwork for Manhattan at a radius of 2 kilometres, and 
scattergram which shows a series of peaks.  

 

 

 

 

 

 

 

 

Figure 14: 

Selecting from the 
scattergrams to show peaks 
are areas in Central London 

Figure 15: 

Manhattan patches at a 2km 
radius 
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Starting with the scattergrams in Figure 16 the small leftmost peak, is 
Greenwich Village, East Village, and the second, much higher peak, is 
the financial district. This peak seems to conceal another, slightly to 
the right and just visible in the original scatter.  

 

 

 

 

 

 

 

We can find this by reversing the selection process, and instead of 
selecting a region in the scattergram, we select an area of the map. 
We find then that the peak concealed by the financial district peak is 
the Upper West Side area and behind that is another which is Upper 
East Side. The smaller peak to the right is an area to the west of the 
north end of Central Park, the sub peak on the right is East Harlem, 
and the main peak is the main Harlem area north of the Park. Again 
there seems to be a strong relation between the peaks and patches 
and the functional differentiation of areas.  

In general, low radius peaks tend to identify the historic centres of 
cities. In Barcelona (left in Figure 17), the first main peak identifies the 
old part of the old city, which show a clear differentiation into three 
different areas. At higher radius, this differentiation disappears and the 
old city reads a single system. The minor peak to the left identifies the 
four dark regions to the north of the diagonal. In Atlanta, the first peak 
at radius 1 is again the offset grid of the original centre. 

 

 

 

 

 

 

 

As with Barcelona, the first radius in Amsterdam creates a patchwork 
of differentiated areas within the old central area, but with higher 
radius the area as a whole becomes more like a patch. But compared 
with Barcelona, the transition happens more quickly. In Hamedan the 
first peak identifies the centre at radius 2. In Konya, all low radii 
identify the centre. In Jeddah, the first peak is the historic centre. The 
second peak is the unplanned University area that we looked at earlier 
on. This is just a selection of cases that have been examined so far. 

The technique can plausibly be used archaeologically. In Figure 18 we 
show the reconstructed plan of Teotihuacan with a radius 3 MMD 
analysis and scattergram. The first peak is the area around the 
Pyramid of the Sun, the biggest structure in Teotihuacan, and the 
large peak is in fact conjectural original settlement which existed prior 
to the building of the huge ceremonial centre which makes up most of 
the city. It is clear that this area is morphologically quite distinct form 
the rest of the settlement. The space complex leading to the Pyramid 
of the Moon is the first peak on the radius 2 map.  

Figure 16: 

Peaks and patches in 
Manhattan 

Figure 17: 

The centers of Barcelona 
(left) and Atlanta (right) 



Hillier, Turner, Yang, Park; Metric and Topo-geometric Properties of Urban Street Networks: 
Some Convergences, Divergences and New Results 

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007 

001-17

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
These results suggest not that there are, spatially speaking, natural 
areas in cities, but something more interesting and perhaps more 
lifelike: that at each scale there is a natural area-isation of the city into 
a patchwork of spatially distinguishable zones. This is after all how we 
talk about cities. We do not mentally regionalise them at one level only. 
But they do suggest that the area structure of the city is a dependent 
variable of the grid, and it must be among the objects of a theoretical 
model of the city to identify these.  

It is hard to judge how useful this will all be in the long run. The 
relations we have shown between the patchwork at various radii are 
suggestive but no more. It will take some time to develop functional 
measures which show unequivocally that the ways in which the block 
shapes and sizes create the patchwork is a significant force in 
shaping the functional patterns of the city. What is clear is that the 
measures do bring to light the metric imprint on urban space of the 
pattern of large and small discontinuities that result from the block 
pattern. The fact that the Yang’s measure of node count change of 
(NCr+r/2)/ (NCr-r/2) produces a very similar result to MMDr means 
that one measure explains the other. One interpretation of Park’s 
Appendix to this paper would be that MMDr shows the effect of 
discontinuities, while node count change shows where they are. 

Even so, at first sight, the periodicity exhibited by the MMDr measures 
is at first sight unnerving. The first thought must be that it is an artefact 
of some kind. But if so, it is far from clear what kind of an artefact it 
could possibly be. The only artificial aspect of our procedure has been 
to use the shading (or colour) spectrum to highlight local differences, 
and the legitimacy of this would seem to be confirmed by the strongly 
differentiated patterns shown in the scattergrams. The second thought 
then is that it must be real. But how could such a periodicity have 
arisen? A natural answer would seem to lie in the generative process 
we have described. The periodicity of the network is could plausibly 
be established by the generative process of block placing that 
establishes the fractal line structure through the rule: don’t block a 
longer local alignment if a shorter one can be blocked. This 
necessarily gives rise to the network of longer lines connected a 
nearly straight angles that constitute the foreground structure of the 
network, and it is in the nature of things that this line network is the 
means by which the local parts formed by the shorter line complexes 
are linked into a whole system. The choice measure finds this network. 

Figure 18: 

The central peak is the 
original settlement at 
Teotihuacan 
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The converse of this is that the clusters of shorter line do not do this 
but tend to form more localised patterns. One way in which this might 
be evidenced is the tendency of the lines making up the foreground 
network to separate the two sides of the line by not having short lines 
which pass through the main line to the other side. This is why main 
alignments in cities seem so often both to be centres of integration for 
neighbouring areas, but also to separate them from each other and so 
give rise to areas with different functional and spatial characteristics 
on either side.  

So these preliminary results suggest the technique is an interesting 
one, but as yet no more than that. Considerable work will be needed 
to find unequivocal functional tests for the kinds of patterns that have 
been brought to light. But in the meantime, great care must be 
exercised with this measure as there are a number of health warnings: 

 - as we showed with the theoretical examples, a patch can appear 
integrated because local boundaries allow locally shallow but not deep 
nodes. This means that that small isolated clusters of lines can appear 
metrically integrated, which of course they are , but only because they 
are small. This is a particular problem near the edge of the system, or 
where large holes exist in the urban fabric. |But commonsense can 
avoid this problem. 

 - where a number of lines intersect a local metrically integrated patch 
is likely to show. This is realistic, but of course the patch is not one 
defined by groups of buildings, but by a complex intersection. We can 
call these trivial patches. Again we can avoid this problem by 
commonsense. 

 - the scaling of patches must reflect the regional scale of the urban 
grid – for example MMD at a low radius produce a good patchwork in 
the central areas but may need a higher radius to get a good 
patchwork in suburban areas with their generally greater block size.  

 - careful adjustment of the colour spectrum is usually needed to show 
in the images the patterns that are clearly present in the scattergram. 
Typically, at low radius – 1 or 2 is the default radius is being used 
rather than a real metric radius – three clicks are need to bring in the 
blue spectrum and one click on in the red 

 - it must be made clear that although MMDr does reflect block size 
and shape, it is not in itself enough to account for live centres. It is a 
only where MMDr works alongside measures of the foreground 
structure – as in Marylebone High Street for example - that we find 
centres forming. Global – or at least local-to-global – factors are 
normally conjoined with local factors in centres formation, and of 
course grid intensification often increases as a consequence of centre 
formation.  
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Appendix 1 
This appendix aims to clarify the relationship between metric mean depth and 
the rate of change of node count. We assume that metric depth is defined in 
real number and node count is differentiable accordingly with respect to metric 
depth. 

(I) Local metric mean depth, ),( rvμ , of node v  for radius r  is: 

∫ ∂
∂

=
r

dx
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xvNx
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rv
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),(

1),(μ   (1) 

where ),( uvxx =  is metric depth of node u  from the reference node v  

and ),( rvN  is the number of nodes with ruvx ≤),( , that is: 
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(II) The rate of change of node count, ),( xvθ , of v at metric depth x has 
been defined as (Yang 2007): 
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Substituting (4) into (1), we have: 

∫=
r

dxxvxvNrvNrv
0

),(),(),(),( θμ  (5) 

where ),(),( rvNrvμ  is simply total metric depth. 

Differentiating both sides of (5) with respect to r  will yield:  
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Since metric mean depth and radius have the same linear dimension, the first 
derivative term in (6) must be independent of r , that is, 

1)(/),( <=∂∂ vcrrvμ . Consequently, we can simplify (6) into: 
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The figure below is drawn according to (7) to show the relationship between 
node count change rate and metric mean depth for a single node having, for 
instance, 7.0)( =vc . On the one hand, for any fixed radius, we should 
always be able to expect a positive correlation between the two. On the other, 
if radius increases, we may consider three possible monotonous routes of 
development:  (A) ),( rvμ  increases while ),( rvθ  decreases; (B) ),( rvμ  

increases while ),( rvθ  remains stationary; (C) both ),( rvμ  and ),( rvθ  
increase. Note how these different routes would induce an ‘inversion of 
centrality’: nodes that are more central (i.e. lower mean depth) at smaller radii 
tend to be decentralised at larger radii. Which route of development a node 
will take depends entirely on a scaling between radius and its node count.  
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(III) It is often observed that node count scales with radius following the 
power-law, such that: 

)(),( vkrrvN α=  (8) 

where )(vα is the scaling (or fractal) dimension starting from v  and k is 
some constant of proportionality. 
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From (3), the rate of change of node count under the power-law scaling 
becomes: 

)()(),( 1)(
)( vkrv
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rrv v

v ααθ α
α =⋅= −  (9) 

from which it is clear that the rate of change of node count under the power-
law is equivalent to the scaling dimension and must remain stationary, 
independently of radius. This means that it is the route (B) that will be realised 
under the power-law. 
Now by solving the differential equation (6) with the integrating factor 
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Therefore: 
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Empirically, it can be shown that )(vα  has a typical value of 2, which implies 
that the network in question is close to a 2-dimensional entity. In this case, 
metric mean depth will be in average just 2/3 of the radius applied. 
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