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Abstract—Diversetheories of animal navigation aim at explaining how to determine and maintain a
course from one place to another in the environment,althougheach presentsa particular perspectivewith
its own terminologies.These vocabulariessometimesoverlap, but unfortunatelywith differentmeanings.
This paper attempts to define precisely the existing concepts and terminologies, so as to describe
comprehensivelythe different theories and models within the same unifyingframework.

We present navigation strategies within a four-level hierarchical framework based upon levels of
complexity of required processing (Guidance, Place recognition-triggered Response, Topological
navigation, Metric navigation). This classification is based upon what information is perceived,
represented and processed. It contrasts with commondistinctions based upon the availability of certain
sensors or cues and rather stressesthe information structure and content of central processors.We then
reviewcomputational models of animal navigation, i.e. of animats, These are introduced along with the
underlyingconceptualbasis in biologicaldata drawn from behavioraland physiologicalexperiments,with
emphasis on theories of “spatial cognitivemaps”.

The goal is to aid in derivingalgorithms based upon insightsinto these processes,algorithms that can
be useful both for psychobiologistsand roboticists. The main observation is, however, that despite the
fact that all reviewedmodels claim to have biological inspiration and that some of them explicitlyuse
“CognitiveMap’’-likemechanisms,they correspondto differentlevelsof our proposedhierarchyand that
none of them exhibits the main capabilities of real “CognitiveMaps” — in Tolman’s sense — that is,
a robust capacity for detour and shortcut behaviors. ~ 1997ElsevierScienceLtd. All Rights Reserved.
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1. INTRODUCTION environments (habitats). Survival ofthe individual is
contingent upon adaptive skills to find, learn and

Animals spend much oftheir time moving from one return to specificplaces (and often atspecifictimes) —
place to another, within or between different such as the nest or the feeding site — quickly and
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safely. These skills are summarized by the word
navigation.

Navigation abilities also are very important for
mobile robots. But current robots have a limited set
of possible behaviors and, although they are able to
move efficiently through a cluttered environment and
to avoid obstacles, their navigation systems tend to
be specialized and brittle (Meyer and Guillot, 1991,
1994). Navigation is thus one of the most elaborate
tasks that current mobile robots try to accomplish.

Animals, on the other hand, are proficient at
navigating. The paths they take may be suboptimal
in a mathematical sense, but they are rapidly selected,
flexible and the resulting navigation behavior is very
adaptive (Waterman, 1989). Biological processes thus
seem to be a promising source of ideas for building
more efficient robots and roboticists have begun to
elaborate “biomimetic” navigation systems. How-
ever, the biological data inspiring their work is
sometimes outdated, misquoted, or misinterpreted.

In contrast to the usual classification of navigation
behaviors according to the availability and use of
certain types of sensors and cues (e.g. Able, 1980),
this paper proposes a typology of navigation
strategies and subsequently organizes the “biologi-
cally inspired” computational models into a four-
level hierarchy, while presenting the sometimes
controversial biological evidence supporting the
hypotheses and assumptions used in each model. The
four levels are, in order of complexity, guidance (the
animat* can move in relation to what it perceives),
place recognition-triggered response (it can orient
itself relative to specific places), topological naviga-
tion (it can move along known paths), and metric
navigation (it can move in relation to an “overview”
of the whole environment). This paper attempts to
review exhaustively the literature concerning compu-
tational models of animal navigation that explicitly
refer to biological findings and that have been either
simulated or implemented on a mobile robot. Thus,
papers from the wide literature of robotics that do
not have explicit links to biology are beyond the
scope of this paper. Descriptions of formal theories
of animal navigation, such as the ones by
Thinus-Blanc (1988) or by Poucet (1993), also are
beyond the scope of this paper. Since the models that
will be reviewed herein have been devised in reference
to specific biological findings, and because these
findings cannot be generalized easily, the paper will
mention explicitly whether each model concerns bees,
gerbils, rats or whether it intends to represent some
“universal” biological principle.

Finally, the main characteristics of these different
computational models will be compared in a
summary. Some future research approaches are
suggested, both for biologists (behavioral and
electrophysiological experiments) and for engineers

*An animat (Meyerand Wilson,1991;Meyeret al., 1993;
Cliffet al., 1994;Maes et al., 1996)is an artificial organism
— either a simulated animal or an animal-likerobot — the
structure and functionalities of which are based substan-
tially on mechanisms observed in real animals. We will
henceforth use the word “animat” to denote the
embodiment of any biologicallybased artificial navigation
system.

(conceiving and building animats). This should lead
to improved understanding of animal behavior, as
well as better autonomy and adaptability of current
mobile robots.

2. THE FOUR-LEVEL HIERARCHY OF
NAVIGATION STRATEGIES: DEFINITIONS

2.1. Navigation

Navigating seems to be a rather specific task, in the
sense that its requirements can be well defined in
mathematical (geometrical) terms and that its
potential solutions seem to be straightforward.
However, it involves many distinct sensory inputs
and computational processes. Elementary decisions
like turn left, or run, or stop, are made on the basis
of thousands of incoming signals (Waterman, 1989).
These signals come from sensors, but also from
memory and expectations derived from previous
actions. The global mechanism by which multisen-
sory, internal and external information is fused,
stored, and used, is poorly, if at all, understood.

According to Gallistel (1990) in The Organization
of Learning (p. 35):

“Navigation is the process of determining and
maintaining a course or trajectory from one
place to another. Processes for estimating one’s
position with respect to the known world are
fundamental to it. The known world is
composed of the surfaces whose locations
relative to one another are represented on a
map. ”

This definition contains two crucial hypotheses,
one being that the world the animal lives and moves
in is represented within the brain, and the other that
this representation can be called a map. Waterman
(1989) also assumes that animal navigation requires
the use of a map, either innate or learned.

But what exactly is this “map in the head” [to
quote Kuipers (1982)]? How is it implemented at the
neural level? What is the observable behavior during
navigation? Studies from ethology, psychology,
artificial intelligence, neuroscience and robotics
provide different tentative answers. Taken together as
a whole, they are diverse and often conflicting.

It is thus necessary first to define what navigation
is and what the functions of a navigation system are.
For instance, according to Levitt and Lawton (1990),
navigation is defined by the following three questions:
(a) “Where am I?”; (b) “Where are other places
relative to me?”; and (c) “How do I get to other
places from here?” Underlying question (a) is the
problem of recognizing and identifying the particular
place in which the animal or the animat is situated.
The answer to the question is not necessarily a
specific position in relation to a coordinate frame,
which might be more related to the second question,
although a large portion of the robotics literature
deals with this type of answer (see Feng et al., 1994,
for a review). Indeed, as far as the place is recognized
as a situation experienced in past history, a movement
selection procedure can be applied and lead to the
desired goal place, without the need to answer any of
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the three questions. A more general formulation of
the first question should therefore be: “What are the
identifiable characteristics of this place?” Question
(b) amounts to processing a global spatial represen-
tation — for instance, a spatial relation network
where every other position has a known relation to
the current place, but not necessarily to one another.*
This contrasts with the processing of a small-scale
information relevant to the goal at hand. Indeed, if
the system relies on a global, unitary spatial
representation, navigation probably is slowed by the
extra amount of time devoted to processing irrelevant
pieces of information. However, if the system relies
on a collection of local spatial representations at
different scales, question (b) should be: “where are
the other releuant places relative to me?”. These first
two questions build up the necessary framework from
which the appropriate action can be derived, i.e. the
object of question (c). Note that question (c) also
implicates all the possible places in the global spatial
representation, not only the current goal. Further-
more, it involves a notion of “planning”, i.e. asking
for the whole trajectory from the current location to
the considered goal location.

Navigation according to Poucet (1993) also is
characterized by the questions of self-localization and
planning of spatial actions. The animat, according to
Poucet, computes its current position and the goal
position within a map-like spatial representation, and
plans the sequence of moves from the former to the
latter in terms of intermediate positions in the same
“map”.

For the present application, these definitions of
navigation are too restrictive, since navigation is
possible without processing a global spatial represen-
tation and without planning. It is thus useful to
distinguish between several types of navigation.

First, let us distinguish between local navigation
skill and way--riding skill (Prescott, 1994). Local
navigation is the process of moving around in the
immediate environment, i.e. an environment in which
only objects within the animat’s range of perception
are useful. Thus, there is no need for any type of
internal representation of objects and places outside
the immediate environment. The animat chooses its

*However, the spatial relation betweentwo places other
than the current one is at least implicitlycoded, sinceit can
be recovered from vector subtraction.

1’Here, by “topologicalrelationshipsbetweenplaces”, we
mean the fact that they are “connected” in a broad sense.
Two places are connected when they are adjacent to each
other, or when there is a “known” path leading from one
to the other that does not traverse a third known place.

$ On the basis of the models available in 1991,O’Keefe
(1991) defines two alternative navigational strategies and
groups the models into either the class of “orientation
hypotheses” or the class of “guidances”. The former
consistsof an associationof the current sensoryinputs with
motor outputs and of a prediction of the next sensory
inputs, This relates to our topological navigation strategy.
The latter consists of differentmechanismsby whicha goal
could be attained and relates to our guidance or place
recognition-triggeredresponse navigation strategies. Our
paper also includesmore recent models, some of whichfall
into the topological or metric navigation strategies.

action only on the basis of current sensory
information (for instance, the overall direction to the
perceived goal). Way-finding is the process of moving
in a large-scale environment, i.e. an environment in
which there are relevant cues out of the range of the
perception, and in particular where the goal is not in
the immediate environment.

Way-finding can occur with or without planning,
and can lead to a trajectory made only of portions of
known paths, or to a trajectory containing new paths.
As we will show, the former type of trajectory can be
deduced from a topological~ representation of the
environment, whereas the latter type of trajectory can
be planned only from a metric representation of the
environment.

Consequently, we suggest that there are at least
four general types of navigation, which permit
successively more complex behaviors: guidance —
limited to the local environment; place recognition-
triggered response — limited to way-finding without
planning; topological navigation — limited to using
known paths; and metric navigation.$

Each navigation type requires some minimum
spatial information from the environment, not
necessarily giving rise to a “Cognitive Map”. Tolman
(1948) introduced the concept of “Cognitive Maps”
as a way of interpreting experimental findings that, in
path selection behaviors, rats did not merely respond
reflexively to cue stimuli, but instead used some form
of internal spatial representation. Since this seminal
paper, many studies concerning navigation have
persisted in using the term “Cognitive Map” rather
loosely as a metaphor to describe whatever
mechanism was used by animals to navigate. But no
physical evidence of maps-in-the-head has yet been
brought forward.

In the following sections (Sections 2.2–2.6), we
characterize each of the four types of navigation
according to selected criteria. These are: (i) what
spatial information is used?; (ii) how is this
information used to guide the movement selection
process?; and (iii) what kind of situations can be dealt
with? These will provide a framework to assess the
advantages and limitations of the different compu-
tational models in the literature.

Moreover, because navigation is directed toward a
goal, this paper will be focused on the situations
where an animat first explores its environment and
learns an internal spatial representation, and sub-
sequently uses this representation to guide its
movements to return to or to avoid already
encountered goals. Certain skills will be assumed, for
example the ability to recognize that the goal has
been attained, even though this is a basic requirement
for navigation. Likewise, although we will consider
the problem of dealing with multiple goals, the actual
decision process for selecting which goal is desirable
at any moment will not be considered here.

2.2. Body Alignment and Target Approaching

Navigation would not be possible without the basic
ability of approaching (or moving away from) a
perceived object. However, implementing such
abilities should not be underestimated, despite

-. . .. . .
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Morris’ claim that “it requires no more than the
operation of a motor “taxis” system” (Morris, 1981).
Animals have to learn how to coordinate their
movements, first in their prehensive space (visuo-
motor spaces such as eje–hand or eye–head–hand–
mouth coordination), then in their locomotor space.
As for robots, either the appropriate capacities must
be built in, or some learning abilities must be
implemented. A simple relevant mechanism could be
the feedback loop where, for instance, reducing the
distance to the goal is equivalent to following a
gradient of increasing intensity of sensory cues
(visual, olfactory) specific to the goal.

When such an ability is acquired, we can assume
that, whenever the goal object is detectable [a
“proximal-cue” situation (Morris, 1981)], the animat
first is able to orient only on the basis of sensory
information in the direction of the goal (with
gaze-shifts and head or body turns). This is “body
alignment”. The animat must then be able to move
toward the goal. This is “target approaching” or
“homing”. In psychological terminology, this is a
typical stimulus–response (*R) type of behavior.

When the goal is not perceivable, the animat
cannot use this mechanism. However, it may learn
that a landmark — a salient* spatial cue in the
environment — is close to the goal. Such a landmark
is called a beacon (Leonard and McNaughton, 1990),
and approaching the beacon leads the animat to the
hidden goal. The goal and the beacon are functionally
equivalent for guiding approach movements. The
animat can use a target-approaching (taxis) strategy
with the beacon as the principal sensory cue, thus
serving as a surrogate goal.

2.3. Guidance

When the goal is hidden and there is no available
beacon, the animat can be guided by the spatial
distribution of landmarks, i.e. a landmark configur-
ation or a landmark array. At the goal, the animat
memorizes the spatial relationship between itself and
the landmark configuration. Later on, it will attempt
to move so as to replicate this view.

Maintaining “a certain egocentric relationship”
with respect to a “particular landmark or object”? is
what O’Keefe and Nadel (1978) call guidance (p. 82).
For instance, the animat memorizes its distance to a
wall and moves so as to maintain this distance. This
results in a wall-following behavior.

* Saliency has no universal definition. In fact, little is
known about the types of landmarks used by animals
(Bennett, 1991), though they can be characterized as
proximal/distal, global/local landmarks. Usually, they are
tall [theverticaldimensionis more important than the other
dimensions (Etienne et al., 1995)]and stable (Bieglerand
Morris, 1993).

TAn egocentric relationship is a spatial relationship
definedrelative to the animat’sbody and the animat’sbody
axes (left/right, front/back, up/down). The environmental
features that these refer to thus changeas the animat moves.
An allocentricrelationship— also called exocerwic— is an
object’s spatial relationship defined relative to a reference
frame attached to the environment, i.e. relative to other
stationary objects. It is thus independent of the animat’s
position and orientation.

Moving so as to attain a certain spatial relationship
between the animat and the landmark configuration
leads the animat to the location where this spatial
relationship was memorized. For instance, a hidden
goal location can be defined by its distances to three
distinct landmarks and the animat successively
approaches or moves away from each landmark so as
to match its current distances to the memorized ones.
The most critical sensory information for this type of
navigation was referred to as a snapshot by
Cartwright and Collett (1983). Collett (1992) calls
such a process a landmark guidance. However, the
mechanism is more general, not necessarily involving
landmarks but also other types of sensory cues.

Moreover, the memorization of a specific spatial
relationship with respect to a landmark configuration
does not necessarily require high-level information
such as the identities of landmarks, their positions or
the distances to them. Indeed, the animat can
memorize the corresponding raw sensory information
— how the landmarks are perceived — without any
actual recognition. For instance, in the case of
wall-following, the knowledge of the distance to a
wall can be replaced by the memorization of
ultrasonic range sensors’ values. Likewise, the
knowledge of the distances to landmarks can be
replaced by the memorization of the retinal image of
these landmarks at the goal location (which will be
called a snapshot). In other words, the selection of the
appropriate action that guides navigation does not
require the processing of an internal spatial
representation. The memorized sensory state has no
spatial “meaning” and, thus, is not a “represen-
tation” of some spatial feature in the environment.
The appropriate movement is selected from the
discrepancy between the current state of the sensors
and their required state.

We will say henceforth that the animat uses a
guidance type of navigation strategy whenever it is
sufficient for the animat to optimize some sensor-re-
lated criterion, based on memorized sensory infor-
mation, to reach its goal. In contrast, the higher levels
of navigation strategies, as described below, will
require some kind of “spatial representation”.

2.4. Place Recognition-Triggered Response

Target-approaching and guidance strategies con-
cern local navigation, since the goal, a beacon, or a
specific landmark configuration, needs to be in the
perceptible range of the animat at any moment. The
following navigation strategies concern large-scale
environments and entail the notion of “place”. In
contrast with guidance, where “places” are points, we
define a place in a large-scale environment as a set of
contiguous locations that are equivalent with regard
to action selection. In other words, the animat selects
the same locomotor action from every location within
a given place. A place also can be defined as the set
of locations from which a set of landmarks or a
landmark configuration is perceived in an identical or
very similar fashion. If the set of locations are
sensorily identical (from the animat’s point of view),
then the same movement will be selected. These two
definitions thus are operationally equivalent.

Note that the identification of a place must be
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independent of the viewing angle, i.e. the orientation
of the animat. This ability to set the equivalence
between different views from the same place is also an
interesting question, but it is beyond the scope of this
paper.

In this type of navigation, the animat’s strategy in
reaching a known but not currently visible goal is
three-fold (Fig. 1): (a) recognizing the place in which
the animat currently is situated; (b) orienting itself
within this place; (c) selecting in which direction to
move so as to reach its current goal. There is no
planning of a sequence of subsequent movements,
only the selection of the very next action. Thus, the
animat responds in an inflexible manner to the
situation. We call this place recognition-triggered
response.

On the basis of previous exploration, the current
placd can be associated with the memorized direction
to the goal from this place. Selecting this direction
[part (c) of the strategy] can be done in two different
ways. This direction can be defined by a snapshot.
Then, the animat will have to rotate so as to match
the current retinal image to the snapshot that defines
the direction to the goal. This guidance strategy will
re-orient the animat toward the current goal. On the
other hand, the memorized direction to the goal can
be defined with respect to a local and arbitrarily
selected reference direction. This reference direction
can be determined by the configuration of spatial
cues. Then, the animat will have to rotate by a certain
angle, given with respect to this reference direction.

Such strategies of inflexible responses based upon
local cue-configurations will lead the animat to the
next place, where the same strategies can be applied.
With the knowledge of what movement to make in
each place, the animat then is able to reach the goal
by a series of successive trajectories.

Note that, at this level, the animat identifies places
on the basis of local cues and has a series of fixed
responses. But it has no internal representation of the

relations between the current place and other places
in the environment. The animat still cannot, from the
information available at this level, plan its path, i.e.
represent the complete trajectory from the current
place to a distant goal. For each step, knowledge is
limited to the very next action to perform. If
performing the selected action leads to a “wrong”
place, because of obstacles for instance, the animat
will not be able to reach the goal unless it can wander
a little, recognize another place, and use the same
local response strategies there (Fig. 2).

The navigation system uses a mapping from place
and goal to directed actions, a type of “action model”
(Barto and Sutton, 1981; Meyer and Guillot, 1994;
Riolo, 1991). We will call such mappings “place-
goal–action associations”.

2.5. Topological Navigation

One way for the animat to reach distant places
without getting lost — for instance because of drift
errors or obstacles — while following the place
recognition-triggered response navigation strategy, is
to anticipate subsequent incoming stimuli, i.e. to
predict in what place it will arrive next. This is a
stimulus–response--stimulus (S–R–S) type of associ-
ation, and a sequence of such associations will be
called a route (0’ Keefe and Nadel, 1978). Being able
to predict the next stimulus from the current stimulus
and the next action also is called having a “world
model” (Foner and Maes, 1994; Meyer and Guillot,
1994; Riolo, 1991; Sutton, 1991).

However, routes are independent of one another
and each route leads to a unique goal. They are
inflexible because there is no taking into account of
the fact that two different routes may pass through
the same places. In this sense, the representation of
a route is a simple extension of what is used by the
place recognition-triggered response navigation strat-
egy, i.e. plac~goal–action–place associations instead

A1

A2
goal1

A landmark

\ refenmcedirectimr
,/i directionto a given goal

4 trajectory leading to current position X

o “place”

goaI3
goal2

Fig. 1. The animat must recognizeits position and its orientation within a “place” (enclosedby circle),
before selecting the next direction of movement. The landmark configuration can give positional
information, i.e. which place the animat is in, regardless of the exact location X within this place. The
landmark configurationalso can definea local and arbitrarily selectedreferencedirection (e.g. R), which
gives directional information. The subsequent movement is selected from the relationship between the
reference direction R and the direction to the currently pursued goal (Y for goal 1). Scaling is

disproportionate — goals and landmarks are actually more distant.
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place

local reference direction

directionto next subgoal

trajectorybetween successive “choicepoints”

wanderingbehavior

new obstacle

Fig. 2. The place recognition-triggeredresponsestrategy enables the animat to movefrom place to place
if it “knows” the directionto followfrom each place.Whenit gets lost becauseof an obstacle,for instance,

it has to wander around until it gets to a known place again.

of place–goal–action associations. Navigation would
be more adaptive if the spatial representation were
goal-independent, i.e. if the same spatial represen-
tation could be used for multiple goals. Such a result
can be obtained by merging place–action–place
associations derived from the collection of routes
(thus dropping the goal representation) into a
topological representation of the environment. Any
place can now become the origin or the goal of a path
and, in the case of obstacles, alternate intersecting
paths can be taken.

In this type of navigation, the animat can follow
routes or sub-sequences of routes. At any rate, the
animat goes only through already visited (sub)paths.
We call this topological navigation.

A topological representation can be expressed in
mathematical terms as a graph, where nodes represent
places and edges represent adjacency, or direct
connectivity. Then, two nodes are linked if there is a

‘=-<01

u

(a)collectionof routestogoalsGI andG2

o place

previously visited direct path which leads from one
corresponding place to the other corresponding
place, without going through a third intermediate
known place.

In this type of navigation, the animat’s strategy in
reaching a known but not currently visible goal is
four-fold (Fig. 3): (a) recognizing the place in which
the animat is currently situated; (b) locating the
corresponding node in the topological graph; (c)
searching for the sequence of nodes (places) to go
through to reach the goal; (d) the resulting route is
a concatenation of segments of experienced routes,
and the animat can follow it even if it has never
before followed this particular sequence.

At this level, we now have a representation of some
of the spatial (topological) relationships between
places. The main result is that the animat has planned
the whole sequence of places to be visited. Note that,
in order to follow this sequence, the animat can

(b)topologicalrepresentationderivedfromttreroutes

‘.4 direction of movement to reach the cortespondi”g goal

Ah. direction of travel between two “adjacent” places

- new obstacle

Fig. 3. (a) With the place recognition-triggeredresponsestrategythere can be an ensembleof intersecting
routes. The animat is able to go from S1 to Gl, from S2 to G2, and from S3 to G1. However,if there
is a new obstacle on the way from S1 to Gl, as on this figure,the animat is lost, becausethe route from
S1 to G1 is unique (see also Fig. 2). (b) In contrast, if the animat merges its representations of routes
into a topological representation, the animat can go back to place A, take the sub-route betweenplaces
A and B, and take the sub-route from place B to the goal Cl. The resulting path is the concatenation

of three sub-sequences,derived from three different routes.
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Fig. 4. (a) Metric detour and (b) metric shortcut behaviors.In both cases, the animat takes a path never
experiencedbefore, without beingable to use familiar landmarks (the new wall is assumed to be tall and
the forest is assumed to be dense), Note that in (a), the animat could, in principle, go directly from C

to E. This would be an illustration of a metric shortcut.

generate a series of commands to the place
recognition-triggered response strategy by specifying
every next place (node) as a subgoal.

2.6. Metric Navigation

The three previous levels of navigation strategies
enable successful movements to goal locations
although not necessarily through optimal (i.e.
shortest) paths. Indeed, the corresponding infor-
mation cannot be used to compute or plan novel
trajectories, nor detours in front of unpredicted
obstacles, nor shortcuts. Here, “detours” and
“shortcuts” mean metric detours and metric short-
cuts, and two prototypic examples illustrate behav-
iors of which the previous navigation strategies are
incapable (Fig. 4).

As a first example, consider that an animat,
starting from place A, suddenly is confronted with a
new wall at place B, but has planned to continue the
other side, namely from place D to place E [Fig. 4(a)].
It has to skirt around the obstacle, for instance by
following the wall until it can go behind it (place C)
and then following it back on the other side. The
exact location of place D on the other side of the wall
from place B cannot be recognized by visual
inspection because the wall obstructs the relevant
landmarks. The animat needs to know the distance
along the wall — the length of the detour (BCD).
There is a need for path integration. * Also, we do not
consider here the case where landmarks identifying
place E can be perceived from place C, in which case
the animat does not need to complete its detour but
can take a shortcut — using a guidance strategy —
from C to E. As a second example, consider that an
animat, starting from place A, needs to go to the
other side of a forest, to a place C which it knows,

*Path integration is an animat’s ability to estimate its
current position relative to a known starting position by
computing the displacement through the integration of
speed and direction, i.e. through the exclusive use of
information gained en route (Mittelstaedt and Mittelstaedt,
1982).This processalso is referred to as “dead-reckoning”.

but cannot perceive from where it is, namely place B
[Fig. 4(b)]. The animat also knows a much longer
path from place B to place C, around the forest.
From the knowledge of this longer path, it tries to
estimate the correct heading through the forest to
take a shortcut. The animat needs to know the
relative orientation between places and, once in the
forest, does not have access either to landmarks of
place B or place C.

Thus, the introduction of metric information —
distances and angles between places — in addition to
the topological information of the previous level, is a
necessary requirement for generating novel paths that
are metric detours and metric shortcuts. The question
remains as to how this information is manipulated in
order to yield the necessary instructions to follow the
paths. From a computational point of view, a
distance and an angle with respect to a reference
frame can be represented by a vector and the
navigation system should be able to perform vector

+
subtrac~on to d~ise a novel path BC from known
paths AB and AC. The selection of the movement
thus is the result of deductive reasoning.

From a functional point of view, the animat could
use an internalized metric map of the environment —
although whether animals use such a map is still
controversial — by examining it from above, i.e.
exploiting what is called a “survey” strategy.

We will say henceforth that the animat exploits a
metric navigation strategy whenever it successfully
navigates from one place to another by eventually
going through new places, regardless of previously
followed routes, i.e. whenever it realizes metric
detours or metric shortcuts.

2.7. Summary

Although Gallistel (1990) defines the requirements
for navigation as the extraction, processing and
storage of the “geometric relations among points,
lines and surfaces that define the macroscopic shape
of the animal’s behavioral space”, it is clear from the
above considerations that the four types of naviga-
tion strategies do not really require the extraction,
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processing and storage of all the spatial information
available in the environment.

Table 1 summarizes the four levels of navigation
strategies according to three criteria: (i) the
information structure and content; (ii) the movement
selection procedure; and (iii) the behavioral repertoire
of the navigation strategy. The first level of
navigation strategy involves sensory-based infor-
mation (comparison of sensory information memo-
rized at the goal location with current and ongoing
inputs). The second level requires information about
landmarks, such as their identities and their spatial
configuration in an egocentric reference frame, as
well as the ability to determine a local directional
reference. However, there is no information about the
spatial interrelations between different places. The
third and fourth levels, on the other hand, code some
type of spatial interrelations between places, that is
topological or metric information.

The four levels of navigation strategies interact and
lower level strategies could very well ouerride higher
level strategies. This might be more efficient, since
lower level strategies are simpler than higher level
ones. For instance, a novel path computed by a
metric navigation strategy may go through an
unpredicted but recognizable place. Once in this
known place, the animat can choose to follow a
known route, as computed by the topological
navigation strategy, for instance considering it to be
safer than continuing the unknown path. While
following this route, the animat suddenly may
perceive the goal, which earlier was hidden from the
route, and consequently use the guidance strategy
instead of continuing on the previously determined
route. This latter behavior could be considered as
calculating metric shortcut from a planned route to
the goal through a novel trajectory, but it is — in our
terminology — a simple reflexively opportunistic

behavior, resulting from the interactions of different
navigation strategies. Other examples of such
interactions will be given in the next sections.

3. NAVIGATION IN ANIMALS AND
ANIMATS

This section presents some of the behavioral,
anatomical and physiological evidence supporting the
existence of the proposed four types of navigation
strategies in animals, and the computational models
that correspond to each type.

3.1. Guidance

3.1.1. Behavioral Evidence

Target approaching, and its primitive form, taxis,
is observed in virtually all animals that are capable of
locomotion. There is a wide literature describing the
different patterns of behavior and studying how
animals acquire and express this ability (see Goodale,
1983). In fact, animals are able to approach proximal
cues very early [e.g. rats only 17 days old (Rudy et al.,
1987)] and the underlying mechanisms seem more
innate than learned. Thus, target approaching
frequently is assumed as present and virtually all
models include this without explicitly modeling the
mechanism of taxis.

Although guidance can account for many observed
behaviors, there is no anatomical or physiological
evidence for a discrete module in the nervous system
dedicated to such a function, i.e. evidence for each of
the components described in Sections 2.2 and 2.3.
However, Collett (1992) reviews in detail behavioral
evidence for “landmark guidance” in insects. He
describes the properties of the snapshots, i.e. the
memorized environmental scenes, that enable an

Table 1. A Hierarchy of Navigation Strategies

Name Stored spatial information Procedure Characteristics

o Target
approaching

1 Guidance

2 Place

3 Topological
navigation

4 Metric
navigation

None

Identity of the landmark
configuration;raw state of the
sensory inputs at goal location

Landmark configurations
definingplaces; a local

directional reference frame for
each; the direction of

movement that leads to the
recognition-triggeredresponse

A set of landmark
configurationslinked by
topological relationships

A set of landmark
configurationslinked by metric

relationships

Taxis

Minimizethe mismatch
between the perceived
configurationand the

memorizedconfiguration
(approach)

Self-localizeby recognizingthe
current place as an already

experiencedplace; orient
relative to it; move in the
goal-associateddirection

goal from each place

Search for the sequenceof
places linked by experienced
routes from the current place

to the goal

Plan a trajectory which will be
followedby lower level

strategies; the resulting path is

Basic requirement-for navigation

Local navigation; only when
direct perception is available

Way-finding;stimulus–response
type of behavior

Way-finding;
stimulus–response–stimulustype
of behavior, topological detours

(path selection)

Way-finding;metric detours,
metric shortcuts, novelty

not necessarilya previously
taken one
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Fig. 5. The two training contexts in Bieglerand Morris’ experiments.In each case, the environment is
a ~ectangulararena wit~ three sides pain~edin black and one side in white (shaded side of the rectangle
in the overhead views), providing a strong directional reference. (a) Group “fixed”: there are two
landmarks in the environment,both fixedrelative to the arena across the trials. During training, the food
(F) was located to the “south” of one of the landmark (filledcircle). In probe trials, the animal searched
at exactly the same location (S). (b) Group “varied”: there is a relevant landmark (filledcircle) which
defines the hidden food location (F). The food is always hidden at the same distance, “south” of the
relevant landmark. There is also an irrelevant landmark (unfilledcircle). Both are moved within the
environmentfrom trial to trial. In probe trials, the animal searchedin the vicinityof the relevant landmark
(shaded area, labeled S), instead of at the exact location definedby the landmark. (Schematizedon the

basis of data from Bieglerand Morris, 1993.)

insect to return to specific locations, and then
summarizes hypotheses about the environmental
features that might be included in these snapshots.
Here, we will focus on three main issues for these
local navigation strategies: (i) what type of objects are
selected as landmarks or beacons; (ii) how landmarks
may be grouped together to guide navigation; and
(iii) how perceived and memorized configurations are
compared.

3.1.1.1. Beacon learning

Collett et al. (1986) studied how gerbils use salient
objects in the environment as spatial cues to locate
hidden food. They trained the animals to retrieve
food in a cue-controlled environment where the
spatial relation between the food location and a given
landmark was held constant, but this pair was
translated from trial to trial, in the absence of the
animal. They showed also that gerbils are able to
discriminate between a relevant landmark — the
object that determines the food location in a constant
way — and an irrelevant landmark — another object
that is moved within the environment from trial to
trial, independently of the food location. Thus the
gerbils learned to use the relevant beacon efficiently.

* Collett et al. acknowledgethis without being able to
suggest how gerbils got this information in these
experiments. This illustrates the difficulty of devising an
environmentwhere all cues are controlled.

1’This result is in contrast withCollett et al.’sexperiments
on gerbils.Collett et al. reported that the animals search at
the correct location, and not aroundthe relevant landmark.
However,theydid not givedetails as to whetherthe relevant
landmark remained fixedrelative to the environment— in
which case the landmark configuration is intermediate
between“fixed”and “varied” — or not — in whichcase the
experiment is the same as group “varied”.

The landmark used in these experiments was a
vertically oriented cylinder — a radially symmetrical
cue. Thus, if the food was always 5 cm from it, this
location was ambiguous since the cylinder had the
same appearance from all angles. The gerbils must
have had additional directional information to
determine the reward site.* Consequently, beacon
homing is not sufficient to explain how gerbils
retrieved the food in this single-landmark case.

Biegler and Morris (1993) also showed that rats are
able to learn to discriminate between relevant and
irrelevant landmarks. However, they showed further
that the quality of beacon learning depends on what
type of environmental features remains invariant
from trial to trial. They trained rats to find food at
a specific distance and a specific direction from a
landmark (filled circle in Fig. 5). Directional
information was provided by the fact that the
rectangular arena was composed of three black walls
and one white wall. The latter was a salient cue under
experimental control. The environment contained
another landmark which bore no constant relation to
the goal location (unfilled circle). Two groups of rats
were trained in two different contexts. For the first
group, both landmarks remained at fixed locations,
i.e. the spatial configuration was stable from trial to
trial [Fig. 5(a), group “fixed”]. The second group
experienced a variable configuration, where the two
landmarks were moved independently from each
other from session to session [Fig. 5(b), group
“varied”].

In probe trials, the maze was not baited. Rats from
the “fixed” group searched only at the correct
location. Thus, they went to the beacon, and used
directional information to then search at the reward
site. Rats from the “varied” group also went to the
relevant landmark but, instead, their search included
a circle all around the vicinity of the beacon.? This
result shows that beacon learning is possible — rats
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Fig. 6. Gerbils are able to learn the food location entirely definedby two distinct landmarks. The local
distance and angle relations between the two landmarks and the food, i.e. the configuration,was kept
constant, but the wholearray was displaced and rotated randomly during training. (After Collett et al.,

1986.)

from the “varied” group were able to discriminate
between the two landmarks and searched around the
landmark that was the best predictor of food
availability — but also that “stability” aided spatial
learning — rats from the “varied” group did not
learn the constant spatial relationship between the
beacon and the food location (namely “opposite the
white wall”) but only the “vicinity property”.

The approach to a beacon usually is under
continuous visual control, which corresponds to the
definition of target approaching given in Section 2.2.
However, if the goal is some distance away from a
single given landmark, the sudden displacement of
the landmark is ignored by gerbils, suggesting that
the landmark is no longer considered as a beacon and
that other orienting mechanisms are used by the
animal (Collett, 1987).

3.1.1.2. Landmark-array learning

Collett et al. (1986) showed that gerbils are able to
learn a food location defined entirely by the
configuration formed by a pair of distinguishable
landmarks, both in terms of distance and in terms of
direction (Fig. 6). Thus, this is a straightforward
example of the use of landmark configuration for
guidance. This is interesting, since it shows that these
animals are capable of ignoring the position of the
landmark-reward array relative to walls in the
experimental chamber. Cues such as the shape of the
room, possible cues on the walls and the floor, and

*Theyobservedalso the sametendencyin gerbils,but the
apparent sizeof the landmark was not the onlycue used by
gerbils (Collett et al., 1986).

lighting, all were ignored by the gerbils that learned
this navigation task.

3.1.1.3. Changing aspects of landmark arrays

An interesting question then is how animats use
perception (or knowledge) of a landmark configur-
ation to guide their trajectory to a goal. Is there a
geometrical transformation from perception to an
internal spatial representation, or are the sensory
features directly exploited to trigger trajectories in a
reflexive manner? The results in the corresponding
literature are mixed according to the particular
species, tasks and environments.

Cartwright and Collett (1983) tested landmark
learning in bees and found that “bees learn no more
than the apparent size and bearing of the landmark
as seen from the food source.”* Their first experiment
consisted of training the bee to feed at a specific
location in a cue-controlled environment containing
a single radially symmetrical landmark. Sub-
sequently, the size of the landmark was changed; the
bee then renewed its search at a location where the
visual angle subtended by the landmark — and hence
its apparent size — was the same as in the training
condition. The search was also at the same relative
bearing with respect to an unspecified reference
direction. The experiment was repeated with land-
mark arrays, which the bees also learned to use to
localize the food. Then, in another manipulation, the
sizes of the landmarks were changed but, since their
absolute positions were maintained fixed, this created
a conflict (Fig. 7). The bees then went to a location
that was the best compromise between the apparent
sizes of the landmarks and the relative orientations of
the landmarks.

Thus, in these experiments, the bees learned
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Fig. 7. Beeslocate the food site relative to a landmark array by matchingthe apparent sizesand relative
bearingsof the landmarks. In overheadviews:(a) during training, the sceneobservedat the food location
(the visual angles subtended by the landmarks, in continuous lines) is memorized. If the landmarks are
enlargedbut remain in the same positions, (b) the bees don’t search for food at a place providinga view
perfectly matching only one of the remembered landmarks, but (c) at a place providing the best
compromisebetweenthe apparent sizesand relative bearings of all memorizedlandmarks. Dashed lines
represent the current visual scene and continuous lines represent the memorized snapshot. (After

Cartwright and Collett, 1983.)

locations on the basis of the visual scene and not on
the basis of absolute geometric relations between
landmarks. As a consequence, navigation in these
animals seems to be based more on attempting to
reproduce direct sensory impressions than on a
geometrical reconstruction of the external world.

3.1.1.4. Internal map-like representation or guidance

There is controversy as to whether insects navigate
by using internal map-like representations. Wehner
(1987) and Wehner and Menzel (1990) found that
insects use specialized sensory processing systems,
exploiting relatively simple mechanisms to navigate
within their environments. For instance, ants have an
array of photoreceptors at the top of their heads, each
responding to different orientations of the polariz-
ation streak of sunlight in the sky (which is invisible
to humans). Thus, they have a built-in compass. This
permits the ants to orient without the need for a
matching process between sensory inputs and an
internal representation. Wehner called these special-
ized processing systems “matched filters”. They are
ad /roe processes, but their existence cautions us
against invoking internal map-like representations to
explain insect navigation.

Gould (1986), on the other hand, reported findings
from honeybees that he interpreted as supporting the
existence of an internal map-like representation.
Honeybees trained at a feeding site A were captured

upon their departure from the hive and released at
another site B [Fig. 8(a)]. Four possibilities existed:
(a) the bees would be completely disoriented and
would depart in random directions; (b) the bees
would return to the hive; (c) the bees would attempt
to fly to site A and follow a stored compass direction,
i.e. they would depart from B in the direction
corresponding to the hive-to-site A direction, as if
they had not been displaced; and (d) the bees would
recognize site B (which means that they had already
been there) and orient directly toward A. Gould
observed that bees flew in a straight line from B to
A. Since he assumed that they had never traveled
along this path, he deduced that bees were able to
reorient themselves on the basis of a spatial
representation that included the relationship between
sites A and B.

Although several authors have failed to replicate
these results, Dyer (1991) succeeded partially. He
used two feeding sites, A and B [Fig. 8(b)]. From site
A, the bees had an unobstructed view of distant
landmarks, some of which might characterize site B,
whereas from site B, located at a bottom of a ravine,
landmarks defining site A were hidden. He observed
that bees trained at B and released at A could fly
directly to B. In contrast, most bees trained at A and
released at B flew in the compass direction they would
have taken, had they not been displaced [solution (c)].
A minority headed toward the hive [solution (b)]. His
conclusion was that honeybees “do not have the
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“mental maps” posited by Gould (1986), or any other
mechanism to compute novel short cuts between
familiar sites that are not in view of each other”
(Dyer, 1991, p. 245). In fact, the success of bees
released at A to fly directly to B could be explained
by a simple sensory guidance mechanism involving
distant landmarks. Similar interpretations can be
given to Gould’s results.

Thus, these results suggest that, even in the absence
of specialized senses, it is not necessary to invoke an
internal spatial representation in the form of a
“mental map”. The intermediate solution is a
mechanism that directly processes sensory infor-
mation to guide navigation, for instance a matching
process between remembered landmark configuration
and currently perceived landmark configuration
(coupled with the capacity to recognize distant cues
even if only previously experienced from proximal
locations).

3.1.2. Computational Models

Here we present four navigation systems that fall
in the category of guidance strategies, the first of
which is a computational model of navigational
behavior in bees and was devised by behavioral
scientists. The second is a computational model of
navigational behavior in rats in the Morris water-
maze task. The last two are taken from more complex
models devised by Artificial Intelligence researchers
and roboticists, and will be returned to in later
chapters. They also illustrate how navigation
strategies at different levels of the hierarchy may
interact.

❑ woods

(a) Gould’s experiments

3.1.2.1. Cartwright and Collett (1983)

Cartwright and Collett (1983) propose several
models with the common concept that bees do not
use “maps” but move so as to reduce the discrepancy
between the current retinal image and the memorized
“snapshot” viewed at the goal site.

Two types of information are available from the
retinal image: the orientation of each landmark
relative to the current head-direction (egocentric
orientation) and the landmark’s apparent size (which
is a monotonic function of its distance from the bee).
The models differ slightly in the way these two types
of information are processed but the general principle
consists of the following rules: (i) if the apparent size
of a landmark is smaller than the remembered size,
the model bee tries to move toward this landmark
and if the apparent size is bigger than remembered,
it tries to move away from it; (ii) if the landmark is
to the right (or left) of the corresponding remembered
orientation, the model bee will rotate to the left (or
right). The two movements — forward/backward and
left/right — are specified independently, and com-
puted for each landmark profile in the snapshot. They
are represented by vectors, radial for forward/back-
ward movements and tangential for left/right
movements (Fig. 9). The model bee executes the
movement that is the sum of the individual vectors.

However, Cartwright and Collett do not assume
that individual landmarks can be identified. Instead,
the retinal image and the memorized snapshot are
each divided into light and dark areas. Each area on
the retinal image is then paired with the closest area
of the same type on the snapshot (Fig. 9 only shows
pairing of dark areas). The model bee maintains a
constant orientation in flight, as do real bees (Collett

N

4
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— elevation contour lines (1.5m intervals)

(b) Dyer’s experiments
Fig. 8. Setupof behavioralexperimentsconductedon honeybeesby (a) Gould (1986)and (b) Dyer (1991).
Beesfrom the hive (H) were trained to feed at site A. They were then captured as they were departing
from the hive toward site A and passively transported in darkness to site B. Subsequently,they were
released from site B. Dependingon the terrain, some bees flewaway in the same compass direction as
if from the hive, some flew back to the hive, some flew directly to site A, and some flew at random

directions. (After Gould, 1986;Dyer, 1991.)
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Fig. 9. The snapshot model of Cartwright and Collett. The model bee is represented by two concentric
circles: the outer circle represents its current retinal image and the inner one represents its memorized
snapshot. (a) At the food location, the imagesof the landmarks (filledcircles)project onto the retina and
the snapshot, as shown.To return to the feedingsite (b), the model bee tries to match its retinal image
(dark areas on the outer circle)and the rememberedsnapshot (dark areas on the inner circle). Each dark
area on the snapshot is paired with the closest dark area on the retinal image (dashed lines). Each
comparisonyieldsa pair of vectors (unfilledarrows) indicatingthe required adjustments:a radial vector
(forward/backwardmotion) for the size adjustment and a tangential vector (left/right rotation) for the
orientation adjustment. The resulting movement, which globally reduces the discrepancy between the
snapshots, is computed (c) from the summedvector (filledarrow). (After Cartwright and Collett, 1983.)

and Baron, 1994). Consequently, the two images are
constantly aligned. The computation described above
for each landmark is performed on each correspond-
ing pair of areas, on the retina and the memorized
snapshot.

One of the biggest problems with this model stems
from the problem of matching the correct light and
dark areas between the current retinal image and the
memorized snapshot, since the landmarks are not
distinguishable. The order of landmarks in the retinal
image doesn’t necessarily correspond to the order in
the snapshot, so that areas corresponding to
inappropriate landmarks could be paired, yielding
incorrect direction vectors. The pairing process gets
even more difficult as the number of landmarks
grows. This limitation on the pairing process leads to
local minima, i.e. positions other than the goal
location where individual non-zero vectors cancel
out, and thus wrongly advise the model bee not to
move. Cartwright and Collett confirm that the model
bee can be “trapped by partial matches”.

More recent behavioral observations show that
although real bees use this guidance strategy, it is
only employed as a second phase of navigation.
Indeed, guidance by image matching seems to be
limited to the vicinity of the goal (Collett, 1992). The
first phase of navigation then consists of approaching
this vicinity by other means [e.g. beacon homing, as
in the experiments presented by Collett and Baron
(1994)] and then aligning the body in a specific
compass orientation, corresponding to the orien-
tation taken when the goal location was learned. As
the second phase begins, the bee is sufficiently close
to the goal that the retinal image and the snapshot are
approximately aligned. The discrepancy is thus small
and only needs minor adjustment.

Another way to avoid mispairing is to use sparse

images (Collett, 1992). For instance, a snapshot
would consist of only the configuration of nearby
landmarks, or inversely, only the configuration of
distant landmarks. The mechanism by which such a
filtering from the retinal image would be done is
unclear (the use of motion parallax or limited depth
of focal planes would be two possibilities).

3.1.2.2. Benhamou et al. (1994)

Benhamou et al. (1994, 1995) extend the previous
model by changing the way movement toward the
goal is selected. In contrast with Cartwright and
Collett’s model, where the movement selection was
based on the local discrepancy measure (discrepancy
between currently perceived landmark configuration
and the landmark configuration perceived at the
goal), this animat estimates the discrepancies that
would be found at nearby locations, compares these
estimates, and moves toward the location of least
discrepancy. The estimations are based on learned
landmark configuration changes. This model can be
considered as using an internal spatial representation.

Figure 10 shows the simulated environment in
which the model was tested. The animat’s movements
are constrained to six directions so that, in practice,
it moves from place to place (hexagons). At each
place, the animat perceives all the landmarks in the
environment, in a 360° view, and measures their
apparent sizes and head-referred bearings. A local
reference direction is then computed as the angular
mean of the head-referred bearings of the landmarks,
weighted by their apparent sizes. This computation
yields a reference direction independent of the current
head-orientation of the animat. Benhamou et al. then
define a “panorama” at each place, i.e. a 360° view
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Fig. 10. The simulatedenvironmentto test the modelproposedby Benhamouet al. (1994)(a) Each place
(hexagons)has its own “local referencedirection” definedas the vectorial angular mean (solidarrow) of
the bearings (directions of open arrows) of the visible landmarks, weightedby their respectiveangular
sizes (lengthsof open arrows). During exploration, the animat learns that when movingfrom place P to
place P’, the positions of landmarks change, for examplefrom head-referredbearingsa’ to head-referred
bearingsIX’.In addition, apparent sizeschangefroms to s’, and the local referencedirectionchangesfrom
head-referredbearing Q to head-referredbearing .(2’.(b) Consequently,when the animat is at the center
of place P, it estimates the discrepancies(questionmarks) betweenthe landmark configurations,as seen
from adjacent places, and the snapshot memorizedat the goal. The animat moves to the adjacent place

where the estimated discrepancyis the smallest.

of the environment. * This panorama is stored in
terms of landmark identities, the visual angles they
subtend and their orientations with respect to the
local reference direction.

Exploration of the environment consists of learning
how the views of landmarks change as the animat
moves, and thus, how the panoramas change. This
consequently will allow the animatto “mentallymove”
to adjacent places, predicting the landmark configur-
ation at these places and compute the discrepancy
between the landmark configuration perceived there
and the panorama memorized at the goal, and choose
the appropriate move to reduce the discrepancy. First,
the change in panoramas is learned in egocentric
references, i.e. how the identified landmarks of the
configuration change in their head-referred (thus
egocentric) bearings and the change in their apparent
sizes (a ands in the figure). However, measures of the
egocentric bearings cannot be compared to one an-
other for the computation of discrepancies. Bearings
with respect to a global reference direction D are
needed; D is defined arbitrarily at the beginning of the
exploration and related to the local reference
directions at each place, by exploiting the fact that

*This is almost equivalentto the snapshotsof Cartwright
and Collett’s model. Here, however, landmarks can be
identified,and the panorama is not memorizedsimplyas a
retinal image.

during the displacement from place P to place P’, the
animat maintains a constant head direction (dashed
line linking the two points), and thus, f2’r,f,rr,~,0
D = Qr,~,,,..,0 ~ ‘ ) Thus, the+ (Q ,,.d.r,f,rr.rQ,ea,.,eferr,d .
change in panoramas is learned first in terms of
egocentrically referred changes and secondly in its
allocentric form. The allocentric representation is
derived from changes in the local reference directions
with respect to the global reference direction.

Benhamou et al. use associative memories to learn
the dynamics of panorama changes. These memories
are implemented in the form of two-layer feedfor-
ward networks. There is one such network for each
landmark. Each network receives as inputs the
head-referred bearing (a) and the apparent size (s) of
the corresponding landmark at the current place P. It
outputs the change as a head-referred bearing (a–u’)
that corresponds to a move of the animat from an
adjacent place P’ to the current place P, and the
apparent size (s’) of the landmark at place P’.
Another two-layer feedforward network computes
the overall reference direction from the bearings of all
the landmarks with respect to the local reference
direction. Note, however, that this computation does
not require the identification of the current place, nor
its recognition. In fact, it is completely independent
of where the animat actually is situated.

Although all the necessary information is acquired
and stored by the animat, there is no actual explicit
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Fig. 11. The Morris water maze. (a) Behavioralexperiment:a rat is able to learn the associationbetween
the distributionof visualcues(blackobjects)and the positionof the immersedplatform (dashedcylinder).
The animal is then able to reach the platform by a direct trajectory from any starting point in the pool
(arrows). (b) (overhead view) Wilkie and Palfrey propose a model where the animat successively
approaches or moves away from each landmark so as to match their perceiveddistances to memorized
values. The animat first moves toward landmark 1 because the observed distance (Rl is greater than
the memorizeddistance (Rl) and then moves away from landmark 2 because R2’ is smaller than R2.

use of “where the animat is situated. ” Indeed, each
place is characterized uniquely by a panorama.
Comparing the current panorama and memorized
panoramas would enable the recognition of the place.
However, this model takes each landmark into
account separately in order to estimate the panora-
mas at neighboring places. Navigation then is
performed on the basis of discrepancy measures, as
in the model of Cartwright and Collett (1983). Thus,
this model belongs to the guidance strategy.

However, the ability to predict panoramas at
neighboring places could, in principle, be extended to
places further away. The animat could “simulate”
moving through the environment from place to place.
If such a computational ability was added to this
model, the animat could perform path planning and
topological navigation, without requiring the storage
of any additional information.

3.1.2.3. Wilkie and Pafrey (1987)

Wilkie and Palfrey (1987) propose a “simple
perceptual memory-matching model” that is able, in
simulations, to find the platform in the Morris
water-maze task (Morris, 1981; Morris et al., 1982).

As shown in Fig. 1l(a), the behavioral experiment
consists of placing a rat into a circular pool of water
made opaque by the addition of milk or paint. A
small platform lies hidden just below the water
surface. Rats try to escape from the water by finding
and climbing onto the platform. At first they succeed
by chance, but on subsequent trials, they rapidly
learn to take direct paths to the hidden platform from
different starting locations. There is no sensory
guidance, since the rats presumably cannot detect
directly the position of the platform. Motor response
strategies can be ruled out by starting the rat from
different initial positions. Spatial memory is tested by
removing the platform on probe trials and observing
if the rats search in the vicinity of its former position,
which they do. This indicates that navigation is
guided by configurations of landmark cues in the
environment outside the pool.

Hippocampal lesions in rats cause impairments in
this task. Since O’Keefe and Nadel (1978) proposed
that the hippocampus served as a “cognitive map”,
Morris interpreted his observations as supporting the
idea that the rats are using an internal map-like
representation to guide their movements to the
hidden platform.

Here, Wilkie and Palfrey propose that, instead of
using an internal map-like representation, the rat
moves so as to match its perceived distance from each
of the respective cues with memorized distances
learned when the rat first reached the platform. This
is similar to Cartwright and Collett’s model.
However, this animat takes only the distance and not
the angular information into account. Moreover,
individual landmarks must be identifiable.

Wilkie and Palfrey’s animat moves toward or away
from landmarks according to the difference between
the memorized distance from the goal location
(platform) to the landmark and the current distance
from the animat to the landmark. Thus, for instance,
the animat on Fig. 1lb approaches landmark 1 and
then moves away from landmark 2 and repeats the
process until it reaches the hidden platform.

This model does not replicate rat behavior
perfectly, since it produces markedly jagged zigzag
paths. The important point here is that a rather
simple mechanism can guide an animat to a
memorized goal location on the basis of multiple
distant environmental cues, without using configura-
tional information nor a topological or metric
internal representation.

3.1.2.4. Kuipers and Byun (1991)

The navigation system of the robot NX, devised by
Kuipers and Byun (1991), maintains a spatial
representation of the environment in terms of
“places” and is further discussed in Section 3.3.3.2.
Each such place is defined as the attraction basin of
some “distinctiveness” measure — a function that
depends on the different sensor readings of the
animat. In other words, it is defined as a region of the
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Fig. 12. How the robot NX reaches and recognizesa T-sectionin a maze. The T-sectionis characterized
by location T, which is defined as the location from where the three sonar readings are equal.

environment from which a specific location —
defined as a local maximum of the “distinctiveness”
measure — can be reached by a simple hill-climbing
procedure. The animat’s movements result from a
gradient ascent process.

For instance, a T-junction in an indoor environ-
ment can be recognized as that location where all
three walls are equidistant (Fig. 12). The distinctive-
ness measure “chosen” by NX for the region around
this location will be differences of the range sensor
readings in all directions around the animat. The
animat will have reached this location when all its
range sensor readings are the same.

One interesting aspect of this application is that the
animat has several different sensors and eventually
learns which sensors are relevant to specific places.
Pierce and Kuipers (1990) also deal with the sensor/
feature selection problem for goal-oriented behavior.

A place can be defined as the set of locations from
which the same distinctiveness measure is selected by
the animat. Consequently, the local goal for the
animat at any of these locations is to reach the peak of
this measure. The animat will recognize the place only
when arriving at this peak. Thus, this sensor-related
navigation is a guidance strategy that is limited only to
distinctive locations, but that can be useful in place
recognition systems (cf Section 3.3.3.2).

3.1.2.5. A4atarit (1990)

The navigation system proposed by Matari6 (1990)
also maintains a representation of the environment in
term of places (this will be further discussed in Section
3.3.3.3). Similar to the definition of a location adopted
by Kuipers and Byun, Matarik defines a landmark as
“a feature or location which is robustly and reliably
detectable by the sensors. Consequently, a landmarks
an extreme point in sensor space.”* Kuipers and Byun
use instantaneous sensory patterns for their place
definition and consequently, an extreme point in
sensor space corresponds to a precise location in the

*The current location of the animat can be describedby
the animat’s (x,y) position and orientation in a coordinate
frame attached to the physical environment. To each
location also correspond specificsensor readings.Thus, the
current location can be described by the values of all the
animat’s sensor readings. The corresponding coordinate
frame is in sensor space, an n-dimensional space. The
apparent increase in complexityfrom a three-dimensional
space to an n-dimensionalspace is compensatedfor by the
fact that the animat has direct accessto its sensor readings,
whereas it would have to compute its position and
orientation from these sensor readings, a difficult inverse
problem.

environment. In contrast, Matari6 chooses a dynamic
matching process, thus avoiding many inaccuracies
coming from the sensor position, orientation,
measurement and other noise. A “landmark”,
therefore, is recognized as the animat is moving.
Consequently, an extreme point in sensor space
corresponds to an extended region in the environment.

Matari6’s animat moves within an indoor environ-
ment. It is equipped with ultrasonic range sensors and
an internal compass. The animat moves in a
stereotyped manner, in environmentally constrained
movements that consist of keeping the animat at a
constant distance with walls. This is a wall-following
behavior which can be considered a guidance process
since the animat maintains “a certain egocentric
relationship” relative to the wall. As a consequence,
the animat’s sensor readings remain constant over
time. The animat uses the compass measurement and
some of the sonar signals to characterize right walls,
left walls, corridors, and irregular boundaries. For
instance, the animat will register a “North-right-
wall” whenever it detects a wall on the right as it is
moving North. In this context, a place corresponds to
a stable reading of the animat’s sensors over a period
of time, and the guidance process ensures that the
same “landmarks” are perceived similarly each time
the animat passes by. As was the case for Kuipers and
Byun’s animat, a guidance strategy is used to define
places. The resulting place representation will be used
by higher-level navigation strategies (cf Section
3.3.3.3).

3.2. Place Recognition-Triggered Response

In the previous sections, we described navigation
where the animats merely responded to specific
stimuli, by approaching (or avoiding) them or by
moving in a specific fashion in relation to them. Here
we will deal with the situation where the animats also
“know” where they are, i.e. recognize the place they
are in and consequently choose the next direction of
movement. This second strategy was defined as place
recognition-triggered response.

3.2.1. Behavioral and Physiological Evidence

First, how is the environment partitioned into
distinct and discriminable places? What criteria are
used to characterize individual places? Behavioral
and electrophysiological experiments, described be-
low, yield some answers — at least for animals such
as gerbils, hamsters or rats. This has been
investigated in behavioral experiments that test for
place recognition in mazes. The type of “place” can
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Fig. 13. The differentbehavioral responsesof a rat trained to search for food in a T-maze (a). The “goal
place”, i.e. the arm containing the food, can be characterized by intramaze cues (b), an egocentric
motor-response (c), or by extramaze landmarks (d). The different characterizations depend upon the
training procedure,where someenvironmentalfeatures remain stable with respect to the reward location
across trials, whereas other features are displacedfrom trial to trial. Dependingon what association the
rat makes, it will go where the cue is (b), executea right turn (c), or go to the arm in a position defined
by the configuration of extramaze landmarks but not by intramaze cues (d). (After Leonard and

McNaughton, 1990.)

be characterized by egocentric or allocentric refer-
ences, and by local or distal cues, depending upon
experimental context. Electrophysiological exper-
iments suggest that some hippocampal cells are
selectively active when the rat occupies specific
“places”. Other neurons also code for other
information relevant for navigation, such as head-
orientation, locomotion, or turning.

3.2.1.1. Behavioral evidence: rats in mazes

When rats are trained to find a food reward in a
T-maze [Fig. 13(a)], how do they remember which of
the two arms to choose on subsequent trials?
Contradictory results led to a long-running contro-
versy between place learning and response learning
theories: do animals plan their movements on the
basis of internal representations of cue configurations
or, alternatively, are they only learning to make
locomotor responses to specific stimuli?

Of course, rats are capable of learning both
strategies, depending upon training conditions or
more specifically, on “what is invariant throughout
the trials” (Restle, 1957). Indeed, the different motor
or cognitive responses observed in the T-maze
experiments can be grouped into three types (Fig. 13),
each corresponding to the environmental or behav-
ioral feature that has been most successful for
predicting the food reward location. The same
experimental setup [Fig. 13(a)] is used but the features
that are varied from trial to trial are different. (1) The
two arms of the T-maze are physically distinguish-
able, for instance a tactile cue may be present in only
one arm. If food is always in the arm with the tactile
cue, irrespective of other sensory or motor cues, the
“goal place” will be characterized by the presence of
this cue, which serves as a beacon [Fig. 13(b)]. (2) If
the ensemble of environmental landmarks, and the
maze itself, are moved from trial to trial, but food is
always in the arm to the right of the T-maze, then the
“goal place” will be characterized by an egocentric
motor-response, i.e. a right turn of the animal in the

T-maze [Fig. 13(c)]. (3) If the whole maze is rotated
and intramaze cues are moved about from trial to
trial, but the reward location does not vary with
respect to the extramaze landmarks, then the “goal
place” will be characterized by its position with
respect to stable extramaze landmarks [Fig. 13(d)].

We can explain the first type of association between
environmental features and reward by a guidance
navigation strategy or, more precisely, by a
“beacon-homing” strategy, since the animal ap-
proaches an intramaze cue. The second type of
association can correspond to a navigation strategy
based on an egocentrically defined motor response —
which can be thought of as a simple reflex — “turn
right at the choice-point of the T-maze”. The third
type of association, however, can be explained by two
different navigation strategies: (1) guidance naviga-
tion strategy, where the landmark configuration is
used continuously and where turning left corresponds
to reducing the discrepancy between a memorized
snapshot and the current retinal image; or (2) place
recognition-triggered response strategy, where the
landmark configuration need be observed only once,
at the start, and turning left corresponds to part of
the sequence of movements planned at the start,
without the need for further sensory updating.

This ambiguity then leads us to question the
necessity for invoking the place recognition-triggered
response type of navigation strategy. It seems difficult
to test, behaviorally or electrophysiologically, the
difference between guidance and place recognition-
triggered response. However, the models that are
described in this section speczjically implement the
latter type of navigation strategy.

3.2.1.2. Electrophysiological evidence: place cells

3.2.1.2.1. Dejnitiotrs

Discovered by O’Keefe and Dostrovsky (1971) in
the rat hippocampus in 1971, “place cells” brought
evidence that at the neural level, representations of
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Fig. 14. Manipulationsof the apparatus influenceplacecellactivity.Oncethe placefieldofa hippocampal
cell is determined (initial configuration),the environmental setup is manipulated in the absence of the
animal, and the animal subsequentlyput back in it and the sameplace cell recorded. (a) Simplyrotating
the cue-cardleadsto an equivalentrotation of the placefield(schematizedon the basis of data from Muller
and Kubie, 1987).(b) Introducinga secondidenticalcue-card leads to a place fielddefinedby one of the
two cue-cards and the actual point of entry. (Schematizedon the basis of data from Sharp et al., 1990.)

the environment are divided into small regions or
places and that this could provide a neural substrate
with which the rat could “recognize” where it is at
every moment. O’Keefe (1979) gives two definitions
of “place cells”:

“cells whose firing rate or pattern consistently
discriminates between different parts of an
environment. ”

or

“cells whose firing rate or pattern varies as a
function of the animal’s location in an
environment but can not be shown to be
dependent on a single specific sensory input.”

The first definition, combined with the fact that the
place fields — defined as the restricted region of the
environment where the corresponding place cell is

*Although in open-fieldenvironments,place cell activity
depends mainly on the animal’s position (Mrdler et al.,
1994),it also depends,in radial-arm mazes, on the animal’s
direction of movement(McNaughtonet al., 1983).In other
words, a place cell can tire whenthe rat is running outward
on a given arm, but remain silent when the rat is running
inward. Conversely,another place cell can fire whenthe rat
is at this same location, but only when the rat is running
inward.

active — are distributed all about the maze (0’ Keefe
and Conway, 1978), leads to the idea that the place
fields partition the environment and that place cells,
as an ensemble, represent the environment (they
“discriminate”). Indeed, there is a mathematical
mapping between where the rat is and which place
cell fires. * Moreover, the second definition considers
how these place cells are driven, i.e. how “place
recognition” is done for each place cell, individually,
stressing the fact that place cell activity is the result
of some fusion of processed multimodal information,
or even the result of a highly “abstract” neurocompu-
tation, instead of being like sensory cells, responding
to single or relatively simple qualities.

3.2.1.2.2. What drives place cell activity?

Electrophysiological recording experiments in
cue-controlled environments reveal how landmarks
play a role in the location-selective firing of place
cells. Muller and Kubie (1987) [Fig. 14(a)] showed
that the position of a given place field is determined
by its spatial relationship to a prominent landmark.
Place cells were recorded while the rat was foraging
after food pellets within a homogeneous cylindrical
environment with only one salient landmark (a white
cue-card on a black wall). The cue-card was then
rotated to a different position on the cylinder wall in
the absence of the animal. When the rat was
subsequently put back in this environment, the place
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fields of the same cells shifted in register with the
cue-card.

Place cell activity does not depend only on visual
information, since it is sustained in the absence of the
controlled cues or in darkness, as evidenced by
O’Keefe and Speakman (1987) and by Quirk et al.
(1990). It has been suggested that dead-reckoning —
the updating of the estimate of the animal’s position
by its own movement information — played a major
role in maintaining the spatial representation in the
absence of visual or auditory cues. Moreover, the
influence of inertial information — which can play a
major role in dead-reckoning — on hippocampal cell
activity has been evidenced independently by
recordings during passive motions of restrained rats
(Gavrilov et al., 1994). However, dead-reckoning is
known to be subject to integration errors and the
position estimation quickly drifts (Wiener and
Berthoz, 1993). Thus, the animal needs other means
to update the estimate of its position. Tactile
information (e.g. borders of the maze) may be one
such means. Indeed, Hill and Best (1981) showed that
hippocampal cells of blind and deaf rats also
exhibited spatial selectivity. In these experiments,
however, most place fields rotated in register after
rotation of the radial arm maze in the absence of the
animal. This suggests that, in intact animals,
extramaze cues are the principal basis for spatial
selectivity, whereas blind and deaf animals only have
access to intramaze cues. Hill and Best also suggested
that the use of vestibular inputs could explain that the
place fields of the few remaining neurons stayed fixed
with respect to the experimental room after arena
rotation.

Although visual, tactile, kinesthetic or vestibular
influences can be shown, sensory information does
not directly drive the place cells. Context and
memory also seem to play a role, as suggested by
Sharp et al. (1990), who observed that place fields —
in some cells but not in others — were related to one
cue-card and not to another identical cue-card placed
in symmetric position within the same environment
[Fig. 14(b)]. These place fields also depend on the
point of entry of the animal into the environment in
previous trials. In the figure, the place cell is
“associated” to the cue-card at the left when entering
the environment.

3.2.1.2.3. Position representation by the ensemble oj
place cells

Place cell.. encode information concerning places in
the environment in an abstract way, independent of
(actual) sensory views of the environment. But how
precise is the place recognition? If only a single place
cell is considered, then its firing could be taken to
indicate that the animal is or is not within a restricted
region, which is a “low precision” positioning.
Wilson and McNaughton (1993) showed that even
relatively small ensembles of place cells (about 100
neurons) could predict the animal’s location. Such a
coding implies that the brain computes the barycenter
(weighted average) of the (previously determined)
place fields’ centers, weighted by the corresponding
place cells’ activities. They found that the estimation
of the animal’s position was all the better as they used

more place cells to compute the population coding.
This computation assumed that each place cell
corresponds to a position in a Cartesian coordinate
frame, described by the (x,y) coordinates of the place
field’s center with respect to a reference frame chosen
by the experimenter. It remains unclear how this
spatial position coding by the place cell population
might be used by the rat’s brain to guide navigation.

3.2.1.2.4. Place representation is independent of goal
locations

Place cell activity is goal independent (Speakman
and O’Keefe, 1990), i.e. the place fields do not change
if the goal is moved within the cue-controlled
environment. [However, Breese et al. (1989) reported
that selectively delivering rewards to different
locations in a cue-controlled environment led
hippocampal cells to shift their place fields to the
location where reward was available.] Goal locations
also are not represented preferentially in the
hippocampus and there is no evidence, to date, of a
neural representation of future intended positions of
the animal. In other words, it is not clear how the
signals coming out of the hippocampus can be related
to the goal approach and the selection of the
appropriate direction or distance of movement.

Note that this independence of place represen-
tation and goal representation (if the latter exists) is
consistent with the fact that rats can learn a reward
location even if the reward is never consumed, an
example of “latent learning” (Tolman, 1948).

3.2.1.2.5. Possible learning mechanisms at the neural
level

Long-term synaptic potentiation (LTP) — a
persistent increase in synaptic transmission efficacy
that can be induced by brief trains of synaptic
stimulation — was first evidenced in hippocampal
cells (Brown et al., 1990). This synaptic mechanism
produces modifications that resemble “Hebb’s postu-
late of learning” (Hebb, 1949):

“When an axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic
change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is
increased. ”

Thus, it has been suggested that this process is
important for adaptive plasticity and memory
functions of the hippocampus. Then, associative
memories could be stored as a specific distribution of
modifiable synaptic strengths. McNaughton et al.
(1986) presented evidence supporting the idea that
spatial information is stored in hippocampal synapses
— at least temporarily — during the formation of
“cognitive maps”.

Most computational models simulate the learning
process at different levels of their spatial represen-
tation. In this section, most models (excepting Blum
and Abbott’s) learn the associations between
landmark configurations and place cells. In other
words, the place fields are defined during exploration,
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Fig. 15. Phase shift in place cell firing during the rat’s movement,as evidencedby O’Keefeand Recce
(1993).The horizontal axis representsboth space (top, rat’s movement)and time (bottom, theta cycleand
spikes).When the rat is at A (it runs from left to right in this overheadview),the place cellcorresponding
to place field PF1 fires late in the theta cycle (spikes shown as vertical bars). In B, this cell fires at the
middlephase and when in C, at the early phase of the theta cycle; C also corresponds to the point of
entry into place field PF2 with respect to the heading direction. The correspondingplace cell fires late
in the theta cycle.(Schematizedon the basis of data from O’Keefeand Recce, 1993;Skaggset al., 1996.)

by learning the correspondence between places and
landmark configurations. In models of higher levels
of navigation strategies and in Blum and Abbott’s
model (Blum and Abbott, 1996), learning concerns
the coding of the fact that place fields are adjacent
(topological representation) or the coding of the
distances between place fields (metric representation).

3.2.1.2.6. Place cell activity and phase coding

Lastly, another property of hippocampal place
cells, discovered by O’Keefe and Recce (1993) (see
also Skaggs et al., 1996), is the relationship between
place cell firing and the phase of the theta rhythm, a
sinusoidal EEG oscillation between 4 and 10 Hz. * As
the rat runs through a place field, the corresponding
place cell fires successively at “late”, “middle” and
“early” phases, with respect to the theta cycles
(Fig. 15). O’Keefe and Recce proposed that the brain
might utilize the phase of firing of a place cell to
detect the position of the rat within the place field.
This property will be crucial in the functioning of the
model proposed by Burgess et al. (1994), discussed
below.

3.2.1.2.7. Spatial selectivity of cells outside the
hippocampus proper

Non-hippocampal cells with activities selective for

*The theta rhythm (review: Miller, 1991) occurs
essentially when the rat is performing “voluntary”
movementsincludinglocomotorbehaviors,suchas walking,
running,rearing andjumping(Vanderwolf,1969).However,
the theta rhythm also has been shown to be triggered by
passive displacements (Gavrilov et al., 1995, 1996).The
hippocampal EEG exhibits large amplitude irregular
activityduring other “automatic” behaviors,such as eating
and scratching, but also when the rat is in a state of
immobilevigilance(Buzsakiet al., 1990).
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the animal’s position also exist, but are not called
place cells because of low resolution. In the rat, Quirk
et al. (1992) reported that cells in the entorhinal
cortex, the major relay for sensory inputs to the
hippocampus, have a spatial selectivity but are more
“sensory bound” than place cells: entorhinal cells fire
similarly in different cue-controlled environments
(e.g. circular vs rectangular enclosures) at a fixed
orientation to landmark cues common to the two
environments. In contrast, the hippocampal neurons
re-map each environment in an independent manner,
suggesting that the hippocampal neurons make an
abstract sensory-independent representation of en-
vironments. Likewise, Sharp and Green (1994)
reported neurons of the rat subiculum, a major
output of the hippocampus, which have rather low
spatial selectivity. These observations suggest that
these cells might encode another type of information
with spatial components, or that population coding
is used to analyze these signals. For these cells with
low resolution or mixed spatial correlates, will be
called “activity field” the restricted region of the
environment where the corresponding cell is active,
similarly to the definition of place fields.

Electrophysiological evidence for a neural place
recognition system has not yet been found in other
species. For instance, despite many attempts, there
has been no report of place cells in the hippocampus
of monkeys, although space-related neurons (Ono
et al., 1991) and view-selective cells have been
reported (Rolls and O’Mara, 1995; Rolls et al., 1995).

3.2.1.3. Head-direction coding

In addition to a positional representation, behav-
ioral experiments have shown that some animals (e.g.
rats and hamsters) have a sense of direction
(Mittelstaedt and Glasauer, 1991; Etienne et al.,
1995). A possible neural basis for this is provided by
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“head-direction cells” in rats. These neurons dis-
charge selectively when the animal is oriented in a
specific direction, regardless of its position in the
environment. Such neurons have been found in
several different parts of the rat brain [postsubiculum
(Taube et al., 1990a, 1990b), posterior cortex (Chen
et al., 1994a, 1994b), thalamus (Taube, 1995) and
striatum (Wiener, 1993)].

Like place cells, their preferred direction can be
influenced by the rotation of the principal landmark
cue in the environment (Taube et al., 1990b). Like
place cells, their directional specificity and preference
are disrupted if the rat is placed on the maze in
darkness, but are restored when the light is
subsequently turned on (Mizumori and Williams,
1993). Moreover, their directional specificity is
maintained briefly in darkness, if the light is turned
off after the rat is placed on the maze (Mizumori and
Williams, 1993).

Some head-direction cells (in anterodorsal nucleus)
shift their directional firing preference as a function
of angular head velocity (Blair and Sharp, 1995). It
is thus postulated that the directional position of the
rat’s head is computed by integrating head rotations,
velocity and acceleration (vestibular information).

3.2.1.4. Coherence between position and orientation
representations

There is a strong relation between place cells and
head-direction cells (Knierim et al., 1995). When the
preferred directions of the head-direction cells shift,
after cue rotation for example, the hippocampal place
fields also shift in register so that the two
representations remain coherent (Fig. 16).

Moreover, there is coherence between these
representations and the goal-directed behavior in
rats. O’Keefe and Speakman (1987) showed that “the
rat’s choice of the goal arm at the end of the trial
continues to show the usual spatial relationship to the
[place] fields.” In other words, mistakes in the sense
that the reward was not in the selected arm were not
mistakes in the sense that the animal correctly

remembered where the reward was with respect to the
place representation.

3.2.2. Computational Models

The place recognition-triggered response strategy
was described in Section 2.4 as involving (a)
self-localization (place recognition); (b) retrieval or
determination of the local reference direction; and (c)
association of a direction to the goal (or intermediate
goal) from this place. Self-localization is the
recognition of the place where the animat currently
is. The problem of self-localization can be dealt with
by mechanisms similar to those required for pattern
recognition. A stored representation is compared to
the sensory information available in the current
location (Zipser, 1986), i.e. the current sensor
readings —possibly from several modalities — are
matched against stored values. The following models
mainly differ in what types of sensors are used by the
animats, how the sensor readings are coded and
stored, and how this stored information is then
processed to give a place representation. Most models
[except Zipser’s model (1986), as well as Blum and
Abbott’s (1996)] rely on an internal compass to define
the reference direction. Thus, although the reference
direction put forth in Section 2.4 was based on local
landmark configurations and therefore changed from
place to place, the reference direction in these models
is global and constant. Most models code the
direction to the goal by a vector, i.e. an angle relative
to the reference direction. The length of this vector
can correspond to an estimate of the distance to the
goal. Brown and Sharp’s model is the only one in this
section that associates a movement to a place
recognition, instead of a direction.

3.2.3. Zz@er (1986)

In one of the first simulations of a computational
model of hippocampal function, Zipser (1985) starts
from the geometrical proof that a point in
two-dimensional space can be uniquely defined by its

G baited arm

~ rat’s choke

* place fields

Fig. 16. The position representation — shown by the distribution of place fields of five different
hippocampalneurons (greypatches) — and the head-directionrepresentation— shownby one reference
direction (arrow)— are coherent and interrelated. Wheneverone representation shifts (here the reference
direction rotates by 900),the other also shifts (the place cellscodingfor the maze arms code for the arms
rotated by 900).The position representation and the selection of the goal arm by the animal are also
coherent: if the goal arm is indicated by the arrow in the left figure during training, the animal selects
the arm indicated by the arrow in the right figureduring a trial, in accordancewith the fact that the goal

arm is assumed to be coded by the darkest place field in the internal representation.
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Fiz. 17. The view-fieldmodel from Zim.er (1986). Each view-cell

Animat’spositionsndorientation
Landmark
Goallocation

Oriented view-field

/ Orientation of the field (local reference direction)

— Direction to the goal associated to the field

Computed direction to the goal

in the model is associated with a... ,
vi;w-field,definedby the distancesfrom the center of the fieldto three landmarks and by an orientation.
This orientation, which serves as a local referencedirection, corresponds to the orientation the animat
had at its first visit to the place, and is defined by where the three landmarks are with respect to the
animat’s head-direction(left, ahead, or right). The direction to the goal from the view-fieldsis coded as
a vector, oriented with respect to each local referencedirection. The direction to the goal is interpolated

from the activities and the vectors associated with all the view-cells(see text and Fig. 18).

distances to three non-collinear landmarks. Assum-
ing that the hippocampus receives highly processed
information in the form of landmark identities and
their distances with respect to the animat, he suggests
a mechanism of how hippocampal place cells could be
driven. In this neural network model, each cell is
associated with three landmarks* in the environment.
Each cell discharges at a specific location defined by
three visual angles subtended by the respective
landmarks. The cell’s activity is actually a graded
function of the degree of match between the visual
angles subtended by the three landmarks at the
current location and those at the location associated
with the cell.

Zipser (1986) then proposes a goal-centered
representation where the simulated cells guide
approaches to a single goal from anywhere in the
environment (Fig. 17). However, instead of using
place cells as in the previous model (Zipser, 1985),
this animat uses “view-cells”, i.e. cells whose activity
depends on the animat’s position and on its
orientation. Each view-cell corresponds to a place cell
with an associated local reference direction.?
Similarly to place fields, the restricted region of the
environment in which a view-cell is active is called a
view-field. The animat’s current position is indicated
by the activity profile of the view-cell ensemble. In
contrast, hippocampal place cell activity does not
depend on the rat’s orientation in open-field
environments — such as the one simulated for
Zipser’s animat — although this holds true in
radial-arm mazes.

The population of view-cells can be considered to
represent the environment. This gradually occurs
during exploration of different regions. When the
animat starts at the goal location, none of the
view-cells exist. The view-cells are then “recruited”,
i.e. created, at regular time intervals as the animat
wanders. Meanwhile, the animat keeps track of its
position relative to the goal through path integration

* If more than three landmarks are available, each cell
selects an arbitrary subset of three of them.

t However,this direction is not very precisebecauseit is
definedby the low-resolutionegocentricorientations of the
three landmarks associated with the place (each landmark
is said to lie to the left, ahead, or to the right of the animat,
with respect to the its current head-direction).

(dead-reckoning). A “goal-cell” also is recruited
when a view-cell is created and this stores the
direction to the goal from the current location.
Consequently, each view-cell is associated with a
vector pointing to the goal location. This vector is
defined with respect to the local reference direction of
the view-field.

Once the spatial representation is built, the animat
can return to the goal if it is disoriented or if the path
integrator has been disabled, by using the infor-
mation associated with each view-cell. However,
there is no one-to-one mapping from locations to
view-cells, since this would require too many cells.
Thus, there is a need for a mechanism to infer the
correct direction to the goal from locations that do
not correspond to the center of a view-field. This is
done by approximation, taking the information from
view-cells that are nearby (Fig. 18). This idea of
approximat~ng a continuous point-to-point vector

map by an recomplete population of discrete vectors
also will be found in other models. At any location,
several view-cells are simultaneously active, with
activity levels proportional to the match between the
sensory information at the current location and the
sensory information associated with the view-cell.
Thus, one popular algorithm for the approximation
process is to take a weighted average of the different
vectors of the neighboring view-cells, weighted by
these cells’ activity levels. This is similar to
simulations of the population coding in the motor
cortex of monkeys (Georgopoulos et al., 1986;
Caminiti et al., 1990). Another popular algorithm
will be presented in the next section (Cartwright and
Collett’s model).

This model disagrees with the neurophysiological
findings since hippocampal place representation is
independent of the goal location (Speakman and
O’Keefe, 1990). Here, the exploration of the
environment and the “map” building is subsequent to
a goal specification and the spatial representation is
goal-centered. New view-cells cannot be included in
the spatial representation and be used to guide a
goal-oriented navigation once the animat has lost
track of the goal position: the animat would have to
return to the goal, start the path integration process
and go back (how?) to the place where it recruited the
new view-field. Some of the other models presented
below are inspired by Zipser’s model, but try to
palliate this limitation.
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3.2.3.1. Cartwright and Collett (1987)

In the previously discussed model of Cartwright
and Collett (1983), the animat’s navigation capabili-
ties were limited to a small area around each goal, i.e.
the set of locations from which the model bee would
be attracted to the corresponding goal. Cartwright
~nd Collett (1987) call it the “catchment area”
associated with the snapshot taken at the goal. Each
such area is defined a posteriori from the results of
the simulations with the model bee, but it
corresponds to the attraction basin of the discrepancy
measure described in Section 3.1.2.1. To increase the
range of the model bee’s foraging area, that is to
enable navigation in a large-scale environment,
Cartwright and Collett (1987) define an “album of
snapshots, each taken at a dzflerent location within
the terrain”, and each associated with the infor-
mation concerning direction and distance to the hive.
Each snapshot thus corresponds to a “place” in the
environment, from where the model bee has an

associated “action” to perform to return to the hive;
each place, once recognized, leads to a unique
response.

Like in Zipser’s model, during an exploration
phase, the model bee stores a new snapshot whenever
the discrepancy between its current retinal view and
the best matching snapshot in its current album is
greater than some threshold value. During this phase,
the model bee “knows” the direction and the distance
to the hive.

Figure 19 shows an example of a resulting
vector-map, where each point in the environment is
associated with a vector pointing approximately
toward the hive. Note that all the locations within
one place (defined by the closest location where a
snapshot was made) correspond to the same vector
(hollow arrows) as the one associated to the snapshot
(filled arrows). This vector-map is thus an approxi-
mation of a continuous hive-centered vector-map,
through a finite set of vector values. Consequently,
the return to the hive follows a two-stage process: first

Landmarki[

View cells

.............. .... .. .......

Goal cells

entitycells

weightedv~tors

Fig. 18, Zipser’snavigation system.The upper module (bordered in gray) of the neural network shows
how the oriented place representationis developedby the view-cells.Each landmark (a, b or c), indicated
by its identity L, is seen left, ahead or right relative to the head-direction and at a certain distance d,.
The landmark identity cells a, b, and c fire proportionally to the distances to the associated landmarks
(dJ whenthe associatedlandmarksare in their grossangular field(L is Oor 1).For instance, in the position
of the animat in Figure 17,landmark identity cell a for the “Ahead” visual field and landmark identity
cells b and c for the “Right” visual field are active (shading)while all the other landmark identity cells
remain silent. The combination of the landmark identity cells activates the view-cells.Here, view-cells1
and 5 fire the most and view-cell3 fires the least (shading).The lower module represents the subsequent
population codingof the direction to the goal. Each view-cellis associatedwith the direction to the goal,
and the correspondingvector is represented by a goal cell. The vectors representingthese directions are
weightedby the activities of their associated view-cellsand the weightedaverage yields the estimate of

the direction to the goal from the animat’s current position.
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“Place”wherea snapshotis taken

Directionto thehive
Directiongivenby theclosestsnapshot
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Fig. 19. Cartwrightand Collett’snavigationmodel(Cartwrightand Collett, 1987).For each place,defined
as a location where a snapshot was memorized,dashed lines indicate the landmarks that are includedin
the snapshot, Continuous lines define the basins of attraction corresponding to the snapshots. Each
snapshot is then associated to a vector (solid arrows) definingthe direction and the distance to the goal
with respect to a global referencedirection. Duringnavigation,the modelbee compares its current retinal
view(s)to all the snapshots in its repertoire, The one providingthe best matchingdefinesthe current place
the model bee is in. The model bee followsthe direction (hollowarrows) correspondingto the previously
learned vector required to return to the hive. When the model bee is in place C, which corresponds to
the region containing the hive, there is no more vector information. The model bee then uses guidance
(see Section3,1.2.1)to reach the hive,Note that distanceinformation is present but is not used here. The
bee has an “album” of snapshotswhichdefinerespectiveplacesand each with the associatedhive-directed

vector. This gives a hive-centeredvector map,

the model bee follows the directions indicated by the
closest snapshots (for instance, from A to B and then
from B to C) until the closest snapshot corresponds
to the one defining the hive (C); then it uses guidance
navigation strategy to reach the hive.

The assumption that the direction to the hive can
be computed from each point where a snapshot was
taken requires that the model bee has access to a
reference direction, namely a compass sense, relative
to which the vector gives the direction to fly. Thus,
as in Cartwright and Collett’s previous model
(Section 3.1.2. 1), there is a need for a mechanism that
maintains orientation information. *

3.2.3.2. Gaussier and Zrehen (1994)

While all of the previously described animats start
from an a priori known goal location to build a
goal-centered spatial representation, the animat
proposed by Gaussier and Zrehen (1994) is able to
explore the environment (by random wandering)
until it finds a reward and it subsequently builds a
goal-centered spatial representation that ensures the
ability to return to the corresponding place.

The originality of this model resides in the
architecture of the navigation system, which consists

* Krakauer (1995) implements a “hierarchical snapshot
model” inspired by this work, where a first-level neural
network receivesa filteredinput from distal landmarks and
learns to haveonlyone output channelactiveat a time. This
channel represents the “catchment area” of one specific
snapshot. This output activates a second-level neural
network that, receiving a filtered input from proximal
landmarks, is trained to produce a vector directed toward
the goal.

TPerAc stands for perception-to-action.

of a variety of so-called PerAc~ modules. These
modules are basic building blocks that implement an
active perception-recognition process through feed-
back loops (Fig. 20). The working principle of these
modules is of biological inspiration, although the
architecture does not mimic any specific brain
structure. A place is defined as a scanning sequence
of landmarks. These are linked by successive
movements (eye, head, or body rotations) fixating
from one landmark to the next. The PerAc module
associates the recognition of each individual land-
mark (module c) with the relative movement
(modules c and d) that will bring the perception
system onto the next salient landmark (the associ-
ation is the result of learning). Thus, the global
recognition consists of detecting and recognizing a
landmark, executing the associated movement, and
recognizing the next landmark in the sequence.
Likewise, a landmark is defined as a sequence of
salient points on the object, linked by ocular
saccades.

However, the recognition is not based on the
scanning sequence itself, which can vary on successive
visits to the place, but rather on the set of the
recognized landmarks with the associated move-
ments. In practice, the place recognition scheme
implements the notion of convergence of object
recognition and spatial localization, which h4ishkin
et al. (1983) proposed to be the respective function of
the “ventral and dorsal” streams in the primate visual
system. One pathway (modules a and c) in the PerAc
block codes for landmark identities (the ventral
“what” pathway), another pathway (modules b and
d) codes for the orientation of these landmarks in
egocentric space (the dorsal “where” pathway), and
a downstream module (Global recognition) fuses the
two types of information through AND neurons, i.e.
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Fig. 20. The PerAc module of Gaussier and Zrehen (1994).Each small block in the module is a “neural
map”, i.e. a population of neurons that codes for different information: (a) complexfeatures extracted
from lower-levelvisualprocessing(contoursfrom visualsceneor landmark identities);(b)positionof these
features (in eye-centeredor body-centeredcoordinates); (c) a stimulus pattern that enables the local
recognition(categorizationfrom the feature extraction, see Fig. 21); or (d) action (ocular or locomotor
command) associated with the current position (givenby b) and with the currently recognizedfeature
(givenby c). As illustrated on the right, the extraction of features (landmarks L,, then L, and then L,)
and the knowledgeof their egocentricorientations (0,, f3Zand 03) lead to the selectionof an appropriate
action (here, a, and cr~are body rotations rather than ocular saccades)that triggers the systemto orient

toward on the next feature. (After Gaussier and Zrehen, 1994.)

neurons that are activated only when both inputs are
simultaneously active (Fig. 21).

This model thus recognizes landmarks and places
through the same general mechanism. It is the first
model that we have seen so far that does not make
the assumption that the landmarks are known and
recognized a priori. Of course, there must have been

some prior learning to permit characterization of the
different objects that will be used as landmarks.

When a reward site is found, this triggers a reflex
behavior to wander “around” it and to memorize
how to approach it from different directions (Fig. 22).
The animat wanders in a circle about the goal, until
the goal returns into its field of view (which is

AND neuron .
I I / ,------% Pattern of Landmark-configuration

sustained activity for a while

E!zzzl
Head rotation

Fig. 21. Gaussier and Zrehen’sglobal recognitionmoduleimplementingthe convergenceof the whatand
where typesof information to yielda landmark configurationpattern. The landmark identificationcomes
from a lowerlevelPerAcblock.The simultaneousactivityof a landmark identityneuron (what the animat
is lookingat) and a head rotation neuron (the angular movementmade by the animat, i.e. where the next
predictedlandmark is with respect to the current one) drives the activityof an AND neuron, whichstays
activated for a prolongedperiod of time. For instance, the inputs in this figurecode for the recognition
of landmark L, and for the suggestedhead rotation cr,that leads to landmark LZ,and thus correspond
to the place shownon the right-handsideof Fig. 20.The sequenceof actions that lead from one landmark
to another will yield the simultaneousactivation of a subset of AND neurons, which results in a unique
pattern of activation. The activation level of each neuron of the subset depends on the position of the
landmark recognitionwithin the temporal sequence.However,the pattern is recognizedregardlessof the
activation level of each neuron. A “place cell” is associated with each characteristic pattern. (After

Gaussier and Zrehen, 1994.)
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Fig. 22, The acquisitionof a goal-centered“action-map” (what to do at each location) by Gaussier and
Zrehen’smodel (Gaussier and Zrehen, 1994).When the animat encounters a reward, it wanders around
the site in circles(one shown).At locations on these circleswhere the reward is visibleagain, the animat
recruits a placecelland memorizesthe directionto the goal from this place. Subsequently,the recognition

of a place will be associated with the direction to the goal.

limited). * The animat stops at this location, then
“looks around” to memorize the landmark configur-
ation that will define this place. Specifically, a “place
cell” is recruited that will be selective for the current
pattern of activity in the “global recognition” module
(Fig. 21). In this manner, the animat creates a
population of “place cells” downstream of the PerAc
modules described above. The animat further
associates with this place, the direction to the visible
goal with respect to absolute North as detected by its
internal compass. It then heads directly to the goal
(by guidance), and repeats the same wandering
process until enough place cells have been recruited
to cover the surroundings of the goal.

When the animat later attempts to return to the
goal, it first recognizes the place in which it is
situated, represented by the most activated place cell
(in other words, it looks for the closest place
description matching the current visual scene). Then
the animat retrieves the direction to the goal (the
“response”) associated with the place cell.

Recall that, in Zipser’s model, place cells are
recruited at regular time intervals and the animat has
to update its estimation of the direction to the goal
during the whole exploration phase. In other words,
Zipser’s model requires an additional mechanism to
give the directional information to the goal at any
time (during exploration). In contrast, Gaussier and
Zrehen’s animat exploits reflex behaviors. It relies on
the fact that wandering in circles brings the goal back
into view and gives the directional information as
well as the triggering for place cell recruitment.

However, place cells in Zipser’s model are rather
regularly distributed over the environment, like place
cells in the hippocampus of the rat, whereas in this
model, they are clustered around the goal.

3.2.3.3. Burgess et al. (1994)

The model of Burgess et al. (1992, 1994)) derives
most closely from physiological evidence of the
hippocampal neurons. Their model incorporates to a
greater degree than most the neurobiological data on
the hippocampal formation.

*It is implicitlyassumedhere that the animat can visually
recognizethe reward site from a certaindistance.This model
is also one of the rare ones that does not have a 360”field
of view.

Burgess et al. propose a five-layer feedforward
neural network (Fig. 23) that largely reproduces the
biological hippocampus architecture. The first of the
five layers represents the highly processed infor-
mation the hippocampus receives as inputs (sensory
neurons) and the last layer represents neurons
downstream of the hippocampus, and consists of
“goal cells” whose existence is postulated by Burgess
et al., but awaits experimental confirmation.

Each sensory neuron in this model discharges
selectively when an associated landmark is visible at
a certain distance from the animat.

Units in the next layer (EC) compute the product of
two associated sensory neurons’ activities. Burgess
et al. use a heuristic to hard-wire the connections
between the sensory layer and the EC layer: the pairs
of sensory neurons are chosen so that the associated
landmarks lie at approximately opposite sides of the
environment and so that the associated distances
correspond approximately to the midpoint between the
two landmarks. The result is that the activity fields of
the EC neurons lie within the borders of the en-
vironment but do not overlap one another “too much”.

In rat hippocampus, O’Keefe and Recce found that
place cells of area CA, tend to fire at a late phase with
respect to the theta cycle as the rat is entering the
corresponding place field, at an intermediate phase as
the rat is running through the field, and at an early
phase as the rat is leaving the field (Section 3.2.1.2.6).
Burgess et al. postulate that this phase coding is trans-
mitted downstream to the hippocampus from their EC
layer. To determine when the EC neurons should tire
with respect to the theta rhythm, Burgess et al. assume
that the center of the EC activity fields approximately
corresponds to the midpoint between the landmarks of
the associated pair. The phase of firing of the EC
neurons is then computed by looking where this point
is located relative to the animat (Fig. 24).

Each of the cells in the EC layer is connected to
50Y0 of the neurons in the next layer (PC). The
synaptic weights of these connections are binary (Oor
1). Initially, only a small fraction of the weights are
set to 1 and the remainder at O. The neurons in the
PC layer are organized into clusters and there is a
winner-take-all process (Rumelhart and Zipser, 1986)
within each cluster. Consequently, only a limited
number of PC neurons (one in each cluster) is active
at any given time. When the animat moves, the
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Fig. 23. Burgesset al’s feedforwardnetwork inspiredby the hippocampusarchitecture. Cells(circles)in
some layers are organized into clusters (ellipses).There are five clusters of 50 place cells, 10 groups of
25subicularcellsand eightgoalcellsfor each goal,correspondingto 8 head-directioncells. (After Burgess

et al., 1994.)

activity in the network is propagated through from
the EC layer to the PC layer. The active PC neurons
“represent” the fact that the animat is in a given place
that is defined by the conjunction of the activities of
a given subset of EC neurons. They behave like place
cells. However, the place fields that result from
random synaptic weights are fragmented. Sharp
(1991) has previously shown that a Hebbian-type
learning mechanism between sensory neurons (here

Firingtieldofsensoryneuron
(dedicstedtoli&mrk 1)

\\ \
1

I I

Fuingtieldofsensoryneuron2
(dedicatedtolandmark2)

landmark2
0

@ Centroidofthelandmarksland2
(appmxhnatecenteroftheECcell’stiringfield)

Fig. 24. Firing phase computation yields u, the angle
between the heading direction of the animat and the
direction defined by the position of the animat and the
centroid of landmarks 1 and 2; the phase will be “Late” if
la I is smaller than 60°, “Middle” if Ia I is between 60°
and 120° and “Early” if Iu I is greater than 120°. (After

Burgesset al., 1994.)

the EC cells) and place cells (PC cells), coupled with
the competitive mechanism, leads to a partitioning of
the environment in “equivalent-size” unitary place
fields. Thus, Burgess et al. introduce a learning
mechanism during an exploration phase, inspired by
Sharp’s work. The connections from the active EC
neurons to the simultaneously active place cells are
reinforced (set to 1) while the animat is randomly
moving around in the environment.

A similar process takes place in the next layer (SC).
The only difference between the PC and the SC layers
is the size of the clusters. Clusters are smaller in the
SC layer, so that each neuron competes with fewer
neurons. As a result, activity fields in the SC layer are
larger than in the PC layer.

This spatial representation is built up by the
competitive network during an initial phase of
exploration. In a second phase of exploration, the
animat learns the reward sites. There are eight goal
cells in the last layer of Burgess et al. ’s network for
each reward site in the environment (one cluster for
each goal, as shown in Fig. 23). Each of the eight goal
cells is associated with a direction. The eight
directions are represented by the head-direction cells
and are arbitrarily labeled North, North-East, East,
and so on. When the animat encounters a reward, it
looks into each of the eight directions. In each of
these directions, the SC neurons that fire at a late
phase with respect to the theta rhythm correspond to
activity fields that are ahead of the animat in the
corresponding direction. In other words, when the
animat looks North, for instance, the activity fields of
all the SC neurons that fire during the late phase of
the theta cycle lie at the North of the reward site.
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Fig. 25. Examplesof goal cells in Burgesset al.’s model. The cell with the field in dark grey discharges
whenthe animat is north of the goal, whilethe cellwith the fieldin light greydischargeswhenthe animat
is generally south-east of the goal. Thus, the activity profile of eight goal cells indicate the position of

the animat relative to the goal.

Thus, each goal cell draws connections from all the
active SC neurons. The activity field of each goal cell
then amounts to the sum of the activity fields of the
active SC neurons, corresponding to the associated
direction. The result of this learning process is that
the goal cells partition the environment in eight
directional sectors (North, North-East, East, and so
on) around the goal location. Figure 25 illustrates the
activity fields of two goal cells.

Subsequently, when the animat is, e.g., in location
A in Fig. 25, cells representing “South”, “South-
East” and “East” of the goal location fire more than
any of the five other goal cells. Taken as a whole, the
population of goal cells indicates that the animat is
globally “South-East” of the goal. This, in turn,
triggers a signal to move to the “North-West” to
reach the goal.

Figure 26 shows that this model can represent
multiple goals. Each goal corresponds to a distinct set
of goal cells but all of the goal cells receive inputs
from the same population of SC neurons. Obstacles
also can be taken into account by considering them
as negative goals.

The EC neurons in this model also behave like
place cells. Thus, the contribution of the PC and SC
layers for computations are questionable. In fact, a
three-layer feedforward version of this network that
consists of the sensory layer, the EC layer and the

goal cells also enables successful navigation (Trullier
et d., unpublished observations). The principle
advantage of the PC layer seems to be in maintaining
the architecture similar to the neurobiological model:
the size of the PC neurons’ firing fields looks like the
experimentally recorded place fields of hippocampal
place cells in rats. However, the large activity fields
of the SC layer are essential, so that the goal cells can
be activated from locations distant from the goal.

Most importantly, this model is one of the rare
ones that exhibit latent learning, i.e. a goal-indepen-
dent spatial representation.

3.2.3.4. Blum and Abbott (1996)

Blum and Abbott (1996) propose a hippocampal-
inspired model whose central feature is a goal-cen-
tered navigational map. Their model shows how an
animat can solve the Morris water-maze task
(Morris, 1981; Morris et al., 1982) (see Section
3.1.2.3).

In this model, it is assumed that there are place cells
whose place fields overlap one another. They are
distributed evenly so that the whole environment is
covered. It is assumed further that, given two
arbitrary locations in the environment, several of the
place cells whose place fields surround each of these

w-----/..4—. - . -
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Fig. 26. Vector representation of the network’soutput in each part of two square environments(viewed
from above),The largecircleis the goal location in each case. From points all over the environment(small
dots), the navigationsystemindicates the directionto the goal (lines).The lengthsof the linescorrespond
to the degreeof activation of the goal cells,and roughlycorrespondto the distance to the goal. The same
spatial representation(the first four layersof the network)is usedfor both goals.Twodistinct populations
of goal cells correspond to the two distinct goals. Filled circles surrounding the environment are

landmarks. (Simulationsby Trullier,)
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Fig, 27. Blum and Abbott’s model (Blum and Abbott, 1996).Paths (open arrows) that successfullyled
to the goal (black-filledcircle) are reinforced through the enhancement of the connections between the
placecellswhoseplacefields(dashedcircles)are alongthe path (solidlines).The syna~ticweightsbetween
these place cells are representedin gray-scalewhere place fieldsoverlap. Consequently,whe~ the animat
re-enters the environment, the activation of the place ceIIcorresponding to where the animat currently
is drivesthe stronglyconnectedplacecellthat has a neighboringplacefield.The animat then movestoward

this place field, which is on a path leading to the goal.

locations are synaptically connected through modifi-
able synapses (the weights are initially set at random).

During the first trials of the animat in the
water-maze, the synaptic weights are changed
through a modified Hebbian rule. When the animat
reaches the hidden platform (by random movements),
the model hippocampus receives a reinforcement
signal that triggers the enhancement of the synaptic
weights between place cells that simultaneously fired
in the last part of the trajectory that led to the goal.
Consequently, the activation of a place cell triggers
discharges in other cells that have neighboring place
fields along the path in the direction to the goal
(Fig. 27). The level of synaptic enhancement,
however, depends on the time it took the animat to
move from the place field to the goal. Paths that are
more circuitous (and long) have weaker reinforce-

* However,it is not completelyclear how a direct path to
a distant goal and a circuitous path to a nearby goal are
distinguishedfor this reinforcementmechanism.

ment of synaptic weights. When the environment is
“sufficiently” explored, connection strengths are such
that only place fields on direct paths to the goal are
linked. *

Following the discovery by Mtdler and Kubie
(1989) that place cell firing can predict the future
position of the animal by about 120 msec, Blum and
Abbott assume the existence in their model, of place
cells that represent where the animat “intends to go”,
beside the ones that represent where it currently is
situated. Thus, during subsequent trials, the animat
does not move at random in search of the hidden
platform, but moves into the place fields of the
activated place cells. In other words, the current
position (given as an input) activates the correspond-
ing place cells, which, in turn, activate other place
cells with neighboring place fields through the
previously enhanced connections. Then, the model
computes the difference between the current position
and the intended future position as given by the
activity of these latter place cells, and this output
signal drives movement.
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This model is the only one using the predictive
nature of place cell firing, a property reported but
once in the literature. This model is original in this
respect, suggesting that the motor output can be
computed directly from the hippocampal place
representation. However, this model hippocarnpus
does not represent goal-independent places but places
on paths to the goal. This is in contradiction with the
results from Speakman and O’Keefe (1990) in
hippocampal recording (cf Section 3.2.1.2.4).

3.2.3.5. Brown and Sharp (1995)

All the preceding models in this section rely on an
allocentric framework for directing movements. The
direction to follow to return to the goal is defined as
a vector with respect to absolute references as given
by some internal registers like a compass or
head-direction cells. Brown and Sharp (1995) propose
a model with a place representation and a
head-direction representation. These control a move-
ment coded egocentrically in the form of left and
right turns.

The place representation is based on a simplified
version of an earlier model by Sharp (1991) (Fig. 28).
It consists of a three-layer feedforward network. The
first layer represents the sensory inputs to the
navigation system, the second layer builds a place
representation from the latter while the head-direc-
tion is given a priori. Place cells and head-direction
cells project onto cells of the output layer, which is
divided into left-turn and right-turn clusters. This last
layer produces motor commands, consisting of a
small step forward and a turn to the left or right.

Each sensory cell in the first layer is activated
whenever a given landmark is within a certain
distance from the animat, and at a fixed angular
relationship with respect to the head-direction.

These cells project onto a layer of hippocampal
place cells which is organized into a winner-take-all
cluster (a mechanism also used by Burgess et al.,

1994), so that only one hippocampal cell is active at
any one time. Thus, each place cell discharge
corresponds to a set of active cells in the sensory
layer, capturing the conjunction of specific sensory
features, i.e. a specific landmark configuration in a
particular part of the field of view of the animat (i.e.
with relation to the heading direction).

Each of the output layer cell clusters is organized
as shown on Fig. 29. There is a one-to-one mapping
from each place cell to interneurons in the cluster.
Each interneuron is in turn connected to all but one
output cell. Each head-direction cell is connected to
all of the output cells.

As a result, the place cell representation selects in
each cluster one output cell that may be activated by
the head-direction cells. The synaptic weights
between head-direction cells and output cells
determine the place-dependent mapping from direc-
tion to left-or-right motor output. The animat
subsequently moves a little step forward and turns in
the direction indicated by the most active of the two
activated output cells.

The synaptic weights between the sensory cells and
the place cells are modifiable, as are those between
head-direction cells and motor output cells. The
synaptic weights between place cells and the
inhibitory interneurons in the motor output clusters
are fixed, as are those between the inhibitory
interneurons and the output cells.

The synaptic weights between the sensory cells and
the place cells are modified according to a Hebbian
rule. The details and the properties of this place
learning process are similar to the process described
in Section 3.2.2.4, although the weights here can have
real values between Oand 1, instead of being binary.

The synaptic weights between head-direction cells
and motor output cells are modified according to a
reinforcement learning rule (modified Hebbian rule).
Weights are changed only when the animat
encounters the reward in the environment, and the
changes depend upon the time-history of the synaptic

‘ensO”ce’’sqz@@

leftturn rightrum

(a) (b)

Fig. 28. (a) Brown and Sharp’s neural network maps a place representation and a head-direction
representation onto an egocentrically coded movement representation. Continuous arrows are fixed
connectionsand dashed arrowsare connectionswithmodifiablesynapses.Filledcirclesrepresentactivated
cellswhilehollowcirclescorrespondto silentcells.(b)The simulatedenvironment(landmarksnot shown).
Each place (circle)and each head-direction(arrow) correspond to a unique movementcomputed by the
network toward the goal (left turns shownas continuousarrows and right turns shownas dashed arrows).

The goal is indicated by the black square. (After Brown and Sharp, 1995.)
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Fig. 29. Detail of an output layer cellcluster in Brownand Sharp’smodel (1995).Each placecell activates
a given inhibitory interneuron that inhibits all but one output cell. This output cell is activated by the

population of head-directioncells. (After Brown and Sharp, 1995.)

activity, i.e. how often and how recently the pre- and
post-synaptic cells fired. This rule follows the idea
that recent actions — which correspond to the
simultaneous firing of a given set of head-direction
cells and of a given motor output cell — most likely
led to the goal location, so that the corresponding
connections should be reinforced.

The network devised by Brown and Sharp
implements a goal-dependent action model where
there is a mapping from head-direction to movement
at each place. In fact, the mapping takes the form of
two functions, one for each of the possible
movements (left turn or right turn). Each of the
functions computes the “degree of relevance” of
performing the corresponding movement on the basis
of the current place and head-direction. The
navigation system then selects the movement
corresponding to the highest value. This is reminis-
cent of Q-learning in the reinforcement learning
literature (Watkins and Dayan, 1992). Q-learning is
an algorithm that makes use of an utility function
Q(x,a), which estimates the long-term reward of
performing action a when the system is in state x.
When the goal is attained, the learning algorithm
backpropagates the reinforcement signal to update
this function (as in Dynamic Programming). This
function Q is usually represented by arrays, but also
can be represented by neural networks (Barto et al.,
1993; Lin, 1993).

One difficulty with this type of learning is that if the
animat encounters the reward after a long sequence
of actions, the system can’t determine which of the
series of actions were important. This is the problem
of delayed reward (Watkins, 1989). Brown and Sharp
acknowledge that “only actions which take place
quite close to the goal can be rewarded. ” The solution
they propose is to generate ‘<anticipatory goal
responses”, a subject for future study.

3.3. Topological Navigation

3.3.1. Behavioral Experiments

The navigation strategies presented up until this
point could not be used for planning the whole
sequence of movements from the current location to

a goal because all of the spatial information available
to the animat at a given moment concerned local
spatial relations, i.e. restricted to the current place.
However, it is also important to choose between
paths and to plan actions. This requires facilities for
acceding information about places that are beyond
the current field of perception. To start with, we will
look at evidence for an internal representation of the
topological layout of different places, i.e. how places
are connected to one another.

Thinus-Blanc (1978) demonstrated that, within a
certain range of metric distortions in the apparatus,
hamsters were able to discriminate between two
topologically different experimental setups, as shown
in Fig. 30. The environment was a cylinder (1 m in
diameter) within which was disposed a circular
barrier (9 cm high, 45 cm in diameter during the
training trials), which divided the arena into an
interior region (A) and an exterior region (B). The
rats were capable of jumping over the barrier. The
barrier had a removable section (15 cm wide). The
task was to avoid a mild electric shock applied in one
of the regions of the environment (area A or B) by
moving to the other. The region where the electric
shock was delivered was defined by the topological
property of the region A (open or closed).

Hamsters were trained in the task and were then
tested in the same environment, but with different
barriers. The testing barriers varied in diameter (from
17 to 80 cm) and in height (from 1.5 to 12 cm). The
removable section was always 15 cm wide, except for
the barrier that was 17 cm in diameter, where the
removable section was 7.5 cm wide. Hamsters
exhibited correct responses in a very few cases, for
barriers whose dimensions were very close to the
dimensions of the training barrier. When the barrier
was closed, the performance decreased more when
the height was changed than when the diameter was
changed. When the barrier was open, changes in
height and diameter had equivalent effects. Thus,
hamsters could attend to the topological property of
this experimental environment, but they were
disturbed by metrical properties. The difficulty also
came from the fact that hamsters have a natural
tendency to move to the periphery of an arena and
also that, in the case of closed barriers, changes in
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“closed” setup “open” setup

Fig.30. Two topologicallydifferentsetups used by Thinus-Blanc(1978)in her conditioningexperiments.
The rats were to avoid the regionwhere there is an electric shock ( – ) and run to the other region ( + ).
The correct responsewasdeterminedby the topology(open/closed)of the regionA. The shockplacements

were reversed for a second group of rats. (After Thinus-Blanc, 1978.)

height led to changes in locomotor movements
required for moving from one area to the other.

Cats also are influenced by metric properties of the
environment in tasks where only topological proper-
ties are relevant for performance. Poucet (1984)
studied the processing of visuospatial information in
cats required to choose between two paths to reach
a visible reward (Fig. 31). Two white paths were
drawn on a completely black floor and these paths
were bordered with transparent walls, preventing the
cat from walking outside the paths but enabling it to
visually inspect the whole environment. One feeding
bowl was placed at the end of one path in one of the
three possible arrangements and the hungry cat was
released at the starting point. All three environments
were topologically equivalent. All cats were able to
choose the correct path in environment 1 and their
performance in environment 2 was significantly
above chance level. However, they tended to choose
the wrong path in environment 3. In environment 1,
moving directly toward the visible goal leads to the
correct choice. In environment 2, the direction to the

* However,the fact that a rat prefers path 1,whichis the
shortest, demonstrates its ability to compare distances and,
therefore, some knowledgeof metric information.
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goal is straight ahead, and thus ambiguous; but cats
were able to attend to the fact that the path was
circuitous, a topological property of the environment.
In environment 3, however, visual attraction and
topological properties were contradictory. The results
showed that visual attraction, a guidance strategy,
tended to dominate. This “perceptual dominance”
also will be found in experiments testing the ability
of animals to attend to metrical properties.

Some of the experiments in the behavioral
literature that were interpreted as indicating the
ability to make detours using metric internal maps
can be accounted for by a topological navigation
strategy, without the need to take into account metric
information. Tolman and Honzik’s detour problem
(Fig. 32) is such a case. In this experiment, a rat is
required to select one of three paths leading to a
reward. It quickly learns to use path 1, which is the
shortest one. When barrier A is put to block path 1,
the rat shifts, after a few trials, its choice to path 2,
the second shortest path. However, when barrier B is
put in place instead of barrier A, while the rat is using
path 1, the rat shifts its choice to path 3, without
trying path 2. The authors’ interpretation was that
the rat has the “insight” that the barrier blocks
simultaneously paths 1 and 2. It turns out that such
an “insight” does not necessarily invoke a map-like,
metric representation of the environment* because the

(1) (2) (3)

q!l~~

t Starting point ❑ position of feeding bowl

Fig. 31. Experimentalsetups of the path-selectionproblemused by Poucet (1984),In all three setups, the
feedingbowl is put randomly on either path on successivetrials. Here, the correct choice is to turn to
the right at the choice point in all three setups. In (l), cats usually select the correct path. In (2), cats
select the correct path with probabilitywellabove chance level.In (3),cats usuallyselect the wrongpath.

(After Poucet, 1984.)
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--- A &B: barriers
Fig. 32. Tolman and Honzik’sdetour problem. The path usually taken by the rats is path 1, but when
the barrier A is put in place, the rat shifts its choice to path 2 after a few trials. When barrier B is put
in place instead of barrier A, and the rat tries path 1, the rat then shifts its choice to path 3, without

trying path 2. (After Tolman, 1948.)

detour problem is here a path selection problem, that
is choosing one complete path among a jinite set of
possibilities. The presence of barrier B suppresses the
connection between place P, and place P2. Conse-
quently, it suffices for the topological representation
to be modified accordingly (by removing the edge
corresponding to the connectivity between node p,
and node pz) to induce the choice of path 3, the
remaining path leading to place p2.

3.3.2. Electrophysiological Evidence

3.3.2.1. Connections between place cells

Place cells in the rat hippocampus are intercon-
nected, e.g. through recurrent collateral connections
in the CA~ region. Recurrent collaterals are
distributed to other CA3 cells throughout the
hippocampus (Amaral and Witter, 1989) and the
connectivity is about 4V0. Therefore, any two
hippocampal cells in the CA, region are connected
together directly or via two or three intermediate
steps (Rolls, 1995).

This interconnectivity between place cells is one
possible piece of evidence for the existence of physical
links between place representations. Furthermore,
since these connections have modifiable synapses
(Brown et al., 1990), one argument usually put
forward is that they could code for some learned
spatial relationship between the corresponding place
cells, such as proximity and overlap. Thus, hippo-
campal cells could implement a topological graph of
the environment. The place cells could be the nodes
and the connections could be the edges. An implicit
assumption in this case would be that one synapse is
sufficient for one place cell to drive the next, which
is unlikely to happen in the rat hippocampus. A more
reasonable assumption is to consider each model
place cell as an ensemble of place cells coding for the
same region in the environment, so that many

*Eichenbamn et al. (1989), however, showed that the
place fieldsof anatomicallycloseplacecellsare significantly
clustered — “closer in space and considerably more
overlapped than chance” — although these cells were not
tested in a second environment.

simultaneously activated cells can drive the next
ensemble.

However, if two cells have overlapping place fields
in one environment, they do not necessarily have
overlapping place fields in a second environment
(0’Keefe and Conway, 1978;Muller and Kubie, 1987;
Thompson and Best, 1989).* Thus, there does not
seem to be any apriori topological relation encoded in
the anatomical connections between two place cells.

The connections between hippocampal cells could
correspond to other associative connections, which
could be equivalent to topological relationships within
one given environment. Skaggs and McNaughton
(1996) reported that two cells with overlapping fields
simultaneously recorded in an environment tended to
fire more synchronously during the following sleep
period of the animal, in the same temporal order as
during the spatial behavior. One interpretation of
these results is that the two place cells were connected
and that spatial exploration tended to enhance the
synaptic efficacy from the first place cell to the second
one.

3.3.2.2. Whole body movement representation

Assuming the rat hippocampus implements a
topological representation of the environment, a
command to move from one place to a neighboring
one is required. If a route is defined as a sequence of
places to traverse, what is required is information
concerning the movement that leads the animat from
one place to the next. McNaughton (1989) suggested
that place representations are linked through
movement representations, in the form ofa “transition
matrix” (Fig. 33). The idea is: “when starting from
place B (implicitly facing place D) and making a left
turn at the choice point, the animal ends up in place
C.” In other words, the spatial representation incor-
porates simultaneously places and movements, the
latter corresponding to the links between the former.

There is evidence for “movement” representations
in the rat brain. McNaughton et al. (1989) recorded
in the primary sensory–motor cortical area and the
posterior parietal cortex of rats, and found cells
responding to one of three broad categories of
movements: left turns, right turns and forward
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motion. It is not known if these cells are
somatosensory, driven by vestibular information or
by visual information. However, McNaughton et al.
tested for somatic and kinesthetic responses by
passively moving the body of the rat, and found no
responses.

Likewise, O’Mara et al. (1994) recorded neurons in
the macaque hippocampus and Gavrilov et al. (1994)
in the rat hippocampus, that discharged selectively
during passive displacements of the animal. This
suggests that self-movement information derived
from inertial cues can influence hippocampal cell
activity.

Lastly, rat hippocampal place cells have been
shown by Sharp et al. (1995) and Wiener et al. (1995)
to be influenced by passive rotation of the animal,
suggesting that hippocampal spatial representations
are also updated by active self-movement infor-
mation.

3.3.3. Computational Models

Models in this section allow computations to
exploit the topology of the spatial layout of different
places and hence will enable path planning.

Models described in previous sections built a place
representation from a set of visible landmarks,
partitioning a small-scale environment into “small”
places. In contrast, although some of the models in
this section also deal with small-scale environments
(Penna and Wu, 1993; Bachelder and Waxman,
1994a, 1994b), most deal with places in a large-scale
environment, where there may be landmarks that are
not simultaneously visible. Consequently, the models
don’t incorporate lower levels of information
processing, i.e. the animat is assumed to be able to
recognize the place it is situated in [as well as adjacent
places, in Schmajuk and Thieme’s model (Schmajuk
and Thieme, 1992)]. The necessary information is
provided to the navigation system, assuming, for
instance as Levenick (1991) does, that there are units
representing places and these result from upstream
spatial pattern recognition. The recognition of a wide
range of “places” is a difficult problem, not yet

“+’’-shapemaze

resolved, though robots devised by Kuipers and Byun
(1991) and by Matari6 (1990) include place
recognition systems, as defined by their guidance
mode of navigation (Section 3.1).

3.3.3.1. Jluller et al. (1991)

Assuming place cells are given a priori and using
the two properties on hippocampal connectivity
described in Section 3.2.2.5 — (i) place cells are
sufficiently interconnected so that there are two
interconnected place cells for any two given locations
in the environment; and (ii) connections have
synapses modifiable through a Hebbian rule —
Muller et al. (1991) propose a model of how the
hippocampus might implement a topological rep-
resentation of the environment. Their model also
encodes some metric information. The animat
exhibits topological navigation and is able to select
paths on the basis of the path length, but does not
exhibit metric navigation because it is not able to
make metric detours or metric shortcuts.

As in virtually all models, the connection weights
are learned during random exploration. When the rat
moves (in a straight line at a constant speed) from one
place to another, the corresponding place cells fire
with a temporal delay that is proportional to the
distance between the place fields. The closer the place
fields, the more probably the place cells will fire
simultaneously, and thus the more often the
(real-valued) weights of the synapses connecting these
cells will get enhanced. The synaptic weights
eventually become proportional to the (inverse of the)
distance between place fields, a metric quantity. The
temporal order of firing of the two place cells are not
taken into account. Thus, when the animat moves
from place A to place B, the synaptic weights from
cells representing A to cells representing B, as well as
those from cells representing B to cells representing
A, are modified. However, these connections between
place cells do not contribute to the firing of these
place cells, in contrast with the model of Blum and
Abbott (1996). They only passively store the spatial
information.

transitionmatrix

R F L

L R F

F L R

R F L
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Currentlocation ~
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/

L: left-turn
F: forwardmovement
R: right-turn

Fig. 33. A transition matrix maps places to places through specificmovements
1989.)

(After McNaughton,
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Fig. 34. Implicitmetric spatial representation. Left: the physicalmetric layout of the place fields(dashed
circles) can be reconstructed on the basis of sufficient information about distance between them
(continuous lines). Right: these distances are implicitly encoded in the connection weights (labels on

bidirectional arrows, arbitrary units) between place cells (small circles).

The animat needs to explore the environment
extensively for the connection weights between all the
place cells to be learned. However, the initial
values of the weights are zero. Thus, after some
exploration, non-zero connection weights signify that
two corresponding place fields overlap, although they
do not correspond to the exact distances. This proves
to be sufficient for topological path planning, thus
extensive exploration is not required.

Once learning is complete, the animat is able to use
this implicit spatial representation — the “cognitive
graph” as Muller et al. call it — to plan a route from
the current location to a given goal location. Muller
et al. propose a classical graph search algorithm,
employing as yet undetermined physiological mech-
anisms. The goal location is defined by one place cell
and the current location is defined by the place cell
that is currently active. Each “neural” path, i.e. each
ordered set of connected place cells, corresponds to
a physical path in the environment. The most direct
path in the environment is represented by the set of

connected place cells for which the sum of the
synaptic weights is the greatest (maximizing the sum
of the inverses of the distances).

As explained by Muller et al. (1996), the addition
of a few ad hoc mechanisms enable the generation of
topological detours and shortcuts. The addition of an
obstacle, requiring a detour, is represented by the
removal from the graph of the place cells occupied by
the obstacle. Thus, paths that previously included
these places are no longer taken into account by the
graph search algorithm. The appearance of a hole in
the obstacle, enabling a shortcut, requires a new
phase of exploration that recreates the adequate links
in the graph.

An interesting aspect of this model is that a simple
Hebbian learning rule — which transforms the
temporal characteristics of cell firing into a code for
proximity relationship — enables the implicit
building of a metric map. Indeed, all the necessary
information to reconstruct a physical map are
available in the connections between the place cells.

n

P31

North

I
Fig. 35. The ‘<rehearsalprocedure” performed by Kuipers and Byun’sanimat. The animat starts from
place S and first finds place P1. From there, it selects direction 1 (arrow) which is definedwith respect
to compass. It also memorizesthe existenceof an open space in direction 2. It then successivelyfinds P2
and P3.Whenit findsplaceP4,whichhas sensoryattributes similarto placePl, it first tries to take metrical
information into account (distanceand directiontraveled).With the hypothesisthat P4 might be the same
as Pl, it generates a prediction about the next place to be found by selectingdirection 1 again. Since it
findsa newplaceP5 instead of P2, the systemupdates its spatial representationby storingplace P4. (After

Kuipers and Byun, 1991.)
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As shown in Fig. 34, the knowledge of the distances
between all the place fields uniquely determine their
relative positions (except the crucial left/right
relation).

However, the model proposed by Muller et al. only
exploits the topological information encoded and
uses the metric information only to select between
different paths.

3.33.2. Kuipers and Byun (1991)

The model proposed by Kuipers and Byun (1991)
also constructs a topological graph of the environ-
ment during the exploration phase. Its original aspect
resides in its interactions with a (lower-level)
guidance navigation strategy.

As described in Section 3.1.2.4, places are defined
as specific locations that the animat reaches by using
a guidance strategy. The place representation is not
given a priori. Likewise, paths can be defined by a
guidance strategy. The animat follows a wall
(“move-along-object-on-right”) or a corridor (“fol-
low-the-midline-of-the-corridor”), or moves toward a
specific remote landmark (taxis).

The spatial representation is built as the animat
selects distinctiveness measures to define new places
or by control strategies to follow a new path until
another place is found. It consists of a graph where
nodes are places and edges are paths between places.
However, in contrast to the other topological graphs
described in this review paper, there are many
different types of information that can be associated
with the nodes and the edges. These associations are
implemented symbolically.

Firstly, each node stores (1) the definition of the
corresponding place by its distinctiveness measure;
(2) the identities of the sensors that are involved in the
computation of this measure; and (3) the values of the
sensor readings at the local maximum of the measure.
Likewise, each edge stores the definition of the
movement control strategies that enable the animat
to follow the corresponding path.

Secondly, any information that can help disam-
biguate different places is also stored. If the animat
was equipped with appropriate sensors, it could
memorize non-geometrical features in the vicinity of
the place, such as the colors or the texture of the
nearby objects. The animat also memorizes local
metrical information, such as the distances and
direction to nearby objects, their shape and apparent
extent, or the directions to open space. Likewise, the
animat is equipped with a compass and thus can
memorize the direction of travel along a path. It can
also measure the distance traveled.

The topological representation is augmented with
metrical information. Thus, the system generates
predictions and plans for exploration to disambiguate
sensorily similar places. Figure 35 shows one example
and illustrates the fact that here, exploration and path
planning are simultaneously performed. When a
place (P,) is found that is similar to an already known
place (P,), the animat tries to match its spatial
representation with its sensory information. It then
plans a route (follow direction 1) that will enable it
to check its hypotheses (it should find place PJ. This
is called a “rehearsal procedure”. Path planning is

not detailed in computational terms in the paper, but
follows a classical graph search with the use of metric
information.

It would seem that, since distance and direction
measurements are available, this model is able to
perform metric navigation. Indeed, it can reconstruct
the metrical layout of the environment, but Kuipers
and Byun use it only for the rehearsal procedure.
Since the animat can only generate movements
referred to environmental features, it cannot move
into a completely open space and perform metric
shortcuts for instance.

3.3.3.3. kfatari~ (1990)

Matari6’s model (1990) also is based on the
construction of a topological representation of an
indoor environment, with a place representation
derived from the guidance strategy (described in
Section 3.1.2.5). The basic behavior of the robot is to
follow walls and the environment is decomposed
into “right-northward-walls”, “left-eastward-walls”,
“southward-corridors”, and so on (Fig. 36). As the
animat wanders in the environment and detects new
places, it recruits new nodes to represent them and
links them to existing nodes through movement
information, i.e. comparing compass readings at both
places. Each node also stores the size of the place (the
distance between one end and the other end of the
wall). This is a simple graph-growing mechanism.

Orienting toward the goal is accomplished by using
a spreading of activation through the graph, from the
node representing the goal to the node representing
the place in which the animat currently is situated.
Once a goal location is defined, the node representing
it keeps sending a signal which is propagated from
node to node through the network. The propagation
speed is inversely proportional to the size of each
place. When the current place node receives the
signal, the adjacent place lying on the shortest path
corresponds to the adjacent node from which the
signal comes from. The direction to this adjacent
place is retrieved from the topological graph and the
animat moves in this direction.

As in the model of Muller et al. (1991, 1996)), the
animat is not able to generate metric shortcuts
through previously unvisited places, but the spatial
representation includes sufficient metric information
so that the animat can select between alternate paths
on the basis of their lengths.

3.3.3.4. Schmajuk and Thieme (1992)

Schmajuk and Thieme (1992) propose a model of
animat navigation based on a neural network with
specific dynamical properties of activity propagation
that can represent the topological layout of places
and thus enable path planning. The model is
composed of two modules, one that encodes the
topological representation and one that selects
movements on the basis of predictions generated by
the first module (Fig. 37).

As in many models, place cells are defined apriori.
The navigation system’s inputs consist of the identity
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Fig. 36. Exampleof an environmentand of the associated graph in Mataric’s model, Left above: each
place in the L-shapedroom is labeled accordingto the characteristics of the range sensor readings (RW,
right wall; LW, left wall; C, corridor) and to the compass reading (right: from Oto 15)when the robot
movesabout, usingthe wall-followingprocedure(lower-levelguidancestrategy). Belowleft: in the graph,
each place is represented by a node and any two nodes can be linked dynamically(lines) to code the

adjacency relationship. (After Matarit, 1990.)

of the current place and the identities of the adjacent
places (called “views”). As shown on Fig. 38, the
neural network has dedicated neurons for each place
and each view. As the animat moves from place to
place, the synaptic weights between the place nodes
and the view nodes are modified through a
generalized Hebbian learning rule. The weights are
initially set at random values. During learning, the
activation of the current place node is propagated

* The weight between place node P and view node V is
increasedwheneverthe animat is in P and perceivesviewV,
i.e. the correspondingnodes are activated simultaneously.
The weight is decreased if the animat is in P but does not
perceive view V, i.e. the
activated simultaneously.

corresponding nodes are not

through the network and place-prediction nodes are
activated according to the synaptic weights. The
predicted places should correspond to current views.
Thus, the activities of the place-prediction nodes are
compared to the activities of the view nodes. The
synaptic weights are updated whenever there is a
mismatch. * When learning is completed, these
synaptic weights represent the transformation from
places to views and, since views correspond to
adjacent places, they represent the adjacency
properties between places.

The activities of the place-prediction nodes then
propagate back through the recurrent connections
and drive the place-prediction nodes again. Their
activities now represent the predictions of places that
are adjacent to the current views, i.e. places that are

Spatial representation,module

Comparator

L
CognitiveMap

J

gosl prediction
f~~t-ch~@n;,@~~ ,Actionsel@on,r nodule,, ,, Environment

Motivation action

A

,., ,., .,

god

Fig. 37. Functional schema of Schmajuk and Thieme’snavigation model. The first module (above)
encodes the topologicalrelationshipsbetweenplaces by constantly comparing the internal predictions of
what the animat expects to see and what it actually sees. The second module (below) either uses the
predictions generated by the first module to select appropriate movementsto reach the goal (search) or

generates a random movement (exploration). (After Schmajukand Thieme, 1992.)
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Fig. 38. Left: the maze in whichthe animat was tested consistsof four distinct places. The animat is able
to recognizeeach place and all of its neighboringplaces. Right: the neural network implementingthe
spatial representation module describedin Fig. 37. The synapticweights(filledand unfilledtriangles) in
the cognitivemap are modifiedso that the recognitionof the current place triggers high activity in the
place-prediction nodes that correspond to the neighboring places. The recurrent connections enable
further predictions that can then be compared by the path selectionmodule. See text for details. (After

Schmajukand Thieme, 1992.)

two steps away from the current place (as well as the
current place, which is accessible from the neighboring
place). For instance, assume the animat is in place 1of
Fig. 38. Nodes pz and p~ will first be activated since
places 2 and 3 are “viewed” from place 1. The
activities of pz and p~feed back to drive the nodes p,,
pj and p~, and the nodes p, and pz, respectively,
through strongly weighted synapses. Thus, the
existence of a path leading to the goal from place 1can
be “inferred”. However, because such recurrent
signals could create interferences with local signals
perceived at the current place, Schmajuk and Thieme
assume that there are two rates of change of the
transmitted signals, fast and slow (the dynamics of the
activities of cells are governed by differential
equations). The recurrent connections involve an
intermediate layer of neurons (labeled din the figure)
that output the temporal derivatives of their inputs.
Consequently, only fast-changing signals are
efficiently propagated through the recurrent connec-
tions. Moreover, these derivatives are small, ensuring
that the recurrent activity is always weaker than the
direct activity. Repeating this looping process
continues to reduce the signal, so that the activity of a
place-prediction node is inversely proportional to the
topological distance (number of intermediate places)
between the current place and the predicted place.

Only the slow-changing signals are sufficiently
large enough to modify the synaptic weights.
Consequently, prediction of distant places with the
weak, fast-changing signals does not lead to a
mismatch detection (for instance, node p~ is activated
by the prediction of p2 from place 1, but there is no
mismatch between p~ being activated and the absence
of the corresponding view of place G). Thus, “the
network operates as a heteroassociative non-recur-
rent network for slow-changing signals and as a
recurrent network for fast-changing signals. ”

Before initiating a movement, the animat “peeks”
into each adjacent place, in sequence, generating a
fast-changing signal from the current place to each
adjacent place. This signal is sent simultaneously into
the “cognitive map” and into the “path selection
module”. Within the cognitive map module, it
spreads through the network and the recurrent
connections, until it eventually activates the node
predicting the goal. Within the path selection module,
it is transformed into a pulse by the d’ node
corresponding to the place peeked into. This pulse
initiates a trace in the corresponding node i, a leaky
integrator. The connection weights rj are modifiable
and store the signals coming from the goal-prediction
node. In practice, a connection weight rj increases
whenever there is simultaneous activity on the
corresponding i node and on the d node coming from
the p~ node. Thus, the connection weights r
correspond to the topological distance between the
adjacent places and the goal.

The action selection module compares these
weights. The shortest path between the current place
and the goal (in the number of intermediate places)
starts at the adjacent place which generated the
strongest signal at goal-prediction node p~. In other
words, in order to reach the goal by the topologically
shortest route, the animat should move into the place
corresponding to the strongest connection weight r.
If the prediction signals are too weak, which means
either that the goal is far away, or that the spatial
representation is incomplete, the Action Selection
module generates a random movement.

Schmajuk and Thieme successfully simulated per-
formance of Tolman and Honzik’s experiment (Fig. 32)
where the rat took the shortest detours (in terms of the
number of places to traverse in the model) after
blockage of the normal path. It thus demonstrated
their model’s capacity of generating detours.

JPN 51/54
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shown in Fig. 39, where places are predefine and
numbered (as in the previous model) and views are
also assumed to be all distinguishable and numbered.
Contrary to the previous model, a place can have
many corresponding views, depending on the
direction from which the place is reached. For
instance, from place pt, the animat will see view Vgif
it came from place p~, view Vgif it came from place
pj,, and view v, if it came from place pc. Each view is
umquely determined by a corridor and an orien-
tation. For instance, view Vgcorresponds to corridor
p2–p4(oriented from p, to p,). Thus, the animat of
Scholkopf and Mallet navigates between views,e instead of between places.

Fig. 39. The maze usedto simulatethe navigationmodelof
Scholkopf and Mallet. Places are defined as junctions of
corridors but are not used by the animat. The animat uses
views,whichare definedas thejunction of two walls,as seen
when approaching a place through the opposite corridor
(e.g. v, is the viewavailable when movingfrom place p, to

place pJ (After Scholkopfand Mallet, 1994.)

Schmajuk et al. (1993) extend this model with a
“route module” where each place is associated with
a specific movement toward the goal. They simulated
the interactions between “route-following” behavior
(stereotyped sequence of place-response movements)
and “path planning” behavior (as in the model here),
and the effects of “lesioning” either the “route”
module or the “cognitive map” module. *

This model raises an interesting question: are there
really two types of signals embedded within a single
biological network, one for “building a map” and the
other for “planning paths”? Schmajuk and Thieme
do not refer explicitly to the hippocampus in their
paper, but since the hippocampus is implicated
strongly in spatial representations, it would be
interesting to compare this model with actual
hippocampal functioning. In particular, this model
predicts the existence of cells selectively active for
places where the rat “intends to go” (similar to the
d’ nodes) and also weak activities in cells representing
“adjacent” places.

3.3.3.5. Scholkopf and Mallet (1994)

Scholkopf and Mallet (1994) extend the previous
model of Schmajuk and Thieme by adding infor-
mation about the movements required between
respective places. In other words, while the output in

*Note that “route” is taken here in its strict sense, as
defined in Section 2.5, i.e. an inflexiblesequenceof places
linked by specific movements, and not as “route
representation”, i.e. a flexibletopological representation.

TTheseviewnodesare somewhatsimilar to the view-cells
in Zipser’s 1986model, in that their activity depends upon
the position and orientation of the animat.

The animat mak& one of three possible move-
ments at each timestep, i.e. turn left (by 60°) and
continue down the corridor, turn right (by 60°) and
continue down the corridor, or turn around (by 180°)
and continue down the corridor.

As we have seen in other models, during
exploration, the animat builds a topological represen-
tation of the maze environment, a graph where nodes
are the views and edges represent adjacency property
between views. This follows from the association of
the perception of one view and the subsequent
locomotion (turning at a junction and moving down
a corridor), and then the perception of the next view.
For instance, v, is adjacent to v, because the animat
can move from the former to the latter by a
left-rotation at p, followed by a translation along the
P,–P, corridor. This “view graph”, as Scholkopf and
Mallet call this topological graph, includes a metric
component, namely the angle of rotation required to
move from one view to an adjacent one. Thus, the
spatial representation here incorporates the topolog-
ical and the (local) directional structure of the
environment, which is a major improvement over the
previous model.

Figure 40 shows the architecture of the artificial
neural network that implements the coding of the
topological spatial layout.

First, a unique pattern of activity (randomly
chosen and normalized) across the input layer is
associated with each possible view in the maze. Each
pattern is meant to correspond to a unique visual
stimulus. The input nodes are fully connected to the
nodes in the “map” layer through initially random
weights. There is a competitive mechanism among the
map layer nodes [a variant of Kohonen’s self-organiz-
ing network (Kohonen, 1982)] and an adaptive
plasticity of the synaptic weights between the input
layer and the map layer, so that each map layer node
ultimately becomes a view node. t Subsequently, a
given pattern of input activity will drive a specific
node. This node represents the corresponding view.

Second, a movement layer encodes the action of
the animat: there are three nodes, representing
respectively “turn left”, “turn right”, and “turn
around” (or “move backward”). These nodes project
onto the connections between the view nodes, so that
the propagation of activity from one view node to
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Fig. 40. Architectureof Scholkopfand Mallet’s model. The current pattern of activity in the input layer
(filledcirclesare active nodes and unfilledcircles are inactive nodes) drives one of the viewnodes (filled
in black), which is the winner in the competitionamong all the nodes in the map layer. A second input
comes through a local connection from the previouslyactive view node (filled in gray), modulated by
movement information (movement node filled in black). For instance, this state could represent the

transition from view v, to view v, with a left turn. (After Scholkopfand Mallet, 1994.)

another is gated by the activity of the movement
nodes. During exploration, the synaptic weights of
the local connections between view nodes are adapted
through a modified Hebbian rule. They are enhanced
whenever two connected view nodes are activated at
consecutive timesteps and the propagation of activity
through the connection is gated by the activity of the
appropriate movement node.

Once exploration is completed, there are two
complementary ways that a given view node can be
activated: while at the end of a corridor, the visual
stimulus will selectively excite the input nodes, which
in turn will drive the corresponding view node; or,
during locomotion (or planning), the combination of
the activities in a view node and in a movement node
will lead to the activation of the appropriate adjacent
view node. For instance, view node Vc can be
activated either by the pattern of activity in the input
layer corresponding to what the animat sees when at
place p, and coming from place p,, or by the node
representing view Vgand the node representing the left
turn.

Scholkopf and Mallet assume an external “neural
system which makes use of the map contained in the
network. ” This system corresponds to a path
planning module. Scholkopf and Mallet functionally
simulate such a system by using a path planning
algorithm that resembles the classical graph search
algorithm. First, (i) the input pattern corresponding
to the start view is activated, thus activating the
starting view node; then (ii) different possible
movements (there is a finite set) are then tried by
activating the corresponding movement nodes,
letting the activation spread for one timestep to see
where the movement leads to; and (iii) the search
then restarts from the new place until the goal is
reached.

The simulation takes into account how a real robot
would move between places, i.e. along corridors.
However, this model has been tested only in a
well-structured maze. It is unclear how it would
function in open fields. In particular, since unique
views may not be available in open fields, and since
each view corresponds in fact in this model to a
corridor, i.e. to “oriented places”, view nodes should
be replaced by combinations of place cells and
head-direction cells.

An interesting feature of this model is how
movement information is processed by the network.
The idea of associating places and movements is
usually implemented in an abstract way, i.e. by
building transition matrices. The introduction of the
gating connectivity is innovative. In the transition
matrix of Fig. 33, places and movements play
equivalent roles. In other words, “coming from place
A and turning left leads to place B“ is the same as
“turning left and coming from place A leads to place
B.” In contrast, the principal part of the network here
is the view nodes. The movement information only
plays a modulatory role. An interesting question
posed by this model is whether there is any
physiological evidence for such connections from
cells selective for the animal’s movements to place
cells and head-direction cells.

3.3.3.6. Penna and Wu (1993)

Although inspired by physiological data concern-
ing the hippocampal formation, Penna and Wu
(1993) consider navigation from a computational
point of view. Their navigation system is based on an
artificial neural network in which all the connections
are built according to mathematical rules derived
from geometrical considerations, instead of adapting
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the weights through biologically plausible learning
mechanisms.

Following the work by Kuipers and Levitt (1988),
Penna and Wu partition the environment into small
areas called “observation regions” (OR) (Fig. 41). An
OR is the area enclosed within a set of sectors,
defined by “landmark pair boundaries” (LPB). A
LPB is a line that passes through two landmarks in
the environment, and is arbitrarily oriented from one
of the landmarks to the other. For instance, LPB
“L2-L3” in Fig. 41 is oriented from L2to L3,as shown
by the arrows on the line. Consequently, a LPB
divides space into a “left” half and a “right” half. A
location is said to lie at the right of a LPB joining
landmark L, and landmark L, when a viewer moving
from L, toward Lj sees it on the right. Thus, ORS are
characterized uniquely by “observation vectors”
which are lists of the positions of the points with
respect to all the LPBs.

The navigation system receives as inputs the
allocentric bearings ai of the landmarks (angle
relative to some fixed and known “North”), so that
each observation vector, and thus each OR, can be
described uniquely by the relative bearings of each
pair of landmarks.. The rule for this is:

cxi– aj6[0, rr]=-the current location is right ( + 1) of
the oriented LPB defined by Li and Li.

ai – Uj<[– n, O]=-the current location is left ( – 1)
of the oriented LPB defined by Li and Lj.

The neural network proposed by Penna and Wu is
a three-layer feedforward network. This network
computes in which OR the animat currently is, from
the bearings of the landmarks with respect to North.

The input layer consists of N nodes, where Nis the
number of landmarks in the environment, and the
activity of each node is proportional to the bearing
of the corresponding landmark (ui). The intermediate
layer computes the position of the animat with
respect to each LPB (the activity of a node is for
instance — 1 for “left” and + 1 for “right”). There
are thus N(N – 1)/2 nodes. The output layer
represents the entire set of observation regions. Each
node in the output layer computes the dot product
between the vector corresponding to the pattern of
activity in the intermediate layer and the observation
vector corresponding to the OR the node represents.
For instance, assume the animat is in region A, as
shown in Fig. 41. The pattern of activity in the
intermediate layer can be represented by
( + 1, + 1, – 1,, – 1, + 1, – 1, – 1, + 1, – 1, + 1)
because the ammat is to the right of L,-L1 (u, > Uj),
and to the left of L,-Lj, and so on. The node
representing region A will have maximal activity (10),
because its observation vector exactly matches the
vector coded by the intermediate layer. In contrast,
the node representing region B will have an activity
of 8 because its observation vector is
( + 1, + 1, – 1, – 1, + 1, – 1, – 1, + 1, – 1, + 1),
which differs from the observation vector of region A
by its second (L,–L,) and ninth (Lj–L,) component.
Consequently, the activities of the other nodes carry
the “topological distance” information: the difference
with the maximal activity is proportional to the
number of LPBs to cross to move from one region to
the current region (two to move from region B to
region A).

The number of output nodes depends not only on
N, but also on the spatial layout of the N landmarks,

● landmark ● rmimat’sposition

LPB lefthight
L1-L2 right
L1-L3 left
L1-L4 left
L1-L5 left
L2-L3 right
L2-L4 left
L2-L5 left
L3-L4 right
L3-L5 right
L4-L5 right

Fig. 41. An environment in the model of Penna and Wu (1993).The set of landmarks (L, to LJ are
connected comprehensivelyby lines called Landmark-Pair Boundaries (LPB). Left: partitioning an
environmentinto observationregions (OR). Each OR is enclosedwithin segmentsof LPBs. There is an
absolutereferencedirection(Nor~h).The systemregistersthe orientationsof all the landmarkswith respect
to this reference.Right: the observationvector for the region the animat is currently situated in (A). The

animat is currently to the right of LI-L2(cq> w), and to the left of LI-L,, etc.
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Fig. 42. Alternative definitions of observation regions (OR). Penna and Wu here partition the
environmentat any givenobservation point along directions relative to a referenceNorth. The labeling
of the four quadrants is shownto the right. The LPBsare replacedby linesgeneratedfrom each landmark
and in each of the specifieddirections.These lines encloseobservationregions(OR). The animat divides
the environmentaround it into the same sectors. Each OR is then defineduniquelyby the sector each
(recognizable)landmark is in, or by the number of (indistinguishable)landmarks in each sector. For
instance, OR No. 14 (shaded area) is definedby the fact that landmark 1 is in sector 1, landmark 2 in
sector 1, landmark 3 in sector 2, and so on (vectorwritten betweenbraces). It can be definedalso by the
fact that there are two landmarks in sector 1,two in sector 2 and so on (vectorwritten betweenbrackets).

which is not given a priori. Therefore, Penna and Wu
propose an algorithm by which the navigation system
dynamically builds the output layer of the neural
network through exploration, adding a new node and
computing the appropriate weights, whenever it
crosses a new LPB.

Penna and Wu also propose alternative coding
schemes for the input layer. Instead of partitioning
the environment into regions defined by LPBs, they
partition it into sectors with respect to compass
directions and around each landmark. Figure 42
shows an example with four sectors. Each OR can
then be uniquely characterized by either of two types
of observation vectors. The first type of observation
vectors consists of the identities of the sectors that
each landmark occupies (e.g. OR 14 is defined by all
the locations from where L, is seen in sector 1, Lz in
sector 1, ~t in sector 2, and so on). The other type of
observation vectors consists of the number of
landmarks seen in each sector (e.g. OR 14 is defined
by two landmarks in sector 1, two in sector 2, one in
sector 3 and none in sector 4). The second type of
coding is attractive because the landmarks do not
need to be distinguishable. This is one of the rare
models that do not need landmark recognition for
efficient navigation (the only other example reviewed
in this paper is the snapshot model by Cartwright and
Collett, described in Section 3.1.2.1).

A neural network is built, similar to the previous
one, with as many input nodes as there are landmarks
(first case) or sectors (second case), and as many
output nodes as there are ORS. The input nodes

encode the corresponding observation vectors, the
number of the sector for each landmark in the first
case and the number of landmarks in each sector in
the second case.

The navigation system represents the topological
layout of the regions through the activities of the
nodes corresponding to observation regions. Plan-
ning a path requires selection of the sequence of
observation regions to traverse and thus, the
sequence of LPBs to cross. A guidance navigation
strategy can then be used to cross each LPB. For
instance, to cross L1-LZfrom left to right, the animat
has to move so that u, becomes superior to a2.

For planning, Penna and Wu present a recursive
graph search algorithm. Togo from the start point to
the goal, an external mechanism “simulates” the next
movement and chooses the best. In practice, the
search examines all the regions neighboring the origin
(which can be determined by the nodes firing at rates
just below the maximum), simulates being in each one
and then scans the activity in the node representing
the goal region. The animat then moves to the
neighboring region that led to the maximum activity
at the goal (in principle, this process resembles the
spreading of activation seen in the model of
Schmajuk and Thieme (1992), since the choice is
made upon the comparison of the activity at the goal
node that would be evoked by the several different
possible moves).

The output nodes of the neural network proposed
by Penna and Wu are active not only in the
observation regions they represent (where the activity
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is maximal) but also in neighboring regions.
Hippocampal place cells are active in their place fields
and silent everywhere else, but cells recorded in the
entorhinal cortex or in subiculum can have spatial
selectivity with very large place fields (Quirk et al.,

1992; Sharp and Green, 1994). This model thus might
suggest new analyses for entorhinal and subicular
cells’ activities. The question is whether their
distribution of activities can carry topological
information, as in this model.

3.3.3.7. Bachelder and Waxman (1994a), (1994b)

Bachelder and Waxman 1994a), 1994b) propose a
navigation system which they also implemented on a
real mobile robot. The robot successfully wandered in
an open-field environment while recognizing “places”
on the basis of visual and movement information.
Although the current robot merely follows a
predetermined trajectory and does not actually
“navigate”, the system could integrate a topological
navigation strategy in a straightforward manner, as
described below.

As in Gaussier and Zrehen’s model (Section
3.2.2.3), the robot is equipped with an actual
three-dimensional object recognition system. The
three-dimensional object recognition is based on the
Seibert–Waxman neural recognition system (Seibert
and Waxman, 1992) that learns to identify objects as
seen from several different viewpoints. During the
first phase of learning, several objects are presented
to the immobile animat and an unsupervised neural
classifier [an ART network (Carpenter and Gross-
berg, 1991)] creates “categories” corresponding to
particular views. The network also learns the
transformation of the image from one viewpoint to
another. Figure 43 shows how a graph can represent
the information stored in this network.

In the second phase of learning, the animat
explores an open-field environment where only
visually learned objects are visible. As the animat
moves, the object recognition system gives the
landmark identities to a spatial representation
module. In this module, places are defined by the
landmark configuration, i.e. the identities of the
landmarks and their bearings with respect to an
absolute directional reference. These allocentric

u:,——.,:..

bearings are computed from the egocentric bearings
and the head-direction of the animat, indicated by its
internal compass. In practice, only one object is seen
and recognized at a time. The robot rotates through
360° on the spot and looks at each object in order to
build a “panoramic view” of the environment from
its current location. A place is then associated with
this view and the starting orientation.

Figure 44 shows the functional organization of the
navigation system. There are two modules for
navigation: one for place recognition and one for the
topological map. As in the model proposed by
Gaussier and Zrehen (Section 3.2.2.3), the place
recognition module of the navigation system receives
three types of information: (i) the head-direction of
the animat with respect to an absolute reference
direction (compass); (ii) the egocentric bearing of the
landmark currently perceived; and (iii) the identity of
the landmark currently perceived. As the visual scene
is scanned to recognize each of the landmarks, the
system stores the conjunction of these three types of
information in a short-term memory (STM, bottom
block in the place recognition module). The resulting
activation pattern in the STM block represents the
panoramic view that defines a place — which is
categorized by an ART network.

The second module is essentially an associative
network that learns which movement leads from one
place to another: the transition of activity from one
place node to another is mediated through the action
of a movement representation node. Here, as in
McNaughton’s formal model (McNaughton, 1989), it
is the conjunction of a given place and a specific
movement that is associated with the corresponding
neighboring place (see Fig. 33). The STM block in
this second module retains information concerning
the identity of the current place as the animat moves
to the next neighboring place. Thus, there is
simultaneous activation of the conjunction of the
current place node and the movement node, and the
next place node. The association is learned through
a Hebbian rule.

This navigation system could generate predictions
of action consequences (a certain movement at a
given place leads to the next place) and subsequently
enable path planning. Indeed, it encodes the same
information as the model of Scholkopf and Mallet

Fig. 43. Aspect graph: representationsof the appearance of an object from differentviewpoints.Such a
graph can capture howthe viewchanges,with the linksbetweencharacteristicviewsrepresentingcanonical

movementsor transformations. (After Seibert and Waxman, 1992.)
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Fig. 44. Functional organization of Bachelderand Waxman’sanimat. The lower-levelmodules provide
the navigation system with four types of information: the identities of the landmarks visible from the
current location (all around the animat in a 360”view),the relative orientations of these landmarks, the
animat’s head-direction,and the last movementmade (egocentricallyreferred). The first three types of
information are used by the place.recognitionmodule.The last type of information is integrated with the
place representation into a topological map that represents how movements lead from one place to

another. (After Bachelderand Waxman, 1994a.)

(1994), i.e. a topological graph where nodes are places
and edges are movements required to go from one
place to the next. Consequently, planning for a
topological navigation behavior could be done
through a graph search or by propagating prediction,
as Schmajuk and Thieme (1992) have done with their
model.

Bachelder and Waxman’s system has been tested in
a real physical environment and succeeded, dealing
with noise, difficult viewing conditions and self-
motion uncertainties. However, it awaits further
implementation of path planning abilities.

3.4. Metric Navigation

3.4.1. Behavioral Experiments

3.4.1.1. The capability to make detours requires
distance measurements

In order to make economical detours, to avoid
unforeseen obstacles, and to take shortcuts, the
animat must take into account metric information.
The first question is how to represent distances and,
in particular, distances of viewed objects from the
animat. Zipser (1985) and Collett et al. (1986) utilized
the size of the retinal image of objects. This of course
requires object recognition and the measured
quantity must be scaled by the actual dimensions of
the object. Distances also can be measured on the

basis of self-movements by using parallax or by
counting the number of steps taken between places.

The following experiment by Carr and Watson
dramatically demonstrates that, as a rat becomes
more familiar with an environment, it relies less on its
perceptual input and more on its internal represen-
tation. Carr and Watson (as reported by Gallistel,
1990, p. 96) trained rats in a maze shown
schematically in Fig. 45. At each trial, the rats were
put at the beginning of an arm and required to make
two turns and retrieve food at the end of the other
arm. The length of the long arms could be modified.
Surprisingly, the over-trained rats ignored the visual
information indicating that the length of the arm had
been shortened, and bumped into the “new” wall. In
a second experiment, the length of the arm was
longer, but the rats ignored the visual information
again and entered the cul-de-sac, bumping into the
wall at the end of it. However, the actual strategies
used are not clear. The rat may have relied on its dead
reckoning system and computed the distance traveled
before turning from an internal metric representation
of the maze. On the other hand, these errors could
have been due to a motor response, i.e. the animal
learned a sequence of movements to reach the goal,
without using any representation of the maze
configuration (e.g. run 10 steps forward, turn right,
then run three steps forward, turn left and finally run
10 steps forward).

This ambiguity was addressed in experiments
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“usual”maze (training) the maze alleys are shortened

=
the maze alleys are lengthened

Fig. 45. Does the rat learn the length of corridors in a maze? Schematicdescription of the experiment
conducted by Carr and Watson. Left: the rat was trained to run from a starting position (S) at one end
of an alley to a goal position (G) at the end of an other alley, by making two turns. Right: it was later
tested on two other similar mazes where the alleyswere either shortened (top) or extended (bottom). In
the first case, the rat readilybumped into the new wall. In the secondcase, the rat turned before the end
of the arm, and bumped into the end of the cul-de-sac.In other words, the animal seemednot to notice

the change in distances. (Trajectory shown by arrows.)

performed by Poucet et al. (1983) on cats required to but the lengths of the paths were.* As shown in
solvea path selectionproblem.Again, the topological Fig. 46, an obstacle was placed so the angular
organization of the environment was not relevant, deviation from the direct line to the goal could have

one of several relations to path-length. The obstacle
was either a transparent or an opaque screen, so that

*The same type of experiments were conducted, with the direct line to the goal was not always apparent.
similar results, on dogs (Chapuis, 1988). When the screen was opaque, cats first tested both
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Fig.46. Overheadviewsof four experimentallayouts used by Poucet et al. (1983)to test path selection
bycats. An obstacle— a transparent or an opaquescreen(solidline)— isput betweenthe starting location
and the goal location, so that the animal has to choose betweentwo alternative paths (dashed lines with
filledarrows). In experiment 1, the smallestdeviationfrom a straight path led to the shortest trajectory.
In experiment2, both initial anglesprovide the same path length. In experiment3, the turning angles are
identical and the best choice is based upon distance comparison derived by comparing self-movement
information from previous trials. In experiment 4, angular deviation and distance are contradictory.
However,cats persist in taking the less divergentpath when the goal is visible, i.e. the animal’s choice
is based upon the angular deviation of the path from the direct line to the goal (unfilledarrow). (After

Poucet et al., 1983.)
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Fig. 47. Experiments by Chapuis and Varlet with dogs. (a) Dogs were led along the path
DA–AD-DB-BD and subsequentlyreIeasedat D. In order to reach food in both places A and B, they
wouldtend to take the DABpath, thus short-cuttingfrom A to B. (b) The first typical test path observed
is a true directional shortcut. (c) The secondone is an “inside shortcut”. (d) The third one is an “outside

shortcut” and was rarely observed. (After Chapuis, 1988.)

paths, and subsequently chose the shortest one.
However, when the transparent screen made the goal
visible, cats always chose the path requiring the
smallest initial turn, regardless of its length. This is
another example of perceptual dominance, as
described in Section 3.3.1. Thus, the cats chose a
non-optimal path when the goal was visible, despite
the fact that they were able to compare distance
information and had already taken the paths’ lengths
into account for their choice when the goal was not
visible. These experiments demonstrated the fact that
cats are able to attend to metrical properties of the
environment, independently of specific motor re-
sponses, but the choice of this strategy depends upon
the available sensory information.

Note that the choice of the straightest path
whenever the goal was visible could be interpreted as
a guidance strategy. In this case, without actually
experiencing the whole path, the animal follows the
smallest deviation from the visible goal location,
which determines the choice of the path (Poucet et al.,
1983).

Path selection could be based on other non-metric
information, such as time to reach the goal since the
task consists of comparing different path lengths.
However, Blancheteau and Le Lorec (1972) reported
that rats in their experiments selected paths more on
the basis of distance than on the basis of time.

The next section will deal with other experiments
demonstrating that some animals can make shortcuts
across unfamiliar terrain to shorten path-lengths, an
evidence for representation of metric information.

3.4.1.2. Shortcuts

Chapuis and Varlet (Chapuis, 1988) tested dogs on
their navigational abilities in an outdoor environ-
ment. Dogs were shown two feeding sites, A and B,
by being led along the paths DA and DB (Fig. 47).
They were subsequently released at point D to search
for food. They ran down the DA path (the shortest

one) and then took a shortcut to B, instead of coming
back to D and following the known DB path. Two
typical shortcuts were observed. The first one is a true
directional one, leading directly to B — with minor
errors in orientation [Fig. 47(b)]. The second one is
an “inside shortcut”, leading to a point on the DB
path, between D and B [Fig. 47(c)]. The “outside
shortcut” — leading to a point on the line from D to
B, but beyond B [Fig. 47(d)] — was rare. Moreover,
dogs almost never followed the training path, i.e.
returned to D and then ran to B.

These results suggest that dogs are able to estimate
the direction to a distant and unmarked point on the
basis of a metric representation built from the
integration of movement and visual information
acquired during earlier but incomplete exploration of
the environment. Deviations from true directional
shortcuts may be due to a wrong estimation of the
direction. However, since inside shortcuts were more
often observed than outside shortcuts, these devi-
ations could correspond to a “safety” strategy.
Indeed, if the animal makes a bad estimation of the
direction but aims at a point on the known trajectory
(between D and B), it can correct itself as soon as it
is in a known area. In contrast, if the animal tries an
outside shortcut, it can miss the goal without being
able to re-localize itself.

Menzel (1973) tested metric spatial representations
in chimpanzees. An animal was first carried about an
enclosure and permitted to see the experimenter
hiding some food in 18 different locations (Fig. 48).
The animal and the experimenter then left the
enclosure and, later on, the animal was allowed to
search for the food. It succeeded in retrieving most of
the food but the order of retrieval was different from
the order in which they were hidden. This is
interesting because the animal took a novel path,
including shortcuts, to go from one cache to another.
It seemed to “optimize” the total path-length. This
suggests that the animal built a representation of the
metric layout of the different pieces of food and
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finish

Fig. 48. Overheadviewof a typical trajectory (linewith arrows) taken by a chimpanzeeto retrieve pieces
of food (circles)that were previouslyhidden in its presence(the number in the circles indicate the order
in whichpiecesof food werehidden).The animal took a noveltrajectory but it also missedsomerewards.

(After Menzel, 1973.)

computed a trajectory that was shorter than the one
used to hide the food. However, there seems to be no
simple description yet of a mechanism controlling
such a search behavior.

3.4.2. Computational Models

As stated in Section 2.6, metric navigation can be
performed, from a computational point of view, by
manipulating vectors that represent locations relative
to some origin in a coordinate frame to be specified.
The models described below use implicit coordinate
frames that can be global and Euclidean (Wan et al.,
1994), Euclidean but fragmented (Worden, 1992), or
local and barycentric (Prescott, 1994). The output of
the navigation system is a pair of coordinates. The
existence of coordinate frames in the brain and the
brain’s ability to manipulate vectors are still

controversial, but the following models suggest how
metric spatial representations based on coordinate
frames might be built from exploration.

3.4.2.1. Wan et al. (1994)

Wan et al. (1994) propose a model which uses an
underlying vector representation in a Euclidean
reference frame. Their model was tested on different
simulated behavioral tasks but also partly im-
plemented on a mobile robot (Nourbakhsh
et al.,(1993). The model operates an adaptive
conjunction of multimodal information, coupling
path integration, visual place recognition and
updating of the head-direction representation.

A functional block diagram representing the
architecture of the model is given in Fig. 49. The
hippocampal formation is presumed to occupy the
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Fig. 49. Functional block diagram of Wan et al.’s model (Wan et al., 1994).It showshow multimodal
information might be combined and how different representations can update one another. Place is
represented as the conjunctionof multimodal inputs, couplingpath integration, visual information, and
head-direction. The path integrator outputs the position of the animat in Cartesian coordinates
( < Xp,yp > ) with respect to an apriori globalreferenceframe. Visualinformationconsistsof the distances
rt and the relativebearingsOfof the landmarks i. The relativebearingsare also transformed into absolute
bearings% on the basis of information about the current place k. The head-direction(@,)representation
is updated by integrating the angular velocityzt%, and is reset by place recognition (PC~)when there

is drift. (After Touretzky and Redish, 1995.)
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Fig. 50. In Wan et al.’s model (Wan et al., 1994),the animat learns the relationship betweenegocentric
and allocentricbearingsof specificcues as viewedfrom a set of locations. Information about th~current
(estimated)head-direction(input@A),the current (estimated)position (PC,) and the egocentricbearings
of landmarks (6J converge into the Allocentric Bearing Memory which computes the head-direction
independent (allocentric)bearings of these landmarks (Ok,for landmark i at place k). This module also
can correct the head-direction representation by using the memorized allocentric bearings, the
representation of the current place as wellas visual information. Goal locations are definedin Cartesian
coordinates (these coordinates can be provided by the path integrator). When the animat has localized
itself and defined its goal, it can compute the direction and distance to the goal, thus generating the

appropriate motor command. (After Wan et al., 1994.)

“Place Code” module, a site of convergence for
visual, directional, and position estimate information.

The visual input to the navigation system is the
same as in most models and consists of the distances
ri and the relative bearings 19i(in an egocentric
reference frame) of all the landmarks i. The
landmarks are assumed to be known apriori, and are
visible from every location in the environment.

The head-direction representation is updated
primarily by integrating vestibular input that codes
the angular velocity of the head. Drifts resulting from
accumulated integration errors can be corrected with
visual information (see Section 3.2.1.2). Following
McNaughton et al. (1991), Wan et al. introduce a
“local view” module in their model. This helps
transform egocentrically sensed information to
allocentric representations. Indeed, at any given place
k and for any given landmark i, there is a constant
linear relationship represented by @,i between the
head-direction @k,an external reference direction and
the relative bearings of the landmark i. This
relationship is given by: @~i= Ok+ f3i. The “local
view” module makes this linear association and stores
the allocentric bearings of all the landmarks viewed
at each place in its “Allocentric Bearing Memory”
(Fig. 50). Note that this system supposes that there
are as many Allocentric Bearing Memories as there
are combinations of place representations k and
landmarks i.

When the animat is disoriented or when the drift
in head-direction updating is too high, the head-di-
rection representation can be recovered from visual

input and place information by using the same linear
relationship: @k= @~i—O1.

The path integrator estimates the Cartesian
coordinates of the animat with respect to an arbitrary
reference location, on the basis of movement
information. This reference location is chosen to be
the location of a selected object, a goal location
(visible or not), or an entry point in the environment.
Movement information consists of the efference copy
of the motor commands as well as changes in the
head-direction representation.

Wan et al. define a “place” as a region in the
environment where all the different sensory measure-
ments match a corresponding set of memorized
values. There are seven such types of quantities: the
distances and the allocentric bearings of two selected
landmarks, the (egocentric) bearing difference be-
tween two other selected landmarks, and the
estimated (x,y) position relative to an identified
reference point. The landmarks are randomly chosen
when a place unit is recruited (see below) and are
fixed thereafter. Each place unit “computes” its
output activity as the product of the seven Gaussian
functions of these measurements. The mean of each
Gaussian function is set to the value of the
corresponding measurement at the place, while the
standard deviation has fixed values.

One interesting property is that the conjunction of
all these quantities is “opportunistic”, or “fuzzy”, in
the sense that terms in the product are ignored
whenever the corresponding measurement is unavail-
able, i.e. when there is no visual input (in darkness),
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when there is no head-direction (disorientation) to
determine allocentric bearings, or when there is no
positional input (the animat arrives in an unfamiliar
environment). However, a competition mechanism
between place units ensures that, even if the overall
activity is lowered due to absent information, one
unit will win and be active, and this unit will stably
represent the location it is tuned to. Figure 51 shows
that the place field does not keep quite the same form
nor size when some terms drop from the input
conjunction, but that the location of the field’s center
remains quite consistent.

Each place unit corresponds to a specific (x,y)
position with respect to a chosen reference point. This
position is updated by the path integrator and
subsequently learned by the place unit. The activity
of a place unit (the product of the Gaussians) is
maximal when the animat returns to the position
learned by the unit and decreases as the animat moves
further away. Thus, each place unit gives a position
estimate of the animat. Similar to the interpolation
between view cell representations in the model of
Zipser (Section 3.2.2.1), the navigation system
proposed by Wan et al. estimates the animat’s
position by computing the weighted average of the
positions given by each place unit. In order to deal
with incomplete sensory information and ambigu-
ously defined places, Wan et al. extend this
population coding mechanism with a “dynamic
relaxation process” (Touretzky and Redish, 1995).
First, there is a dynamic thresholding of the activity
of place units. This mechanism limits the number of
active units but also enables the activation of
“enough” units when information is sparse and
activities are low. Secondly, there is a recursive
mechanism which inhibits some of the active units,
which yields a clearer estimate of the animat’s
position (each place unit’s corresponding position
must be “sufficiently near” the global estimate
obtained by the weighted average computation). This
process is almost equivalent to a competition among
units, such as those already used by Sharp (1991) or
Burgess et al. (1994).

In the simulation, during the exploratory phase
when the spatial representation is constructed, all
environmental features can be detected. The low
activities in the existing place units signify that none
of them represents the current location (a fortiori
when there is no place unit, at the start of the
simulation). New units are then recruited whenever
all the existing units have low activities. Each such
new unit learns the values of the seven parameters
characterizing the current location (Touretzky and
Redish, 1995).

The goal location is defined by its (xjy)
coordinates, relative to the specified reference point.
The spatial representation of the environment by the
place units is independent of the goal location, but
both are in the same Cartesian reference frame.
Consequently, planning is not at the neural level but
at the mathematical level of vector manipulations, as
in Cartwright and Collett’s model (Cartwright and

*Thinus-Blanc (1992) also suggests the use of such
fragments.

Collett, 1987). This makes the neurobiological
validation of the model more difficult.

This model accounts for several electrophysiologi-
cal data not accounted for by previous models:

●

●

●

the persistence of place cell activities in darkness
(Quirk et al., 1990). This model assumes that in
darkness, the place cell activities are driven
solely by the path integrator (using vestibular
information), although spatial resolution is
diminished.
the fact that hippocampal place cell activity is
also modulated by head-direction in rats
performing in radial-arm mazes (McNaughton
et al., 1983). This model assumes that there is a
change in the reference point for the path
integrator between an inward and an outward
movement of the animat.
the updating and resetting of head-direction cells
by v;sual iriformation (Taube et al., 1990b).

Redish and Touretzky (1996a, 1996b) assume that
if some landmarks are indistinguishable, then place
units are not tuned to the landmark identities but to
their types (e.g. “cylinder”, or “corner of the
cue-card”). The model then also accounts for some
behavioral and electrophysiological data in exper-
iments with ambiguous goal locations (experiments
by Cheng (1986), by Collett et al. (1986), and by
Sharp et al. (1990)). Instead of comparing the
different possible choices — as Collett et al. had
suggested it might occur in the gerbil brain where
each possibility was tallied — this navigation system
lets the competitive mechanism and the relaxation
process cause one solution to emerge.

All of the different modules of this model are
described functionally. It would be interesting to
elaborate a biologically plausible system that would
implement the same computations. In particular, this
model currently needs an external mechanism to
“read” the estimated current position of the animat.
Indeed, the relaxation process involves measuring
how far from the estimated average position the
position coded by each place unit is.

In Wan et al.’s model, movement and head-direc-
tion signals yield an (x,y) position that drives the
place units. In other words, there is an intermediate
representation of position. Knierim et al. (1995)
suggest instead that (self-) movement information
directly modulates the interactions between head-di-
rection representation and place representation.

3.4.2.2. Worden (1992)

An alternative approach is that the environment
can be represented by adjacent sets of triangles, each
defined by three landmarks. Worden (1992) proposes
a spatial representation based on “fragments”, or
independently stored sets of such triangles. * Each
fragment corresponds to the metric relationships
between the three landmarks that define the triangle.
Worden suggests that the non-geometric properties
(e.g. color, surface texture) of these landmarks are
also memorized — so that a fragment can be
recognized along with the geometric relations
between the landmarks. This enables recall of the
triangle. Navigation is consequently based on
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Fig. 51. In Wan et uI.’smodel (Wanet al,, 1994),the positioninformationcodedby the place unit activity
sm-oothlydegrades as the unit’receivesless sen’sory~nformation.The figuresshow an overhead view of
a square arena with three landmarks (triangles)and an arbitrarily chosen referencepoint (tilled square).
The same place unit’s activity field was simulated in differentconditions, as describedat the bottom of
the figures(filledsquaresare availableinformation).The firingrate (arbitrary units) is shownin gray scale,
with black as the highest, (a) when there is complete information; (b) when the path integrator has lost
its estimate of the current coordinates with respect to the referencepoint; (c) when there is no estimate
of the current (.x,y)position and there is no informationfrom the head-directionmodule.This place unit
was tuned to: the distancesand bearings to landmarks 1 and 3, the angular differencebetweenlandmark
1 and landmark 3, and the (x,y) position with respect to referencepoint 1, The place field widens but
the center of the field stays stable. Place fields are even more stable if the competitionwith other place

units is taken into account, which is not the case here. (Simulationsby Trullier.)
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Fig. 52. Navigatingby fragmentfittingin Worden’smodel(1992).The animat, wishingto reach landmark
L, from landmark L?,sees landmarks L, and L3.It retrievesfragmentsA and B and reconstructs a local
map that relates L,–L~–Lqto L,–Lq–Ld.The position of L~with respect to the current position (LzL~)can

be computed through vector manipulations (L= + LT,, or L=,+ LZ,). (After Worden, 1992.)

combining, or “fitting” fragments to form a local
geometric map (Fig. 52).

There is a vector representation underlying the
process. Indeed, forming the local map requires
translating and rotating the appropriate fragments in
an absolute reference frame in order to fit together
the landmarks that are common to different triangles.

According to Worden, the role of the hippocampus
is to perform the geometric transformations required
for translating, rotating and fitting fragments, and
Worden attributes specific functions to each element
of the hippocampal circuit. * Several distinct mechan-
isms are necessary: (i) encoding of vectors and
directions; (ii) encoding of landmark identities
(non-spatial attributes); (iii) associative (and parallel)
retrieval of fragments; and (iv) parallel multiple
matching. If the animat is not at a landmark location,

* O’Keefeand Nadel (1978)earlier assumedan Euclidean
representationin the hippocampusand O’Keefe(1989)had
also proposed operations each element of the hippocampal
circuit might perform.

it has to self-localize relative to the fragment
containing its current location. Worden’s model also
uses vector representation to specify the animat’s
position with respect to this “central” fragment.

In contrast with other similar formal models, this
model has been simulated. However, details are not
given here because the actual implementation was
formal and did not use biologically plausible
mechanisms such as neural networks.

3.4.2.3. Prescott (1994)

Prescott (1994) proposes an idea similar to the
previous model — representing space by fragments —
but implemented it with a neural network. Further-
more, the system does not need to match fragments
because it first considers sets of four landmarks
(instead of three), encoding the relative position of
one landmark with respect to the fragment defined by
the three others. Prescott advocates the notion of
multiple partial representations of space and pro-
poses that a global “map” would be reconstructed
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Fig. 53. The internal spatial representationof Prescott’sanimat. Top: an environmentwith six landmarks
(grey objects labeled A-F). The animat is shown as a black circle with the arrow showingits heading
direction. The outer circle indicates the limited field of view of the animat. Bottom left: the animat
constructsa relationalnetworkby learningthe positionof each givenlandmark with respect to a fragment
(e.g. landmark A with respect to the triangle BCD). This network thus encodes the coordinate
transformations between fragments. Bottom right: the adjacencygraph between fragments is implicitly

encoded in this representation. (After Prescott, 1994.)
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only when necessary. Furthermore, this does not
necessarily require an independent neural module
that would actually represent the map, since the
relationships between fragments (in the sense
defined in the previous model) can be encoded
implicitly.

Figure 53 summarizes the principles of the model.
As the animat explores the environment, it learns
the spatial relationships between the four most
proximal landmarks in its field of view, i.e. the
position of one landmark (e.g. A) with respect to
the fragment defined by the three others (e.g.
triangle BCD), in barycentric coordinates. The
position of any landmark can be estimated with this
spatial representation by successive transformations
from the fragment currently seen to the relational
node containing the landmark. For instance, the
position of the currently invisible landmark E can
be computed from its relation to fragment BCD,
which is currently visible, and the position of the
currently invisible landmark F can be further
computed from its relation to fragment CDE.

Navigation consists in searching the (implicit)
topological graph and planning a path from fragment
to fragment. However, this navigation system
exploits a metric navigation strategy, and not simply
a topological navigation strategy, because the
underlying vector representation enables the gener-
ation of new trajectories.

The main computational advantage of such a
model is that the spatial representation is robust to
noisy sensory inputs since the “coordinates” of the
landmarks are not fixed but are dynamically
estimated as the animat moves and sees different
landmarks.

Prescott proposes his model from general biologi-
cal considerations but he does not try to explicitly
model actual neurobiological data, such as place cells.
However, there are some formal theories that
consider the hippocampus as a module representing
“relations” — whether spatial or non-spatial (e.g.
Eichenbaum, 1993). Since Prescott assumes, as in the
other models presented in this section, the existence
of an underlying coordinate frame (relational coding
through barycentric coordinates instead of vector
coding in Cartesian coordinates), it would be
interesting to test whether the hippocampus also can
code such relations in an implicit underlying frame of
reference.

4. DISCUSSION

4.1. Principal Characteristics of the Reviewed
Models

Table 2 is a summary of the main characteristics of
the navigation systems described in the previous
sections. It will enable comparisons and lead to
proposals for future research approaches. The main
characteristics can be grouped according to four main
criteria.

4.1.1. The Inputs

What information is fed into the navigation

system. There are basically two types of inputs:
those that are given as quantitative values such as
distances or angles (RV) or those that are expressed
by the activation of specific “neurons” (F) that are
selective for features such as ranges of distances.
(Note that most models that use visual information
assume a 360° view of the environment.) Thus, for
models that build up a place representation,
distances and egocentric bearings of landmarks are
represented either way, often along with the
landmarks’ identities. Landmarks’ identities can be
given directly as inputs (G), or can be provided by
a modeled vision system (CIv). Visual information
also can be expressed as specific patterns of a priori
input cells (a priori views). For models that assume
an a priori place representation, each place is
represented by a feature-selective “neuron” (F) that
is assumed to recognize it: the set of these
“neurons” function as symbolic code. There are
also other types of information, such as a compass
sense, movement information or ultrasonic range
sensors (US).

4.1.2. The Internal Representation

What the basic functional element of the
navigation system is, what spatial features of the
environment are learned and how the goal location
is associated with the internal spatial representation.

Some models describe the information processing
through explicit algorithms (AC), i.e. mathematical
relations between inputs and outputs. Some other
models use neuron-like elements (NL), trying to
model the neurocomputations with biologically
plausible elements. Furthermore, Burgess al al.
(1994) try to replicate the hippocampal architecture.
Lastly, some other models only describe the
navigation systems in general terms, with functional
modules (I’M) or symbolically (syrnb). There are
three popular learning mechanisms: (i) storing
specific parameters (MP) such as distances, snap-
shots or barycentric coordinates; (ii) recruiting cells
(RC) and storing the characteristics of the corre-
sponding place; and (iii) updating the synaptic
weights of artificial neural networks, usually by
competitive and Hebbian learning (CH) but also by
more specific mechanisms [basic weight updating
(lVU), competitive learning (CL), ART networks
(ART)]. The goal representation can be a stored set
of parameters (S1’). In most models, it is central to
the spatial representation. Usually a vector (V) is
associated directly with each place, giving the
direction to the goal, but the latter can also be
completely implicit in the spatial representation
(imp). The only model that builds up a goal-inde-
pendent place representation and exhibits latent
learning is the model by Burgess ei al. (1994), which
recruits “goal cells” (RC). Models that fall into
topological or metric navigation categories usually
build up a representation of spatial relationships
from a given representation of individual places.
Thus, a goal location is a posteriori easily defined as
a given place. In metric representations of the
environment, the goal location can be defined by
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a set of coordinates (x,y) or by one specific landmark
position (LZ).

4.1.3. The Output

How the output to the motor system is expressed
(output). If there is planning and if there are several
solutions, how the “optimal” solution is selected
(pJartrring).

Most models indicate a direction of movement in
the form of a vector-computed in different ways —
population coded vector (PV), vector manipulation
(VM), direction to the goal (v), in the form of a
direction — given by a compass or defined as one of
the neighboring cells to go to in a grid-like
environment (D), or in the form of a turning angle
(T) prior to a forward movement. Models that have
an a priori place representation define the animat’s
action as reaching a given place (PI). Some models’
output is a command to a lower-level navigation
strategy, typically a guidance instruction (CC). As for
planning, models use two possibilities: a classical
graph search (GS) or a propagation of activation
(PA).

4.1.4. The Testbed

The models have been tested either by computer
simulations (CS) or on a mobile robot (RI). Their
validity is restricted to the environment in which they
were tested: a small open-field environment (OF)
where all the landmarks are visible from every
location, a large-scale environment (LS) where there
are landmarks out of the range of perception — also
either without obstacles or with walls (indoor), or a
maze-like environment (M) where the configurations
of places as well as possible movements are highly
structured.

4.2. Principal SuggestedDirectionsof Future
Research

4.2.1. The Inputs to the Navigation System

The hippocampus is the site of convergence for
multimodal inputs as evidenced by the anatomy
(Swanson et al., 1980) and by the influence of
different modalities on the activity of hippocampal
cells (Wiener et al., 1995). It is implicated not only in
navigation but also in episodic memory or more
generally in the association of diverse types of
information (Rolls, 1990, 1991). For the problem of
navigation, sensor fusion, i.e. the process of taking
into account different information provided by
different sensors, has become a popular topic in
robotics (Luo and Kay, 1989; Durrant-Whyte, 1988).
This principle of multimodal convergence is re-em-
phasized in O’Keefe’s (1979) definition: “a place cell
is a cell which constructs the notion of a place in an
environment by connecting together several multisen-
sory inputs each of which can be perceived when the
animal is in a particular part of an environment. ” The
sensory inputs to most models described in this paper
are based on vision. A few also integrate self-move-
ment information, a step in the direction of greater
adaptiveness, such as the robots of Matari6 (1990),
Kuipers and Byun (1991), Bachelder and Waxman
1994a), 1994b). These latter still need to be
developed to deal with problems like cue-conflict
situations.

Wan et al. (1994) took this one step further by
suggesting how information provided by three
different sensors (vision, head direction, and move-
ment information) could be integrated and used to
update different spatial representations. However,
their model is at the functional level of description
and their report (Nourbakhsh et al., 1993) about a
successful implementation of the model on a mobile
robot does not provide relevant details.

Stein and Meredith (1993) review evidence for and
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Fig. 54. Movement in the physical environment and movement in the spatial representation. Let us
assume that there are a priori maps encoded by hippocampal place cells. In a given environment, a
subpopulation of place cells (top, circles labeled 1–7)correspond to a set of place fields (bottom, areas
labeled 1–7,withdashedarrows indicatingcorrespondence).As the animal moveswithinthe environment,
from place field 1 to place field 7 and back to place field 1, the activity in the place cells should shift in
register (open arrows), on the basis of movementinformation only, from place cell 1 to place cell 7 and

back to place cell 1.
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propose a theory about the convergence of multimo-
dal information in the superior colliculus, which is
involved in spatial orienting (including ocular
saccades) and attention of movement. In the same
spirit, stress should be put in future research on what
the mechanisms of sensor fusion in the hippocampus
might be and further models should try to take this
property more into account to provide greater
robustness and flexibility.

4.2.2.The Internal Representation of Space

Since some animals can generate metric detours
and shortcuts, they must use metric spatial relations
in planning their paths. However, this doesn’t
necessarily mean that these animals have a global
Euclidean representation of space, as assumed by
formal cognitive map theories (for instance Gallistel
(1990)). Lieblich and Arbib (1982), for instance, insist
on not ascribing Cartesian coordinates to the neural
representation of space. *

Neural information processing can be functionally
described with vector representations (Gallistel, 1990,
Ch. 14). The activity of a neuron can be characterized
by a set of numbers (e.g. firing frequency, phase of
firing) and combinations across a population of
neurons can yield other numbers. These numbers,
ordered in a fixed way, give vectors that can be
treated as points in a high-dimensional space — what
is referred to as “neural space”. Physical space and
neural space could be related. The activity patterns of
neurons might be the physical embodiment of
(abstract) vectors that represent such entities as
position of a point within a reference frame, or
time-of-occurrence of an event. However, physiologi-
cal evidence for how such vector representations
might be manipulated (e.g. addition, comparisons) is
sparse, although there are some computational
suggestions (e.g. Touretzky et al., 1993). Thus,
although the neuronal activity can be described with
vectors that might be interpreted as representations
of physical entities or states, it is not clear what
significance those activity patterns have for neighbor-
ing areas of the brain.

Menzel also stresses the fact that Euclidean space
is a concept which “humans invented to describe the
conditions in which they live” (Menzel, 1987). The
concept might help describe and explain how animals
represent space and navigate but this does not imply
that the brain implements the concept physiologically
and anatomically.

Furthermore, as Wehner (1987) demonstrates with
a few examples from insect behavior, “our own
formulations of the problems discussed [spatial
orientation in insects] are not at all representative of
how the animals tackle their tasks.” So what does
neural space correspond to? We need to radically
change the point of view and look for new or
forgotten concepts. As Oatley (1974) suggests when

*They propose a formal theory (thus not described in
detail here)wherespaceis representedthrough a graph with
nodes corresponding to places (situations) and edges to
sensorimotor features that lead from one situation to the
next. Such an architecture does not easily include metric
properties (Potegal, 1982).

he describes how Polynesian navigators find their way
without “paper maps”, the apparent complexity of
the mental processes involved in animal spatial
navigation may simply stem from the fact that the
problem is tackled from a wrong angle.

4.2.3. Learned Features of the Internal Spatial
Representation

The computational models can be grouped into
systems that deal with small environments where
every landmark is visible from everywhere (e.g.
Zipser, 1986; Burgess et al., 1994; Gaussier and
Zrehen, 1994) and those that deal with large-scale
environments (e.g. Matari6, 1990; Schmajuk and
Thieme, 1992; Scholkopf and Mallet, 1994). Models
of the first group build place representations, whereas
models of the second group often assume the
existence of place representations and reconstruct the
topological relationships between these represen-
tations. There is thus a need for a model that can both
build a place representation and determine the
neighborhood relationships between these places.

Considering the kind of representation (place or
topological) that the model builds leads to another
possible categorization of the models, according to
their learning algorithms. There are two types of
learning: (i) recruiting place cells (e.g. Zipser, 1986;
Gaussier and Zrehen, 1994; Matari6, 1990; Wan
et al., 1994);and (ii) modifying synaptic weights in an
a priori given neural network (e.g. Burgess et al.,
1994; Schmajuk and Thieme, 1992; Scholkopf and
Mallet, 1994; Bachelder and Waxman, 1994a,
1994b).

However, there is no evidence that a spatial
representation is learned by the hippocampus in the
first place. Indeed, Hill (1978) reported that most of
the recorded hippocampal cells showed specific
spatial firing immediately after the animal was
introduced in a new environment. This suggests that
place fields do not develop during exploration but are
directly assigned to respective regions in the
environment. McNaughton et al. (1996) suggest that
the connectivity within the hippocampus is such that
the place cell ensemble codes for a priori metric
“maps”, where the metrics would correspond to
self-movement information. In other words, in the
absence of any external information, the propriocep-
tive information is sufficient to update the place
coding by the hippocampal cells. The sensory
information is then needed only to calibrate the
internally generated estimate of position, i.e. to learn
the correspondence between the internal represen-
tation and the physical features in the environment.
For instance, when the rat is introduced into a new
environment, a new a priori map, i.e. a new
subpopulation of hippocampal cells would be
selected; as the rat explores this environment, the
distribution of activity in the place cell population
would change in register with the animal’s move-
ments; each place cell would then be associated with
the sensory inputs characterizing the corresponding
place field; consequently, when the rat is reintroduced
into this environment, the sensory features would
trigger the appropriate place cell, and thus, the
appropriate “map”.
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Fig. 55. Twogivenplacecellsin twodifferentenvironments(leftand right). Circlesrepresenthippocampal
neurons (top of both figures).If place cells A and B have overlappingplace fields in one environment
(left), they do not necessarilyhaveoverlappingplace fieldsin a secondenvironment(right). Thus, a signal
correspondingto the samemovementin the two environments(openarrow at the bottom of both figures)
should lead to a differentshift in the place cell activity(openarrows betweenthe place cells). In one case,
activity in cell A and the givenmovementlead to activity in cell B; in the other case, they lead to activity

in cell C,

Assume, then, that the rat is unable to learn the
layouts of new environments. Every time the animal
is introduced into a given environment, a new apriori
map would be selected at random. Place cells would
be active for each session in this environment, but the
active hippocampal subpopulations would be differ-
ent. The animal could never recognize the environ-
ment, yet it would “map” it each time. This
hypothesis could thus be tested by showing that
blocking learning in the hippocampus (for instance
with NMDA antagonists) permits normal function-
ing of place cell firing, and by observing the
characteristics of the corresponding place fields.

Even if the latter hypothesis turns out to be true,
it is not yet clear what kind of synaptic connectivity
is needed for such apriori maps. Indeed, one essential
requirement is that, when the animal returns to a
place, the activity distribution within the hippocam-

movement
information

v mwa mvtb

3 (-2”
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52’
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Fig. 56. How does self-movement
main hypotheses.Left: each place

pal neuronal ensemble should also return to the
corresponding place cells, on the basis of movement
information only (Fig. 54). No theory, to our
knowledge, accounts for this. Moreover, the exper-
imental evidence that two different environments can
be coded by different yet overlapping populations of
place cells with different neighboring properties of the
place fields is problematic (cf Section 3.3.2.1). Indeed,
the activation of the current place cell and a signal
corresponding to a specific movement are not
sufficient to characterize which place cell should be
activated next (Fig. 55). What is needed is a means
to disambiguate between similar activity profiles
occurring in different environments.

Moreover, it is not yet clear the mechanisms by
which movement information is used to update the
place representation or to shift the activity from one
place to another, although suggestions are made in

movement
information
mvla mwb

\

L d
informationcontribute to changethe place cell activity?There are two
cell (PC) can be activated bv a s~ecificconfigurationof sensorvinuuts

(filledsquares are currently active units, open squares are ina&ive-ones).In tie absence of the ~xtr~nsic
sensory input, however, the combination of position information and self-movement information
(convergenceon shaded circles) shifts the activity from one place cell to another. Right: self-movement
information is used to update the configurationof extrinsic sensory inputs, which in turn activates the

correspondingplace cells.
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some of the models described (Matari6, 1990;
Scholkopf and Mallet, 1994; Bachelder and Wax-
man, 1994a, 1994b; and Wan et al., 1994). How can
vestibular or kinesthetic information help predict the
future pattern of firing of place cells? There seem to
be two main hypotheses (Fig. 56). The updating can
occur either in the hippocampus, or upstream of the
hippocampus. In the first case, modulatory connec-
tions signaling movement would let propagate signals
between direction-dependent neighboring place cells.
This is what is proposed for instance by Scholkopf
and Mallet (1994). In the second case, the highly
processed information getting into the hippocampus
would already be updated by movement information
in the absence of extrinsic sensory input. The place
cells would then be activated by the updated
configuration of sensory input representations.

A similar process occurs in the head-direction
representation (cf Section 3.2.1.2). Models of how
movement information could help update this
representation have recently been published (e.g.
Blair, 1996;Zhang, 1996). Their principle is similar to
the idea put forth by Droulez and Berthoz (1991) to
suggest how saccadic eye movements can be executed
toward memorized targets without the need for a
coding of the target location in allocentric coordi-
nates. Droulez and Berthoz proposed a “Dynamic
Memory” that consists of a population of topograph-
ically connected neurons. The initial activity is
generated by visual input. But in the absence of
subsequent visual input, each neuron tends to
activate the neurons that represent neighboring
locations in the direction of the movement. Thus, the
ensemble activity shifts in register with eye move-
ments, so that the target location encoded by the
activity profile in this neural ensemble can be
appropriately updated.

One advantage of studying the head-direction
representation is that it is one-dimensional (azimuth).
Simulations are less time-consuming. These ideas
should in principle apply to the place representation,
which is two-dimensional. However, direct implemen-
tation of the extended algorithm seems not to be
straightforward. Indeed, Zhang (1996) presents
preliminary results on place representations that are
not as powerful as his results on the head-direction
representation. One problem yet to be overcome stems
from the fact that head-direction is limited to values
between Oand 360°, whereas there are no apriorilimits
to positions encoded in Cartesian coordinates. In
other words, since neural ensembles are limited, the
“edges” of the neural representation should corre-
spond to physical edges in the environment.

4.2.4. Computing the Motor Output

The planning modules, in computational models
which contain them (e.g. Muller et al., 1991; Matari6,
1990; Schmajuk and Thieme, 1992; Scholkopf and
Mallet, 1994), are always more or less graph search
algorithms. For this kind of mechanism to apply,
there is usually a need for an external mechanism
detecting when the graph search has reached the goal
location (decidability of the path-planning problem)
and then computing and comparing the different path
lengths or some other criterion (completeness of the

problem). Matari6 (1990) as well as Schmajuk and
Thieme (1992) implement the graph search by a
propagation of activity. If a solution exists, the
animats are able to select the best one but cannot tell
the difference between the fact that the goal is too
distant or the fact that the goal is unreachable from
the current place, in the context of the current
topological representation. Moreover, in Matari6’s
model (1990), the activity is triggered from the node
representing the goal; this would not occur in the
hippocampus since place cells are not particularly
selective for goals.

This leads to the same question as one posed by the
model of Burgess et al. (1994): are there neurons in
the animal’s brain (most promisingly downstream of
hippocampus) that are selective for the identity of the
goal currently aimed at, or neurons that are selective
for spatial relations of the animal to this goal (e.g.
direction or distance to it)?

The output of the navigation systems reviewed in
this paper are essentially vectors (at least implicitly).
This goes along with the assumption that animals
perform vector manipulation (Wehner and Menzel,
1990). However, as discussed above (Section 4.2.2),
how vector representations are manipulated by the
brain is unclear. Moving in a direction defined by a
vector with respect to a reference frame requires
comparing the current heading with respect to a
reference direction and the desired heading. Most
models rely on an internal compass. It would first be
interesting to elaborate a system which could use
environmental features to determine its heading. In
addition, a mechanism must be devised, by which the
directional output of the navigation system can be
transformed into an actual motor output command.

4.2.5.Multiple Environments

Since different experimental settings and rooms are
represented by distinct subpopulations of place cells
(sometimes with overlap), as discussed in Section
3.3.2.1, it seems reasonable to postulate that animals
have a particular spatial representation for each
environment, instead of using one global cognitive
map. However, there is, to our knowledge, no
computational model to date that simultaneously
represents multiple environments.

The fact that two-thirds of all hippocampal units
isolated by Thompson and Best (1989) were
behaviorally silent in the three different environments
that their rats were tested in can be interpreted in two
ways. On the one hand, these observations mean that
there remain many cells that can be “recruited” to
represent other environments. On the other hand,
since as many as SOo/O of the isolated hippocampal
units are involved in as few as three different
environments, it is likely that each unit participates in
the representation of many more different environ-
ments. Consequently, the simplest model for repre-
senting multiple environments, i.e. using distinct
populations of neurons for different environments,
cannot hold. On the contrary, “sparse coding”
(Marr, 1971) is what seems to occur, although the
results of Thompson and Best (1989) indicate that
coding by place cells in the hippocampus is not
sufficiently sparse.
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It is still unknown how a given environment is
recognized and the corresponding representation is
retrieved from a collection of representations. In
particular, if building a spatial representation of a
given environment involves changing synaptic
weights between hippocampal neurons, as it is widely
assumed in the computational models, how do
synaptic changes involved in learning in one
environment affect representations of another en-
vironment? Sparse coding partially palliates the
problem of interference between different represen-
tations (Treves and Rolls, 1992, 1994) but, when the
animal is introduced into a familiar environment, the
correct subpopulation of place cells along with the
appropriate set of modified connections should be
“activated”. (This would require an external gating
mechanism.)

In the model proposed by Muller et al. (1996) (cf
Section 3.3.3. 1), for instance, an external mechanism
is required, either to selectively activate the
appropriate connections, or to “identify inconsistent
synaptic [weights]” by reconstructing a physical map
(Fig. 34). McNaughton et al. (1996) advocate the
existence of multiple maps for different environments
and different scales (like in an atlas), but without
specifying what kind of mechanism might select one
map instead of another.

4.3. Conclusions

In summary, we have presented four different types
of navigation strategies which enable different
spatially oriented behaviors. In particular, we have
shown that “cognitive maps”, in the commonly used
sense of the term, are not necessary for many kinds
of navigation tasks. Many of the existing models that
deal only with special types of environments could be
made more robust by diversification or by adding on
modules more suitable for other types of environ-
ments. Animats equipped with all four modules of
navigation systems would be able to deal with a wide
range of environments, with one of the modules
exploited preferentially in each particular situation.
The opportunistic recruitment of lower level pro-
cesses in our hierarchy of navigation strategies could
increase efficiency.

In our review of the existing biologically based
artificial navigation systems, we showed that many
could reproduce some of the properties exhibited by
animals and this was verified by successful im-
plementations on mobile robots. There remain,
however, several important milestones ahead. For
example, none of the models could be shown to
actually be capable of generating both metric detours
and metric shortcuts. In order to build models that
are able to do this, we will continue to look for
inspiration to new discoveries about the anatomical
and physiological mechanisms employed by the brain
to manipulate vector information in a specific
coordinate frame. In this way, we can continue to
apply what can be learned about the actual circuit
processing in the nervous systems of navigating
animals to fashion algorithms and even architectures
for future robots.
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