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Introduction

The partial regression coefficient is also called regression coefficient, regres-
sion weight, partial regression weight, slope coefficient or partial slope coeffi-
cient. It is used in the context of multiple linear regression (mlr) analysis and
gives the amount by which the dependent variable (DV) increases when one
independent variable (IV) is increased by one unit and all the other indepen-
dent variables are held constant. This coefficient is called partial because its
value depends, in general, upon the other independent variables. Specifically,
the value of the partial coefficient for one independent variable will vary, in gen-
eral, depending upon the other independent variables included in the regression
equation

Multiple regression framework

In MLR, the goal is to predict, knowing the measurements collected on N

subjects, the value of the dependent variable Y from a set of K independent
variables {X1, . . . , Xk, . . . , XK}. We denote by X the N × (K + 1) augmented
matrix collecting the data for the independent variables (this matrix is called
augmented because the first column is composed only of ones), and by y the
N × 1 vector of observations for the dependent variable (see Figure 1).
Multiple regression finds a set of partial regression coefficients bk such that

the dependent variable could be approximated as well as possible by a linear
combination of the independent variables (with the bj ’s being the weights of
the combination). Therefore, a predicted value, denoted Y , of the dependent
variable is obtained as:

Ŷ = b0 + b1X1 + b2X2 + . . . bkXk + · · ·+ bKXK . (1)

The value of the partial coefficients are found using ordinary least squares (OLS).
It is often convenient to express the mlr equation using matrix notation. In
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Figure 1: The structure of the X and y matrices.

this framework, the predicted values of the dependent variable are collected in
a vector denoted ŷ and are obtained using mlr as:

ŷ = Xb with b = (XTX)−1XTy. (2)

The quality of the prediction is evaluated by computing the multiple coefficient
of correlation R2

Y,1...,k,...,K which is the coefficient of correlation between the

dependent variable (Y ) and the predicted dependent variable (Ŷ ). The specific
contribution of each IV to the regression equation is assessed by the partial
coefficient of correlation associated to each variable. This coefficient, closely
associated to the partial regression coefficient, corresponds to the increment in
explained variance obtained by adding this variable to the regression equation
after all the other IV’s have been already included.

Partial regression coefficient and regression coefficient

When the independent variables are pairwise orthogonal, the effect of each
of them in the regression is assessed by computing the slope of the regression
between this independent variable and the dependent variable. In this case,
(i.e., orthogonality of the IV’s), the partial regression coefficients are equal to
the regression coefficients. In all other cases, the regression coefficient will differ
from the partial regression coefficients.
For example, consider the data given in Table 1 where the dependent variable

Y is to be predicted from the independent variables X1 and X2. In this example,
Y is a child’s memory span (i.e., number of words a child can remember in a set
of short term memory tasks) which we want to predict from the child’s age (X1)
and the child’s speech rate (X2). The prediction equation (using Equation 2) is

Y = 1.67 +X1 + 9.50X2 ; (3)

where b1 is equal to 1 and b2 is equal to 9.50. This means that children increase
their memory span by one word every year and by 9.50 words for every addi-
tional word they can pronounce (i.e., the faster they speak, the more they can
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Table 1: A set of data: Y is to be predicted from X1 and X2 (data from Abdi et
al., 2002). Y is the number of digits a child can remember for a short time (the
“memory span”), X1 is the age of the child, and X2 is the speech rate of the
child (how many words the child can pronounce in a given time). Six children
were tested.

Y (Memory span) 14 23 30 50 39 67
X1 (age) 4 4 7 7 10 10
X2 (Speech rate) 1 2 2 4 3 6

remember). A multiple linear regression analysis of this data set gives a multiple
coefficient of correlation of R2

Y.12 = .9866. The coefficient of correlation between
X1 and X2 is equal to r1,2 = .7500, between X1 and Y is equal to rY,1 = .8028,
and between X2 and Y is equal to rY,2 = .9890. The squared partial regression
coefficient between X1 and Y is computed as

r2
Y.1|2 = R2

Y.12 − r2
Y,2 = .9866− .98902 = .0085, (4)

likewise
r2
Y,2|1 = R2

Y.12 − r2
Y,1 = .9866− .80282 = .3421 . (5)

F and t tests for the partial regression coefficient

The null hypothesis stating that a partial regression coefficient is equal to
zero can be tested by using a standard F -test which tests the equivalent null
hypothesis stating that the associated partial coefficient of correlation is zero.
This F -test has ν1 = 1 and ν2 = N −K − 1 degrees of freedom (with N being
the number of observations and K being the number of predictors). Because ν1

is equal to 1, the square root of F gives a Student-t test. The computation of
F is best described with an example: The F for the variable X1 in our example
is obtained as

Fy.1|2 =
r2
Y.1|2

1−R2
Y.12

×df regression =
r2
Y.1|2

1−R2
Y.12

×(N−K−1) = .0085

1− .9866
= 1.91 .

(6)
This value of F is smaller than the critical value for ν1 = 1 and ν2 = N−K−1 =
3 which is equal to 10.13 for an alpha level of α = .05. Therefore b1 (and r2

Y 1|2)
cannot be considered different from zero.

Standard error and confidence interval

The standard error of the partial regression coefficient is useful to compute
confidence intervals and perform additional statistical tests. The standard error
of coefficient bk is denoted Sbk

. It can be computed directly from F as

Sbk
= bk

√
1

Fk

, (7)
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where Fk is the value of the F -test for bk. For example, we find for the first
variable that:

Sbk
= 1×

√
1

1.91
= .72 , (8)

The confidence interval of bk is computed as

bk ± Sbk

√
Fcritical (9)

with Fcritical being the critical value for the F -test for bk. For example, the
confidence interval of b1 is equal to 1 ± .72

√
10.13 = 1 ± 2.29, and therefore

the 95% confidence interval for b1 goes from −1.29 to +3.29. This interval
encompasses the zero-value and this corresponds to the failure to reject the null
hypothesis.

β weights and partial regression coefficients

There is some confusion here because depending upon the context, β is the
parameter estimated by b, whereas in some other contexts β is the regression
weight obtained when the regression is performed with all variables being ex-
pressed in Z scores. In the latter case, β is called the standardized partial
regression coefficient or the β-weight. These weights have the advantage of be-
ing comparable from one independent variable to the other because the unit of
measurement has been eliminated. The β-weights can easily be computed from
the b’s as

βk =
Sk

Sy

× bk , (10)

(with Sk being the standard deviation of the kth independent variable, and Sy

being the standard deviation of the dependent variable).

*
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