
Generic author design sample pages 2000/07/31 03:05

1 Using Support Vector Machines for

Time Series Prediction

K.-R. M�uller, A. J. Smola, G. R�atsch, B. Sch�olkopf, J. Kohlmorgen

GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany.

fklaus, smola, raetsch, bs, jek g@�rst.gmd.de.

http://candy.�rst.gmd.de.

V. Vapnik

Image Processing Services Research Lab, AT&T Labs - Research

100 Schulz Drive, Red Bank, NJ 07701-7033, USA

vlad@research.att.com.

http://www.research.att.com

Support Vector Machines are used for time series prediction and compared to

radial basis function networks. We make use of two di�erent cost functions for

Support Vectors: training with (i) an " insensitive loss and (ii) Huber's robust

loss function and discuss how to choose the regularization parameters in these

models. Two applications are considered: data from (a) a noisy Mackey-Glass

system (normal and uniform noise) and (b) the Santa Fe Time Series Competition

(set D). In both cases, Support Vector Machines show an excellent performance.

In case (b), the Support Vector approach improves the best known result on the

benchmark by 29%.

1.1 Introduction

Support Vector Machines have become a subject of intensive study (see e.g. [3, 22]).

They have been applied successfully to classi�cation tasks as OCR [22, 17] and more

recently also to regression [5, 23].

In this contribution1 we use Support Vector Machines in the �eld of time series

1. This paper is an extended version of [12].



Generic author design sample pages 2000/07/31 03:05

2 Using Support Vector Machines for Time Series Prediction

prediction and we �nd that they show an excellent performance.

In the following sections we will give a brief introduction to support vector regression

(SVR) and we discuss the use of di�erent types of loss functions. Furthermore,

the basic principles of state space reconstruction are introduced in section 1.4.

The experimental section considers a comparison of SVR and radial basis function

(RBF) networks (introduced in section 1.3) with adaptive centers and variances.

Both approaches show similarly excellent performance with an advantage for SVR

in the high noise regime for Mackey Glass data. For benchmark data from the Santa

Fe Competition (data set D) we get the best result achieved so far, which is 37%

better than the winning approach during the competition [25] and still 29% better

than our previous result [14]. A brief discussion concludes the chapter.

1.2 Support Vector Regression

In SVR the basic idea is to map the data x into a high-dimensional feature space

F via a nonlinear mapping �, and to do linear regression in this space (cf. [3, 22])

f(x) = (! � �(x)) + b with � : Rn ! F ; ! 2 F ; (1.1)

where b is a threshold. Thus, linear regression in a high dimensional (feature) space

corresponds to nonlinear regression in the low dimensional input space Rn. Note

that the dot product in Eq.(1.1) between ! ��(x) would have to be computed in this

high dimensional space (which is usually intractable), if we were not able to use the

kernel trick { described in the following { that �nally leaves us with dot products

that can be implicitly expressed in the low dimensional input space Rn. Since � is

�xed, we determine ! from the data by minimizing the sum of the empirical risk

Remp[f ] and a complexity term k!k2, which enforces 
atness in feature space

Rreg[f ] = Remp[f ] + �k!k2 =

lX
i=1

C(f(xi)� yi) + �k!k2; (1.2)

where l denotes the sample size (x1; : : : ;xl), C(:) is a cost function and � is a

regularization constant. For a large set of cost functions, Eq. (1.2) can be minimized

by solving a quadratic programming problem, which is uniquely solvable [18, 19].

It can be shown that the vector ! can be written in terms of the data points

! =

lX
i=1

(�i � ��i )�(xi) (1.3)

with �i; �
�

i being the solution of the aforementioned quadratic programming prob-

lem [22]. �i; �
�

i have an intuitive interpretation (see Fig. 1.1b) as forces pushing

and pulling the estimate f(xi) towards the measurements yi (cf. [4]). Taking (1.3)

and (1.1) into account, we are able to rewrite the whole problem in terms of dot



Generic author design sample pages 2000/07/31 03:05

1.2 Support Vector Regression 3

products in the low dimensional input space (a concept introduced in [1])

f(x) =

lX
i=1

(�i � ��i )(�(xi) ��(x)) + b =

lX
i=1

(�i � ��i )k(xi;x) + b: (1.4)

In Eq.(1.4) we introduced a kernel function k(xi;xj) = (�(xi) � �(xj)). It can

be shown that any symmetric kernel function k satisfying Mercer's condition

corresponds to a dot product in some feature space (see [3] for details). A common

kernel is e.g. a RBF kernel

k(x;y) = exp(�kx� yk2=(2�2)):

For extensive discussion about kernels see [19].

1.2.1 Vapnik's "-insensitive Loss Function

For this special cost function the Lagrange multipliers �i; �
�

i are often sparse, i.e.

they result in non-zero values after the optimization (1.2) only if they are on or

outside the boundary (see Fig. 1.1b), which means that they ful�ll the Karush-

Kuhn-Tucker conditions (for more details see [22, 18]). The "{insensitive cost

function is given by

C(f(x)� y) =

(
jf(x)� yj � " for jf(x) � yj � "

0 otherwise
(1.5)

(cf. Fig. 1.1a); the respective quadratic programming problem is de�ned as

minimize
1

2

lX
i;j=1

(��i � �i)(�
�

j � �j)k(xi;xj)�

lX
i=1

��i (yi � ")� �i(yi + ")

subject to

lX
i=1

�i � ��i = 0; �i; �
�

i 2 [0;
1

�
]: (1.6)

Note, that the less noisy the problem, the sparser are the �i; �
�

i for Vapnik's "-

insensitive loss function. Note that the cost from Eq.(1.5) introduces a systematic

bias, since we tend to under�t if " is too large, e.g. in the extreme case of very large

" the resulting regression will be a constant.

1.2.2 Huber's Loss Function

Other cost functions like the robust loss function in the sense of [6] can also be

utilized (cf. Fig. 1.1a) [18]. This cost function has the advantage of not introduc-

ing additional bias (like the "-insensitive one does), at the expense, however, of

sacri�cing sparsity in the coeÆcients �i; �
�

i .

C(f(x)� y) =

(
"jf(x)� yj � "2

2
for jf(x)� yj � "

1

2
(f(x)� y)2 otherwise

(1.7)



Generic author design sample pages 2000/07/31 03:05

4 Using Support Vector Machines for Time Series Prediction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

sample
interpolation

alpha

(b)

Figure 1.1 (a) "-insensitive and Huber's loss for " = 1. (b) The shown regression

for the "-insensitive case (kernel: B-splines [18]) of the sinc function is the 
attest

within the " tube around the data. �; �� are drawn as positive and negative forces

respectively. All points on the margin, where f(xi)� yi = " sign(�i � ��

i ), are used

for the computation of b.

The corresponding quadratic programming problem takes the following form

minimize
1

2

lX
i;j=1

(��i � �i)(�
�

j � �j)k(xi;xj) +

lX
i=1

(�i � ��i )yi +
1

2�
(�2i + ��i

2)

subject to

lX
i=1

�i � ��i = 0; �i; �
�

i 2 [0;
"

�
]: (1.8)

So basically all patterns become support vectors.

1.2.3 How to compute the threshold b?

Eqs. (1.6) and (1.8) show how to compute the variables �k; �
�

k. For the proper

choice of b, however, one has to make more direct use of the Karush-Kuhn-Tucker

conditions that lead to the quadratic programming problems stated above. The key

idea is to pick those values �k; �
�

k for which the prediction error Æk = f(xk) � yk
can be determined uniquely. In the "-insensitive case this means picking points xk
on the margin, by requiring that one of the corresponding �k or ��k be in the open

interval (0; 1
�
). In that case we know the exact value

Æk = " sign(�k � ��k)

of the prediction error. Already one xk would in principle be suÆcient to compute

b but for stability purposes it is recommended to take the average over all points

on the margin with

b = averagekfÆk + yk �
X
i

(�i � ��i )k(xi;xk)g:



Generic author design sample pages 2000/07/31 03:05

1.3 RBF networks with adaptive centers and widths 5

For the Huber case b is computed along the same lines with

Æk = �(�k � ��k)

for �k or ��k 2 [0; "
�
), i.e. for points where the quadratic part of the cost function

is active.

Finally, we note that when we solve the quadratic programming problem with an

optimizer which computes the double dual (e.g. [21]), we can directly recover the

value of the primal variable b as the corresponding one of the double dual [19].

1.3 RBF networks with adaptive centers and widths

The RBF nets used in the experiments are an extension of the method of Moody

and Darken [10], since centers and variances are also adapted (see also [2]). The

output of the network is computed as a linear superposition

f(x) =

KX
k=1

wkgk(x) ; (1.9)

where wk(k = 1; : : : ;K) denotes the weights of the output layer. The Gaussian

basis functions gk are de�ned as

gk(x) = exp

�
�
kx� �kk

2

2�2k

�
; (1.10)

where �k and �
2

k denote means and variances, respectively. In a �rst step, the means

�k are initialized with k-means clustering and the variances �k are determined as

the distance between �k and the closest �i (i 6= k). Then in the following steps we

perform a gradient descent in the regularized error function (weight decay)

Rreg =
1

2

lX
i=1

(yi � f(xi))
2
+

�

2l

KX
k=1

(wk)
2: (1.11)

Note that in analogy to Eq.(1.2), we used � > 0 to denote the regularization

parameter. It is easy to derive the gradients @Rreg=@�k and @Rreg=@�k (see

Appendix). Numerically we minimize Eq.(1.11) by a conjugate gradient descent

with line search, where we always compute the optimal output weights in every

evaluation of the error function during the line search. The optimal output weights

w = [w1; : : : ; wK ]
> in matrix notation can be computed in closed form by

w = (GTG+ 2
�

l
I)�1GTy; where Gik = gk(xi) (1.12)

and y = [y1; : : : ; yl]
> denotes the output vector, and I an identity matrix. For

� = 0, this corresponds to the calculation of a pseudo-inverse of G.

So, we simultaneously adjust the output weights and the RBF centers and

variances (see Appendix for pseudo-code of this algorithm). In this way, the network



Generic author design sample pages 2000/07/31 03:05

6 Using Support Vector Machines for Time Series Prediction

�ne-tunes itself to the data after the initial clustering step, yet, of course, over�tting

has to be avoided with careful tuning of the regularization parameter (cf. [2]).

1.4 How to predict?

Let fx(t)g, t = 1; : : : ; T , be a time series that was generated by a dynamical

system. For convenience, consider x(t) to be scalar, but note that the treatment of

multi-scalar time series is straightforward. We assume that fx(t)g is a projection

of a dynamics operating in a high-dimensional state space. If the dynamics is

deterministic, we can try to predict the time series by reconstructing the state

space. A way to reconstruct the state space was introduced by Packard et al. [13]

and mathematically analyzed by Takens [20]. A state vector is de�ned as

xt = (x(t); x(t� �); : : : ; x(t� (d� 1)�)) ; (1.13)

with time-delay � and embedding dimension d. If the dynamics runs on an attractor

of dimension D, a necessary condition for determining xt is

d � D: (1.14)

If the embedding dimension is big enough, such that xt unambiguously describes

the state of the system at time t, then there exists an equation for points on the

attractor, which is of the form

x(t+ p) = f�(xt): (1.15)

In this equation, f� is a function that allows to predict future values of the time

series fx(t)g given past values, with p being the prediction horizon. Takens [20]

showed that there is an upper bound

d � 2D + 1 (1.16)

for the embedding dimension d, such that a continuous function f� can be found

within this bound. Regression techniques like SVR or RBF nets can therefore be

used to estimate the prediction function on the basis of time-delay coordinates ac-

cording to Eq. (1.13). For stationary dynamical systems the embedding parameters

� and d can be found e.g. by the method of Liebert, Pawelzik and Schuster [8].

1.5 Experiments

We �x the following experimental setup for our comparison: (a) RBF nets and (b)

SVR are trained using a simple cross validation technique. We stop training the

RBF networks at the minimum of the one step prediction error measured on a

randomly chosen validation set. For SVR the parameters (�; ") are also determined

at the minimum of the one step prediction error on the same validation set. Other



Generic author design sample pages 2000/07/31 03:05

1.5 Experiments 7

methods, e.g. bootstrap can also be used to assess � and ". For SVR we distinguish

between a training with Huber loss and "-insensitive loss. Gaussian kernels with

k(x;y) = exp(�kx� yk2=(2�2)) and �2 = 0:75

are used in the SVR experiments. Note again that the RBF networks employed can

adapt their variances �k to the data individually. Furthermore, in contrast to SVMs

the means �k do not need to coincide with data points. As forecasting experiments

we consider (i) a toy problem to understand and control the experimental set-up

and (ii) a benchmark problem from the Santa Fe Competition (data set D).

1.5.1 Mackey Glass Equation

Our �rst application is a high-dimensional chaotic system generated by the Mackey-

Glass delay di�erential equation

dx(t)

dt
= �0:1x(t) +

0:2x(t� t�)

1 + x(t� t�)10
; (1.17)

with delay t� = 17. Eq. (1.17) was originally introduced as a model of blood cell

regulation [9] and became quite common as an arti�cial forecasting benchmark.

After integrating (1.17), we added noise to the time series. We obtained training

(1000 patterns) and validation (the following 194 patterns) sets using an embedding

dimension d = 6 and a step size � = 6. The test set (1000 patterns) is noiseless to

measure the true prediction error. We conducted experiments for di�erent signal to

noise ratios (SNR) using Gaussian and uniform noise (Table 1.1).

We de�ne the SNR in this experiment as the ratio between the variance of the

noise and the variance of the Mackey Glass data.

noise normal uniform

SNR 22.15% 44.3% 6.2% 12.4% 18.6%

test error 1S 100S 1S 100S 1S 100S 1S 100S 1S 100S

"-insensitive 0.017 0.218 0.040 0.335 0.006 0.028 0.012 0.070 0.017 0.142

Huber 0.017 0.209 0.040 0.339 0.008 0.041 0.014 0.065 0.019 0.226

RBF 0.018 0.109 0.044 0.266 0.009 0.062 0.014 0.083 0.028 0.282

Table 1.1 1S denotes the 1-step prediction error (RMS) on the test set. 100S is the

100-step iterated autonomous prediction. \SNR" is the ratio between the variance

of the respective noise and the underlying time series. E.g. parameter choices for

normal noise with SNR 22.15% is " = 0:01 and � = 0:56 for "-insensitive loss and

" = 0:1334 and � = 0:0562 for Huber loss. The respective RBF network uses 30

centers and � = 0:1 choosen according to the validation set.



Generic author design sample pages 2000/07/31 03:05

8 Using Support Vector Machines for Time Series Prediction

RBF networks and SVR achieve similar results for normal noise. It is to be

expected that the method using the proper loss function (squared loss) wins for

Gaussian noise, so we would actually expect the RBF nets to perform best followed

by SVR trained with Huber loss, which is for large " close to the squared loss

and �nally followed by SVR using an "-insensitive loss. Table 1.1 con�rms this

intuition partially. For uniform noise, the whole scenario should be reversed, since "-

insensitive loss is the more appropriate noise model (cf. [6]). This is again con�rmed

in the experiment. The use of a validation set to assess the proper parameters � and

", however, is suboptimal and so the low resolution with which the (�; ") space is

scanned is partly responsible for table entries that do not match the above intuition.

1.5.2 Data Set D from the Santa Fe Competition

Data set D from the Santa Fe competition is arti�cial data generated from a nine-

dimensional periodically driven dissipative dynamical system with an asymmetrical

four-well potential and a slight drift on the parameters [24]. The system has the

property of operating in one well for some time and then switching to another

well with a di�erent dynamical behavior. Therefore, we �rst segment the time

series into regimes of approximately stationary dynamics. This is accomplished by

applying the Annealed Competition of Experts (ACE) method described in [14, 11]

(no assumption about the number of stationary subsystems was made). Moreover,

in order to reduce the e�ect of the continuous drift, only the last 2000 data points

of the training set are used for segmentation. After applying the ACE algorithm,

the data points are individually assigned to classes of di�erent dynamical modes.

We then select the particular class of data that includes the data points at the end

of Data Set D as the training set for the RBF networks and the SVR2. This allows

us to train the RBF networks and the SVR on quasi-stationary data and we avoid

having to predict the average over all dynamical modes hidden in the full training

set (see also [14] for further discussion). However, at the same time we are left with

a rather small training set requiring careful regularization, since there are only 327

patterns in the extracted training set. As in the previous section we use a validation

set (50 patterns of the extracted quasi-stationary data) to determine the stopping

point and (�; ") respectively. The embedding parameters used, d = 20 and � = 1,

are the same for all the methods compared in table 1.2.

Table 1.2 shows that our 25 step iterated prediction of the SVR is 37% better than

the one achieved by Zhang and Hutchinson [25], who used a specialized network

architecture. It is still 29% better than our previous result [14] that used the same

ACE preprocessing as above and simple RBF nets (however at that time with

non-adaptive centers and variances). As expected, the results are inferior, if we

2. Hereby we assume that the class of data that generated the last points in the training
set is the one that is also responsible for the �rst couple of steps of the iterated continuation
that we aim to predict.



Generic author design sample pages 2000/07/31 03:05

1.6 Discussion and Outlook 9

train on the full, non-stationary training set without prior segmentation. However,

"-insensitive SVR is still better than the previous results on the full set.

experiment "-ins. Huber RBF ZH [25] PKM [14]

full set 0.0639 0.0653 0.0677 0.0665 {

segmented set 0.0418 0.0425 0.0569 { 0.0596

Table 1.2 Comparison (under competition conditions) of 25 step iterated pre-

dictions (root mean squared errors) on Data set D. \{" denotes: no prediction

available. \Full set" means, that the full training set of set D was used, whereas

\segmented set" means that a prior segmentation according to [11, 14] was done as

preprocessing.

1.6 Discussion and Outlook

The chapter showed the performance of SVR in comparison to tuned RBF net-

works. For data from the Mackey-Glass equation we observed that also for SVR it

pays to choose the proper loss function for the respective noise model (cf. [18, 19]).

In both SVR cases training consisted in solving a { uniquely solvable { quadratic

optimization problem, unlike the RBF network training, which requires non-linear

optimization with the danger of getting stuck in local minima. Note that a stable

prediction is a diÆcult problem since the noise level applied to the chaotic dynam-

ics was rather high. For the data set D benchmark we obtained excellent results

for SVR { 37% above the best result achieved during the Santa Fe competition

[25]. Clearly, this remarkable di�erence is mostly due to the segmentation used as

preprocessing step to get stationary data [11, 14], nevertheless still 29% improve-

ment remain compared to a previous result using the same preprocessing step [14].

This underlines that we need to consider non-stationarities in the time series be-

fore the actual prediction, for which we can then use SVR or RBF nets (see also

[11, 14, 15, 7] for discussion).

Our experiments show that SVR methods work particularly well if the data is

sparse (i.e. we have little data in a high-dimensional space). This is due to their

good inherent regularization properties.

Inspecting the RBF network approach more closely, we can see that a variety

of individual variances �k appear as a result of the learning process. Clearly, in

this sense RBF nets are the more 
exible model, since multi-scaling information

is extracted and taken into account. Of course the higher 
exibility must be

counter-balanced with a careful regularization. It now appears tempting to keep the

principled regularization approach of SVR and to also allow for multiple variance

SV kernels in Support Vector machine training. This way we would not to be obliged



Generic author design sample pages 2000/07/31 03:05

10 Using Support Vector Machines for Time Series Prediction

to determine a single scale to look at the data before learning3.

Other things that remain are: determining the proper parameters � and ". This is

still suboptimal and computationally intensive (if not clumsy). Both, some improved

theoretical bounds and/or a simple heuristics to choose them would enhance the

usability of SVR, since (�; ") are powerful means for regularization and adaptation

to the noise in the data. Bootstrap methods or methods using a validation set are

only a �rst step.

Acknowledgements

A.S. and G.R. are supported by DFG (# Ja 379/51). We thank C.Burges for

valuable discussions. Moreover, we gratefully acknowledge travel grants from DAAD

and NSF.

Appendix

Taking the derivative of Eq.(1.11) with respect to RBF means and variances we

obtain

@Rreg

@�q
=

lX
i=1

(f(xi)� yi)
@

@�q
f(xi); with

@

@�q
f(xi) = wq

xi � �q
(�q)2

gq(xi) (1.18)

and

@Rreg

@�q
=

lX
i=1

(f(xi)� yi)
@

@�q
f(xi); with

@

@�q
f(xi) = wq

k�q � xik
2

(�q)3
gq(xi) :(1.19)

These two derivatives are employed in the following algorithm (in pseudo-code):

Algorithm RBF-Net

Input:

Sequence of labeled training patterns Z = h(x1; y1); � � � ; (xl; yl)i

Number of RBF centers K

Regularization constant �

Number of iterations T

Initialize:

Run K-means clustering to �nd initial values for �k and determine �k
(k=1,. . . ,K) as the distance between �k and the closest �i (i 6= k).

Do for t = 1 : T ,

1. Compute optimal output weights w =
�
G>G+ �

l
I
��1

Gy>

3. The ability of processing multiscaling information could also be the reason to the often
more stable 100 step prediction of RBF nets that was observed in the experiments.



Generic author design sample pages 2000/07/31 03:05

REFERENCES 11

2a. Compute gradients @
@�k

Rreg and
@

@�k
Rreg as in (1.19) and (1.18) with

optimal w and form a gradient vector v

2b. Estimate the conjugate direction v with Fletcher-Reeves-Polak-

Ribiere CG-Method [16]

3a. Perform a line search to �nd the minimizing step size Æ in direction

v; in each evaluation of Rreg compute the optimal output weights w as in

line 1

3b. update �k and �k with v and Æ

Output: Optimized RBF net

References

1. M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821 { 837, 1964.

2. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995.

3. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classi�ers. In D. Haussler, editor, Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144{152, Pittsburgh, PA, July
1992. ACM Press.

4. C. J. C. Burges and B. Sch�olkopf. Improving the accuracy and speed of support
vector learning machines. In M. Mozer, M. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems 9, pages 375{381, Cambridge,
MA, 1997. MIT Press.

5. H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector
regression machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in
Neural Information Processing Systems 9, Cambridge, MA, 1997. MIT Press.

6. P. J. Huber. Robust statistics: a review. Ann. Statist., 43:1041, 1972.

7. J. Kohlmorgen, K.-R. M�uller, and K. Pawelzik. Analysis of drifting dynamics with
neural network hidden markov models. In M. Jordan, M. Kearns, and S. Solla,
editors, Advances in Neural Information Processing Systems 10, Cambridge, MA,
1998. MIT Press. In press.

8. W. Liebert, K. Pawelzik, and H. G. Schuster. Optimal embeddings of chaotic
attractors from topological considerations. Europhys. Lett., 14:521 { 526, 1991.

9. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems.
Science, 197:287{289, 1977.

10. J. Moody and C. Darken. Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2):281{294, 1989.

11. K.-R. M�uller, J. Kohlmorgen, and K. Pawelzik. Analysis of switching dynamics
with competing neural networks. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E78{A(10):1306{1315, 1995.

12. K.-R. M�uller, A. Smola, G. R�atsch, B. Sch�olkopf, J. Kohlmorgen, and V. Vapnik.
Predicting time series with support vector machines. In W. Gerstner, A. Germond,
M. Hasler, and J.-D. Nicoud, editors, Arti�cial Neural Networks | ICANN'97, pages



Generic author design sample pages 2000/07/31 03:05

12 Using Support Vector Machines for Time Series Prediction

999 { 1004, Berlin, 1997. Springer Lecture Notes in Computer Science, Vol. 1327.

13. N. H. Packard, J. P. Crutch�eld, J. D. Farmer, and R. S. Shaw. Geometry from a
time series. Phys. Rev. Lett., 45:712{716, 1980.

14. K. Pawelzik, J. Kohlmorgen, and K.-R. M�uller. Annealed competition of experts
for a segmentation and classi�cation of switching dynamics. Neural Computation,
8(2):342{358, 1996.

15. K. Pawelzik, K.-R. M�uller, and J. Kohlmorgen. Prediction of mixtures. In
C. von der Malsburg, W. von Seelen, J. C. Vorbr�uggen, and B. Sendho�, editors,
Arti�cial Neural Networks | ICANN'96, pages 127{133, Berlin, 1996. Springer
Lecture Notes in Computer Science, Vol. 1112.

16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scienti�c Computing (2nd ed.). Cambridge University
Press, Cambridge, 1992. ISBN 0-521-43108-5.

17. B. Sch�olkopf, C. Burges, and V. Vapnik. Extracting support data for a given task.
In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International
Conference on Knowledge Discovery & Data Mining. AAAI Press, Menlo Park, CA,
1995.

18. A. Smola and B. Sch�olkopf. On a kernel-based method for pattern recognition,
regression, approximation and operator inversion. Technical Report 1064, GMD,
1997.

19. A. Smola, B. Sch�olkopf, and K.-R. M�uller. General cost functions for support
vector regression. In T. Downs, M. Frean, and M. Gallagher, editors, Proc. of the
Ninth Australian Conf. on Neural Networks, pages 79 { 83, Brisbane, Australia,
1998. University of Queensland.

20. F. Takens. Detecting strange attractors in 
uid turbulence. In D. Rand and L.S.
Young, editors, Dynamical Systems and Turbulence, pages 366{381. Springer-Verlag,
Berlin, 1981.

21. R. J. Vanderbei. LOQO user's manual { version 3.10. Technical Report
SOR-97-08, Princeton University, Statistics and Operations Research, 1997. Code
available at http://www.princeton.edu/~rvdb/.

22. V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York,
1995.

23. V. Vapnik, S. Golowich, and A. Smola. Support vector method for function
approximation, regression estimation, and signal processing. In M. Mozer,
M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems 9, pages 281{287, Cambridge, MA, 1997. MIT Press.

24. A. S. Weigend and N. A. Gershenfeld (Eds.). Time Series Prediction: Forecasting
the Future and Understanding the Past. Addison-Wesley, 1994. Santa Fe Institute
Studies in the Sciences of Complexity.

25. X. Zhang and J. Hutchinson. Simple architectures on fast machines: practical
issues in nonlinear time series prediction. In A. S. Weigend and N. A. Gershenfeld,
editors, Time Series Prediction: Forecasting the Future and Understanding the Past.
Santa Fe Institute, Addison-Wesley, 1994.


