
Introduction
An understanding of the shopping choice behaviour of pedestrians in shopping centres
constitutes an important topic of spatial analysis. The behaviour of pedestrians ulti-
mately dictates the sales levels of shops and also represents a key component in better
assessing the likely economic impact of land-use and transportation planning on
retailing. Even by the early 1970s, research showed that the commercial viability of
inner-city shopping streets is highly influenced by pedestrian movement and that the
impact of new retail developments or changes in the transportation network is closely
related to the locational patterns of magnet stores and the distribution of transport
termini (Bennison and Davies, 1977a; 1977b; Johnston and Kissling, 1971; Lorch and
Smith, 1993; Pacione, 1980; Walmsley and Lewis, 1989). The continued relevance of this
research topic is indicated by the recent trend, observable in many advanced countries,
to reduce car use and mobility in city centres and around large shopping centres.
Restricted parking, increased parking fees, one-way streets, and other policy measures
aim at reducing car use in city centres and around shopping centres. Retailers are not
particularly in favour of such policies as they fear that consumers will decide to shop
elsewhere. Planners should thus be interested in trying to predict the likely impact of
such policies on pedestrian behaviour and hence on sales.

In general, pedestrian shopping behaviour in a shopping centre depends on
knowledge about shops, the street network, the distribution of shops, and the choice
mechanisms that are involved in deciding where to shop, in what order, and which route
to take. In previous studies (Borgers and Timmermans, 1986a; 1986b; Butler, 1978;
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Hagishima et al, 1987; Sandahl and Percivall, 1972) gravity models, sometimes
embedded in Markov chains, have been used to predict pedestrian movement. Thus,
either explicitly or implicitly, researchers have assumed that pedestrian destination and
route choice can be viewed as the result of utility-maximising behaviour, in which
pedestrians trade off the attractiveness of stores or shopping streets and the distance
or time it takes to visit that store. The assumption of utility-maximising behaviour may,
however, be rather strong. It assumes that pedestrians have full information about the
stores in their shopping environment and also know exactly which stores they wish to
visit before entering the shopping centre. A less rigorous assumption would be that
pedestrians do not necessarily behave in such an optimal way, but rather apply partic-
ular choice heuristics in their destination and route choice. If this is true, it would be of
interest to investigate whether a model of pedestrian shopping behaviour, based on such
choice heuristics, can successfully predict the sequence of store choice and the implied
route choice of shopping pedestrians.

Some scant evidence supporting this assumption is available in the literature. For
example, Hayes-Roth and Hayes-Roth (1979) examined the heuristics that individuals
use when asked to plan a trip. In particular, they asked their subjects to choose the
order in which to visit a given set of destinations to conduct a series of activities. Their
results suggested that people do not behave according to utility-maximising theory. The
majority of their subjects first chose the destination closest to home, then the one
closest to the one chosen at the previous step, and so on, until all destinations were
visited. This research finding was elaborated in a series of studies conducted by Ga« rling
and his associates. Sa« isa« andGa« rling (1987) found, both in a laboratory setting and in real-
world environments, that some individuals minimised the distance between the successive
destinations of their trip, whereas others considered the total distance travelled, if the
minimisation of distances between successive destinations would lead to a substantially
longer distance to complete the tour than the minimisation of the total distance travelled.
In two other projects (Ga« rling, 1987; Ga« rling et al, 1986) they found that the heuristics
people use also depend on the cognitive representation of the environment. If individuals
possess some map-like mental representation of the environment, they are able to
minimise the total distance travelled; otherwise they tend to minimise distance in a
sequential decisionmaking process. Empirical evidence for such behaviour was found
in another study (Ga« rling and Ga« rling, 1988). Given this scattered empirical evidence it
would be of interest to investigate whether a model of pedestrian shopping behaviour,
based on such choice heuristics, can successfully predict the sequence of store choice
and the implied route choice of shopping pedestrians.

In the present paper we report the first findings of such an attempt, and build on
previous research of the Urban Planning Group of the Eindhoven University of Tech-
nology (Van der Hagen et al, 1991) to identify choice heuristics underlying pedestrian
movement. In that study, the authors identified several temporal and spatial choice
heuristics and examined empirically to what extent such heuristics reflect actual
pedestrian movements. In the present paper we take this research a step forward.
The specific contributions of this paper are twofold. First, a new choice heuristic is
suggested. Second, a model incorporating various choice heuristics is developed and
applied to theoretical shopping environments and to the Veldhoven City Centre in the
Netherlands. The theoretical part serves to understand better the relevance, potential,
and limitations of the choice heuristics for theoretical spatial systems with known
properties. The application to actual data on pedestrian shopping behaviour serves to
assess the ability of a model for classifying and identifying, based on choice heuristics.
Thus the theoretical analysis elaborates our fundamental understanding of the relation-
ship between land use, choice heuristics, and pedestrian movement. Based on this
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understanding, the empirical analysis tests the classification and identification ability
of the rule-based model, which will be developed in this paper.

To this end, the paper is organised as follows. First, we shall discuss the theoretical
underpinnings of the study, leading to a rule-based model of pedestrian movement.
Then, we shall examine theoretically the properties of the model by investigating
theoretical linear retail structures. Next, the performance of the suggested model is
tested by using data on actual pedestrian shopping behaviour in Veldhoven City Centre.
Finally conclusions are drawn and some avenues for future research discussed.

Introduction of heuristics
Consider the problem that a shopping pedestrian has to decide which stores to visit, in
which order, and which route to take, given a list of items to buy and some non-store-
related goals of visiting the shopping area. Following common theoretical reasoning,
we may assume that the combined choice of store, sequence, and route choice is
influenced by spatial (distance) considerations, in addition to physical and nonphysical
properties of the stores. Conventional theories typically assume that pedestrians arrive
at their ultimate choice by maximising their overall utility function, incorporating these
factors, perhaps subject to some time constraints. Examples of such approaches can be
found in Borgers and Timmermans (1986a; 1986b) and Hagishima et al (1987).

In the present study we follow an alternative conceptual framework, which suggests
that individuals do not necessarily behave in such an optimal manner, but rather use
simplifying mechanisms to cope with the complex decision problem. We use the term
`heuristic' for this idea. A heuristic in this paper can be viewed as a rule which
describes some principle underlying the choice behaviour of pedestrians. It is a heu-
ristic because the principle is not necessarily one derived from utility-maximising
theory, describing an optimal choice. We assume that the choice heuristics of interest
can be represented by tools stemming from artificial intelligence.

Assume that the list of stores to be visited is known. Some rules serve to address the
problem of which route should be chosen to visit these stores. We shall call these route
choice heuristics, to reflect the notion that they describe mechanisms of how pedestrians
move from one store to the next. Examples are the local-distance-minimising (LDM),
total-distance-minimising (TDM), and global-distance-minimising (GDM) choice rules.
The LDM choice heuristic states that a pedestrian will invariably take the shortest route
between successive stores on a shopping trip. In contrast, in the TDM heuristic it is
assumed that pedestrians are minimising the total distance implied in their route choice.
Note that, ceteris paribus, this rule can be derived from utility-maximising choice
theory. In the GDM heuristic it is assumed that pedestrians do not necessarily minimise
the total distance travelled, but the sequence of stops is consistent with that of the TDM.
Hence, globally the choice of stops is based on some principle of optimal store choice,
but there are local deviations from a truly optimal route.

Route choice heuristics on their own, however, will not completely solve the
decision problem. If a shopping pedestrian knows which stores to visit, and has
decided on which route to follow by applying one of these heuristics, then the problem
in which sequence to visit the stores still remains. The combination of store and route
choice still leaves open alternative sequences in which the stores can be visited. Alter-
native sequential patterns are unrelated to the total distances involved. Hence we
assume that, in addition to route choice heuristics, pedestrians will apply specific
sequencing heuristics. Examples of such sequence heuristics are the nearest-destina-
tion-oriented (NDO) and the farthest-destination-oriented (FDO) choice rules. The
NDO heuristic states that pedestrians first visit the store which is nearest from the
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point where they entered the shopping area. In contrast, in the FDO it is assumed that
the first stop is made at the store farthest from the entry point.

The latter rules were tested empirically in our previous work. However, these two
rules leave open the possibility that pedestrian behaviour cannot be described by any of
these rules. Pedestrians may decide to start their shopping trip somewhere in between
the closest and farthest store from the point where they entered the shopping area.
Therefore we formulated another heuristic, called the intermediate-destination-oriented
(IDO) heuristic. The IDO heuristic states that pedestrians first visit a store between the
nearest and the farthest store from their entry point in their schedule.

When used in combination, these route choice and sequence heuristics allow one to
classify and identify the stop sequences and route choices underlying pedestrian shop-
ping behaviour. To that effect, the heuristics should be represented by some formalism.
In the present study, we decided to use the formalism of production systems from
artificial intelligence. Simply stated, a production system is a set of `IF ... THEN'
rules. The IF part of the logical expression specifies a series of conditions or facts,
whereas the THEN part represents actions or behaviour. Figure 1 displays a basic
flowchart of the model.

Explanation
Classifying stop sequences
The above discussion thus implies that, in order to classify pedestrian shopping
behaviour, the choice heuristics need to be represented in terms of a set of logical
expressions. The system was built in PROLOG. There were two reasons for this choice.
(1) Its declarative semantics make PROLOG ideally suited to the analysis of rule-based
systems. The built-in functionality of pattern matching, automatic backtracking, and
backward reasoning allows the researcher to identify very efficiently which cases are
described by a particular rule, and which are not. Hence, stop sequences and route
choice can be predicted by very efficient code.
(2) The tree-based data structure of PROLOG represents a very effective and efficient
way of classifying the stores and the street network. Figure 2 shows the flowchart of
the PROLOG production system for classifying and identifying stop sequences.

Classifying route choice
In addition to classifying and identifying stop sequences, the system should also
classify and identify the route choice behaviour of shopping pedestrians. In particular,
route choice is classified by assuming that stop sequences are known. In previous
models it has almost invariably been assumed that shopping pedestrians choose
the shortest route between successive stops (that is, the LDM choice heuristic), but
empirical evidence suggests this is not necessarily true (Van der Hagen et al, 1991).

Fact
Road network data
Stop nodes data
Personal choice heuristics data

Rule
Rules base of choice heuristics

Output
Stop sequences and route choice

!

!

Figure 1. Flowchart of the model.
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In addition to the alternative formulations, presented in the above discussion, it may be
assumed that pedestrians are attracted to streets with many shops, regardless of
distance. An additional choice heuristic, which we will call attractive-street-oriented
(ASO), thus states that pedestrians will wish to stay as much as possible on attractive
streets. Pedestrians who use this ASO heuristic move from an entry point to a gate
node which is on the shortest route to the first store to be visited. At the next step,
pedestrians move between successive stores only on attractive streets. We assume that
they will choose the shortest route following shopping streets only. Hence the ASO
heuristic represents a special case of the LDM heuristic. According to the latter rule,
pedestrians may use any street, regardless of its functions, whereas in the first rule it is
assumed that pedestrians will move along shopping streets only after they have visited

if he or she uses NDO if he or she uses NDO

if he or she uses FDOif he or she uses FDO

if he or she uses IDO if he or she uses IDO

then he or she reveals stop sequence SnotGN
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Figure 2. Flowchart of predicting stop sequences.

then he or she takes route
�Rel ± �R12 ± �R23 ± �R3g

if he or she uses LDM

if he or she uses ASO

start

if person X adopts stop sequence se ± s1 ± s2 ± s3 ± sg

!

!

!

then he or she takes route
Rel ±R12 ±R23 ±R3g

! !

yes

no

Figure 3. Flowchart of predicting route choice.
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the first store. At the last step of their shopping trip, when they leave the shopping
area, they are assumed to choose the same route as the one they used to start their
shopping trip. If they do not return to the entry point, they are assumed to choose the
shortest route to their final destination. Figure 3 shows the flowchart of classifying and
identifying route choice.

Detailed explorations of the combinatorial possibilities
Before applying the system to empirical data, we decided to gain a better understanding
of the formal properties of the suggested system by applying it to a set of theoretical,
hypothetical situations of increasing complexity. All these situations represented a linear
shopping street. First, we applied the system to a linear structure, involving a single
entry point, and two destinations. The next application involved a linear retail structure
with three destinations. This was again made more complicated in the next exam-
ple involving four destinations. These applications then led to the formulation of the
rule-based system for the general linear case.

Linear structure: two-stops case
The least complicated case is the one where a shopping pedestrian is entering a linear
shopping street and has to visit two stores. In this case, the pedestrian can decide to
visit the nearest store first and then visit the more distant store (NDO heuristic), or
decide to go to the store farthest away from the entry point first and visit the second
store on the way back to the entry point (FDO heuristic). This is shown in figure 4,
where node se is the entry and exit point, node sn is the store nearest to the entry point,
and node sf represents the store farthest away from the entry point. For this simplest
case, the route choice heuristics are redundant as they are implied by the sequence
heuristics. Thus pedestrians can either apply the NDO or the FDO heuristic. As shown
in table 1, each of these heuristics represents a stop sequence pattern.

Linear structure: three-stops case
Let us now consider the case of a linear shopping structure with three stops, as shown
in figure 5. Once again, let se represent the entry point, sn the store located nearest to
the entry point, sf the store located farthest away from se , and sh an intermediate store,
located between sn and sf . For this situation, two cases can be identified for the route

sn se sf

se : starting-point (goal) node
sn : stop node nearest to node se
sf : stop node farthest from node se

Figure 4. Diagram of linear structure: two-stops case.

Table 1. Rules of linear structure: two-stops case.

Heuristic Sequence

if F then se ± sf ± sn ± se
if N then se ± sn ± sf ± se

N, nearest-destination-oriented; F, farthest-destination-oriented.

sn se sh sf

sh : stop node between node sn and noe sf

Figure 5. Diagram of linear structure: three-stops case.
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choice heuristic. The first case is the one where the GDM rule is true, whereas the
second case is the one where the GDM rule is false. Similarly we can identify three
cases for the sequence choice heuristicsöNDO, FDO, or IDOöwhere the last implies
that the intermediate destination is chosen first. Note, however, that the NDO rule
cannot be valid when the GDM heuristic is false. Thus the combination of route
choice and sequence choice heuristics for the case of a linear shopping structure with
three stops leads to five possible sets of rules. Table 2 represents these cases and the
implied stop sequences. Every heuristic exactly represents a unique stop sequence,
except the case where GDM and NDO are both true. There are two possible sequences
in this case: se ^ sn ^ sh ^ sf ^ se and se ^ sn ^ sf ^ sh ^ se .

Table 2. Rules of linear structure: three-stops case.

Heuristic Sequence

if G, F then se ± sf ± sh ± sn ± se
if G, N then se ± sn ± sh ± sf ± se or se ± sn ± sf ± sh ± se
if G, I then se ± sh ± sf ± sn ± se
if nG, F then se ± sf ± sn ± sh ± se
if nG, I then se ± sh ± sn ± sf ± se

I, intermediate-destination-oriented; G, global-distance-minimising; nG, not G;

F, farthest-destination-oriented; N, nearest-destination-oriented.

sn se sh1 sh2 sf

sh1 : stop node second nearest to node se
sh2 : stop node third nearest to node se

Figure 6. Diagram of linear structure: four-stops case.

Table 3. Rules of linear structure: four-stops case.

Case Heuristic Sequence

1 if G, F then T1 � 1
2 if G, N then T2 � 4
3 if G, I then T3 � 3
4 if nG, F then T4 � 5
5 if nG, N then T5 � 2
6 if nG, I then T6 � 9

Note: Possible sequences are as follows.
Case 1 se ± sf ± sh2 ± sh1 ± sn ± se .
Case 2 se ± sn ± sh1 ± sh2 ± sf ± se , se ± sn ± sf ± sh2 ± sh1 ± se , se ± sn ± sh1 ± sh2 ± sf ± se ,

se ± sn ± sh2 ± sf ± sh1 ± se .
Case 3 se ± sh1 ± sh2 ± sf ± sn ± se , se ± sh1 ± sf ± sh2 ± sn ± se , se ± sh2 ± sf ± sh1 ± sn ± se .
Case 4 se ± sf ± sn ± sh1 ± sh2 ± se , se ± sf ± sn ± sh2 ± sh1 ± se , se ± sf ± sh1 ± sh2 ± sn ± se ,

se ± sf ± sh1 ± sn ± sh2 ± se , se ± sf ± sh2 ± sn ± sh1 ± se .
Case 5 se ± sn ± sh2 ± sh1 ± sf ± se , se ± sn ± sf ± sh1 ± sh2 ± se .
Case 6 se ± sh1 ± sn ± sh2 ± sf ± se , se ± sh1 ± sf ± sn ± sh2 ± se , se ± sh1 ± sn ± sh2 ± sf ± se ,

se ± sh1 ± sn ± sf ± sh2 ± se , se ± sh2 ± sf ± sn ± sh1 ± se , se ± sh2 ± sf ± sh1 ± sn ± se ,
se ± sh2 ± sn ± sh1 ± sf ± se , se ± sh2 ± sn ± sf ± sh1 ± se , se ± sh2 ± sh1 ± sf ± sn ± se .

See table 2 for an explanation of the notation.
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Linear structure: four-stops case
Adding another store or stop further complicates the analysis. This is shown in figure 6,
where node sh1 is the second nearest stop from se , and sh2 is the third nearest. For this
situation, there are two possible route choice rules, and three possible sequence choice
heuristics, leading to a total of six possible combinations. These possible combinations
are listed in table 3, where Ti represents the total number of possible sequences for case i.
Table 3 clearly demonstrates that there are many possible sequences for each case. Thus
the rule-based system will no longer exactly identify a particular sequence, but the
system can reduce the possible sequences for each case. In other words, the system
can estimate only the probability that a particular stop sequence will occur.

Linear structure: the general case
Assume a linear shopping structure with k� 2 stops and one entry or exit point.
Figure 7 shows the street network, and the distribution of stops implied by this
situation. Table 4 lists the relevant rules and number of possible stop sequences in
this situation. The number of possible sequences, as indicated in tables 1 ^ 3, based
on the linear structure situations are special situations of this general formulation.
For example, the situation with two stops in table 1 is represented by two cases (1
and 2). Similarly, the situation with three stops in table 2 is represented by five cases (1,
2, 3, 4, 6) in table 4, and the situation involving four stops is represented by all six cases
in table 4. Note that the sum of the Ti of six cases equals (k� 2)!, where k� 2 represents
the number of stop nodes. As in the previous situations, the rules cannot uniquely define
a stop sequence, but they can effectively reduce the possible stop sequences and estimate
the probability of a particular stop pattern. These six cases represent the basic frame for
classifying and identifying stop sequences of pedestrians, and they may be useful in
other situations where the street network and the distribution of stops are different.
Based on a particular street network and distribution of stops, the stop sequences of
shopping pedestrians can be classified by applying these six rules. The street network
and distribution of stops may be different from the linear structure. However, the

sn se sh1 sh2 ... shk sf

Figure 7. Diagram of linear structure: the general case.

Table 4. Rules of linear structure: the general use (k 5 1).

Case Heuristic Sequence

1 if G, F then T1 � 1

2 if G, N then T2 � 1�
Xkÿ1
n � 0

2n

3 if G, I then T3 �
Xkÿ1
n � 0

2n

4 if nG, F then T4 � (k� 1)!ÿ 1

5 if nG, N then T5 � (k� 1)!ÿ
�
1�

Xkÿ1
n � 0

2n
�

6 if nG, I then T6 � k(k� 1)!ÿ
Xkÿ1
n � 0

2n

See table 2 for an explanation of the notation.
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framework is valid for any street network and distribution of stops. If the framework of
six cases for particular combinations of route choice and sequence heuristics is true,
every combination of stop nodes can be classified according to these six cases. In the
following section we will demonstrate the potential of the suggested framework in a
study of pedestrian shopping behaviour in Veldhoven City Centre.

Empirical results
Data
To understand better the potential of the suggested production system of route choice
and sequence choice heuristics, the system was applied to data collected for Veldhoven
City Centre, located close to Eindhoven in the Netherlands. The shopping centre, where
car traffic is prohibited, is a typical Dutch subregional shopping centre with a primary
market area with approximately 40 000 customers. The purpose of this application is to
investigate how well the system is capable of classifying the stop sequences and route
choice behaviour of shopping pedestrians in this shopping centre.

The data for the present application on pedestrian shopping behaviour were
collected in 1993. Pedestrians were invited to participate in the survey when leaving
the shopping centre. Those who agreed were asked to list where they shopped, in what
order, and the route they took. A total of 895 pedestrians participated in the study, but
the model is based on only 408 pedestrians as the remainder visited one store only, and
hence their shopping data are irrelevant for the present study.

To apply the system to Veldhoven City Centre, we adapted the system as shown in
figure 8 (see over) which shows the flowchart of the developed system. There are six
steps for classifying stop sequences, and two steps for classifying route choice. We will
explain each of these steps in turn.

Procedure
Step 1: Prepare data
The street network of Veldhoven City Centre was coded in terms of nodes and links.
Entry points and street crossings were used as nodes, whereas the streets were coded as
links. Stores were assigned to the nearest node. Distances between links were measured
and saved in a separate data file. Observed stop sequences and route choices were
derived from the survey for each pedestrian separately.
Step 2: Calculate the minimum distance route and the corresponding distance
A shortest route algorithm was used to identify the shortest distance between all
possible pairs of stores. These data, together with a coding of the involved route,
were stored in a separate data file.
Step 3: Calculate TDM sequences and identify GDM and non-GDM sequences
The shortest total distances associated with all possible permutations of stops were
calculated for each pedestrian, given the stops. Based on these distances, the TDM stop
sequence was identified for all respondents, and then saved as the TDM sequence
data. GDM heuristics and non-GDM heuristics can then be identified based on the
similarity of stop sequences.
Step 4: Classify stops
The nodes of the observed stop sequence were classified separately for each respondent
as a sn , sf , sh1 , or sh2 node.
Step 5: Identify heuristics
This step is the most central of the model as it involves identifying the rule that best
describes the observations. First, the TDM sequence is compared with the observed
stop sequence to differentiate the GDM and non-GDM heuristics (see step 3). Next, by
use of the minimum distance data, a distinction was made between the LDM and the
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non-LDM heuristics. If the first stop of an observed sequence is the nearest one, sn , the
heuristic is NDO. If the first stop is the farthest one, sf , the heuristic is FDO, otherwise
it is IDO.
Step 6: Predict stop sequence
In this step the heuristic is applied to a specific stop sequence. The principle can be
best illustrated by using a simple example:

1: � se , sn , sh , sf , se 2: � se , sn , sf , sh , se

3: � se , sh , sn , sf , se 4: � se , sh , sf , sn , se

5: � se , sf , sn , sh , se 6: � se , sf , sh , sn , se

observed
sequences
of stop nodes

calculation of
GDM, LDM
sequences

GDM, LDM
sequences

judging temporal
heuristic GDM;
not GDM LDM;
not LDM

judging spatial
heuristic FDO;
NDO; IDO

judging stop
nodes
(sn ; sh1 ; sh2 ; sf )

minimum distance
routes, distances of
the routes among
all nodes

minimum distance
routes, distances of
the routes in attractive
shopping area

distances of
links among
all nodes

node network
among all
nodes

distances of
links among
shop nodes

node network
among shop
nodes

calculation of minimum
distance routes and these
distances among all nodes

calculation of minimum
distance routes and these
distances in attractive
shopping area

combination
of heuristic
rules of
pedestrians

categorized
stop nodes
(sn ; sh1 ; sh2 ; sf )
of pedestrians

GDM sequences
of stop nodes

not GDM
sequences of
stop nodes

LDM routes
among all
nodes

ASO routes
in attractive
shopping area

predicting stop sequences by using
combined heuristic choice rules

predicting route choice by using
combined heuristic choice rules

predicted sequences
of stop nodes

predicted
routes

program data disk file

Figure 8. Flowchart of the model applied to Veldhoven City Centre.
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Now suppose the pedestrian applies a combination of GDM and FDO heuristics.
From the latter we know that he or she must first stop at sf , leaving open options 5
and 6. The first option, however, is inconsistent with the GDM choice heuristic, hence
we can by deductive reasoning and using PROLOG easily predict the stop sequence
that is consistent with the choice heuristics.

Having predicted the stop sequence, we required two additional steps to predict the
route choice of pedestrians.
Step 7: Identify ASO routes
From the street network of Veldhoven City Centre, attractive streets along which stores
are located were identified, resulting in a new street network with attractive streets
only. For this network, the minimum distance routes were identified and saved as ASO
routes in a separate file.
Step 8: Predict route choice
Finally, route choice was predicted. In the case when the pedestrian used a LDM
heuristic, the route consistent with this heuristic, given the stop sequence, was identi-
fied. Obviously all predictions in this case are perfectly correct, by definition. This is
not true if pedestrians do not use the LDM heuristic. In all these cases we identified
the route that was consistent with the ASO heuristic.

Results
First, we assessed the ability of the rule-based model to classify and identify the stop
sequences of the 408 shopping pedestrians. As our theoretical analysis has shown, the
model cannot uniquely identify a single-stop sequence when a pedestrian visits more
than two stores. In this situation we can only probabilistically identify a particular stop
sequence. Assuming that the stop patterns are equally likely, these average probabilities
can be derived by dividing 1.0 by the number of possible stop sequences.

The results are shown in table 5, which shows that on average the system correctly
classifies 85% of the observed stop sequences. Table 5 also shows that the classifying
success decreases as we move from the simpler cases to the more complex ones. This
finding supports the idea prevalent in the literature on wayfinding that the success of
reaching a destination is related to plan complexity and legibility (Miller, 1992; Passini,
1984; Weisman, 1981). The average probability of correctly identifying the observed stop
sequence of pedestrians decreased from 0.99 for case 1, to 0.86 for case 2, to 0.84

Table 5. Results of classifying and identifying stop sequences.

Case Heuristic Number of stops Total Average

temporal spatial 2 3 4

G not G F N I

Case 1 127 127 96 22 9 127 0.99
Case 2 182 182 109 53 20 182 0.86
Case 3 36 36 25 11 36 0.84
Case 4 15 15 1 11 3 15 0.64
Case 5 28 28 1 13 14 28 0.57
Case 6 20 20 13 7 20 0.46

Total 345 63 142 210 56 207 137 64 408

Average 0.91 0.55 0.96 0.82 0.71 1.00 0.81 0.47 0.85

G, global-distance-minimising; F, farthest-destination-oriented; N, nearest-destination-oriented;
I, intermediate-destination-oriented; Total, total number of pedestrians; Average, average
probability.
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for case 4, to 0.46 for case 6. This is not surprising as the number of possible stop
sequences also increases. It also shows that the classifying success decreases with an
increasing number of stop nodes.

The frequencies listed in table 5 indicate that the majority of pedestrians use the
GDM heuristic. This finding is consistent with results obtained elsewhere (for example,
see Zacharias, 1993). The NDO heuristic is applied more often than the FDO heuristic
and especially the IDO heuristic. The frequency of the number of stops also decreases
rapidly with an increasing number of stops, suggesting that the vast majority of the
paths through the shopping centre were simple loops or straight lines.

A second analysis involved examining the success of the system in classifying
and identifying pedestrian route choice. The probability of success was measured by
dividing the number of correctly identified links by the number of observed total links
in a route. For example, if the model identified four correct links, and there were five
links in total in the observed route, the probability is 80%. The results are listed in
table 6, which shows that the system correctly identified links in each route with an
average probability of 78% in total. It indicates, as expected, that the success in
identification is perfect if pedestrians use the LDM heuristic. When pedestrians use
the ASO heuristic, the average probability is 68%.

Conclusion and discussion
In the present paper we report the progress made in building a rule-based system of
choice heuristics to classify pedestrian shopping behaviour. After obtaining some new
knowledge about the behaviour of the system, derived from theoretical shopping
structures, we applied the system to the observed shopping behaviour of pedestrians
in Veldhoven City Centre. The results of this study indicate that, when the shopping trip
involves two stops only, the exact stop sequence is inevitably identified by the model.
A set of six rules, representing a combination of route and sequence choice heuristics
seems to be effective in reducing the possible stop sequences of each shopping
pedestrian. Applied to Veldhoven City Centre, the model identified the stop sequences
with an average probability of 85%, and the routes with an average probability of 78%.

Table 6. Results of classifying and identifying route choices.

LDM or ASO Heuristic Number of stops Total Average
heuristic

temporal spatial 2 3 4

G not G F N I

LDM heuristic 106 17 48 58 17 77 31 15 123 1.00
ASO heuristic 239 46 94 152 39 130 106 49 285 0.68
Case 1 81 81 56 18 7 81 0.66
Case 2 133 133 73 46 14 133 0.65
Case 3 25 25 18 7 25 0.75
Case 4 13 13 1 9 3 13 0.78
Case 5 19 19 8 11 19 0.73
Case 6 14 14 7 7 14 0.79

Total 345 63 142 210 56 207 137 64 408

Average 0.77 0.84 0.79 0.75 0.84 0.76 0.79 0.80 0.78

LDM, local-distance-minimising; ASO, attractive-street-oriented; G, global-distance-
minimising; F, farthest-destination-oriented; N, nearest-destination-oriented; I, intermediate-
destination-oriented; Total, total number of pedestrians; Average, average probability.
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These findings demonstrate the potential of the suggested model in classifying
pedestrian shopping behaviour in a shopping centre.

Notwithstanding these promising results, the model can be further improved in
various ways to classify micro-shopping behaviour better. First, there is a need for
specification. The choice of heuristic might, for example, depend on the type of stores
that are visited. Such conditions might be incorporated in the production system
representation of the choice rules. Second, the present model does not discriminate
between stop sequence and routes that differ slightly from the conditions implied by
the heuristic and more remote stop sequences and route. It would be interesting to
investigate whether fuzzy rules could adequately incorporate this information and
improve the identification ability of the rule-based model. Third, the approach taken
in the present paper is one of testing the performance of prespecified rules. Alterna-
tively, one may try to derive the choice heuristics from the observations by applying
learning algorithms.
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