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Abstract. In this paper I briefly review the use of computer simulation in archaeology and argue that
pedestrian modelling has the potential to overcome many of the problems associated with earlier
simulation studies. I then introduce the MAGICAL simulation software, which was written to
facilitate the use of multiagent simulation within a geographical information system. In the final
part of the paper I describe the use of MAGICAL to study the evolution of cultural learning among
early hominids.

1 Computer simulation in archaeology

Anthropologists (Hays, 1965) and archaeologists (Doran, 1970) were introduced to
computer simulation in the late 1960s and early 1970s and have made sporadic use of
the technique ever since. Although the first experiments were accompanied by great
optimism (Whallon, 1972, page 39), most of them either were overly simplistic or
required more input data than was available (Doran and Hodson, 1975), with the result
that by 1981 the majority of archacologists considered simulation “mildly interesting
but on the whole not particularly useful” (Aldenderfer, 1981, page 12).

The first wave of North American simulations had been conducted as part of the
new archaeology, a paradigm shift which reflected the impact of positivism on the social
sciences during the 1950s and 1960s (Gibbon, 1989), but was particularly influenced by
the new geography (Harvey, 1969) and von Bertalanffy’s (1950) general systems theory.
Consequently, the majority of early studies (for example, Levison et al, 1973; Thomas,
1972; Wobst, 1974) treated culture as a system for adapting to the environment. Later
studies continued the emphasis on systems thinking, some claiming to test hypotheses
(Gunn, 1979; O’Shea, 1978; Zubrow, 1975) and others (Black, 1978; Cooke and Renfrew,
1979; Zimmerman, 1977; Zubrow, 1981) claiming a heuristic function. In general, those
that sought to test hypotheses rarely convinced, usually because they failed to make
sufficiently detailed predictions about the archaeological record. On the other hand,
heuristic models typically benefited only the developer, a problem which became
increasingly acute as more archaeologists rejected the systems framework.

In contrast to the situation in North America, most of the modelling undertaken in
the United Kingdom had been explicitly methodological and often did provide results
that were of use to others. It is notable that Hodder was involved in many of these
simulations, including modelling the nature of rank-size relationships in settlement
growth (Hodder, 1979), the effect of trade mechanisms on artefact dispersal (Hodder
and Orton, 1976), and a test for association between point distributions (Hodder and
Okell, 1978). Indeed, it can be argued that Hodder’s own move to structuralism (1982)
and then poststructuralism (1986) goes some way to explaining why such studies ceased
in the 1980s. In this case it was not that stimulation per se had been found wanting,
but that the essentially functionalist framework within which it was used had been
superseded by new theoretical concerns and, eventually, an antiscientific epistemology
(Tilley, 1991).
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Despite these setbacks, archacologists have shown renewed interest in simulation
during the 1990s. This has been fuelled by two developments in particular. First, some
archaeologists have turned to evolutionary biology as a source of both method and
theory. Simulation studies inspired by population biology have been used to address
long-term or spatially extensive change (Steele et al, 1998; Zubrow, 1990). Conversely,
studies inspired by behavioural ecology (Mithen, 1990) have focused on the decision-
making and fitness of individual organisms, providing, it has been argued (Mithen,
1989), a more testable alternative to the recent concern with agency (Barrett, 1994).
Second, the new science of complexity (Lewin, 1992) has enabled archaeologists to
build formal models of aspects of human behaviour that had been neglected in the
earlier generation of systems models. At the macro level the mathematics of catastro-
phe (Zeeman, 1977) and chaos (Thompson and Stewart, 1986) have provided a means
of studying the often endogenous origins and inherent unpredictability of, for example,
the prestige goods economy (McGlade, 1997) and the rise of urbanism (van der Leeuw
and McGlade, 1997). At the micro level, agent-based modelling (DeAngelis and Gross,
1992; Gilbert and Troitzsch, 1999) has enabled archaeologists to build more sophisti-
cated models of hunter — gatherer decisionmaking, either to predict aggregate patterns
in the archaeological record (Mithen, 1990), or to investigate the origins of increased
social complexity (Dean et al, 2000; Doran et al, 1994; Kohler et al, 2000). Together,
these new techniques provide more appropriate tools in a changed intellectual climate
which emphasises endogenous change and the role of the individual in creating,
sustaining, and dissolving larger scale regularities (Epstein and Axtell, 1996; Gilbert,
1995; Reynolds, 1987; Holland and Miller, 1991).

Given this history, archaeology is now ready for the introduction of pedestrian
models. Although many of the simulations conducted in the 1970s and 1980s were
strongly spatial, the nonlinear dynamical and agent-based models which have replaced
them have mostly been aspatial. In the case of nonlinear models, the sophisticated
treatment of causality has been won at the expense of explicit spatial reference. The
first agent-based models also neglected space. For example, in Mithen’s (1990) model
of Mesolithic hunting, hunters learn the probability of encountering prey at a given
point in time, but not at any specific location. Similarly, although Lake (1995) modelled
patch choice, the spatial relationship of the patches was not modelled. More recent
agent-based models have included space as a ‘container’ for individuals, but not as a
element of their knowledge. For example, Kohler et al’s (2000) model of population
aggregation and abandonment does not explicitly model the settlers’ knowledge of their
environment as distinct from the environment itself. One notable exception is the
Evolution of Organised Society (EOS) project (Doran, 1989; 1997; Doran and Palmer,
1995; Doran et al, 1994) in which agents, representing Palaeolithic hunter — gatherers,
form alliances in order to procure resources on a landscape. In this case, the agents
build models of both the landscape and other agents.

The virtue of pedestrian modelling is that it offers a formal method compatible
with current interests in endogenous change, individual fitness, and human agency, but
which can also be used to relate these to the spatial component of archaeological
data. The possibility of modelling spatial decisionmaking is clearly of considerable
significance for a discipline whose remit include hunter — gatherer foraging strategies,
colonisation, settlement location, and the ‘choreography’ of ritual.

2 The MAGICAL software

The MAGICAL (Multi-Agent Geographically Informed Computer AnaLysis) software
provides a multiagent modelling extension to the Geographical Resources Anal-
ysis Support System (GRASS) geographical information systems (GIS) package.
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By combining support for agent modelling with the spatial database facilities of GIS it
allows pedestrian modelling of hunter — gatherer subsistence strategies. The MAGICAL
software was written by me for a research project directed by Steven Mithen at the
University of Reading, UK (Lake and Mithen, 1998; Lake, 2000).

Although developed in the context of a specific field project (Mithen, forthcoming),
it was always intended that the MAGICAL software should have a wider application
within archaeology and related disciplines. To that end it offers a compromise between
flexibility and the need for specialist computing skills. A system of activity and rule
tokens allow an archaeologist who is not a computer programmer to build a simulation
model customised to his or her needs, provided that it falls within the basic paradigm
described below. In this way it differs from the EOS project, which allowed the
simulation of more complex forms of cooperation between agents, but did not provide
any facility for customisation by an end user with a different problem. Likewise, it differs
from the Santa Fe Institute’s SWARM toolkit (Minar et al, 1996; and see Schelhorn
et al, 1999, for an example of a pedestrian model implemented using SWARM) which
offers more flexibility, but ony if the end user is able to program in a high-level
computer language—a skill which few archaeologists possess.

2.1 The modelling paradigm

The MAGICAL software was conceived to further the long-standing use of simulation
for the study of hunter — gatherer activities (Mithen, 1994). Consequently, its capabilities
reflect a research tradition that has generally emphasised mobility, subsistence, and
more recently ‘rational’ decisionmaking (Bettinger, 1991; Mithen, 1990). For example,
having ‘rationally’ calculated the benefit of moving to a particular location in the
landscape, agents may then expend energy moving there before regaining it if they
successfully encounter a resource. The MAGICAL software builds on earlier studies
of such behaviour by providing a framework for modelling the acquisition and use of
spatial knowledge. Individual learning, cultural learning, and decisionmaking can all be
applied to spatially referenced data and/or agents’ knowledge of that data, as appro-
priate. The MAGICAL software implements spatially referenced knowledge through its
close integration with GIS. Specifically, it allows each agent to maintain its own
cognitive maps in the form of GIS raster maps. Admittedly, it appears that the Cartesian
model of geographic space implied by an x—y referenced GIS raster map is probably
very different (Mark and Frank, 1990) from the cognitive maps (Kuipers, 1983; Lloyd,
1989; Tolman, 1948) used by humans to store spatial information. Nevertheless, since
chimpanzees are able to calculate transport costs as a function of both weight and
Euclidean distance (Boesch and Boesch, 1984), there can be little doubt that even
untrained humans are able to think using at least some aspects of the metric implied
by Cartesian raster mapping. In other words, MAGICAL raster cognitive maps store
relevant information even if they do not accurately model the underlying psychology.

2.2 The software design
The MAGICAL software can be decomposed into three main elements: the collection
of agents, the event scheduler, and the spatial database.

The central tenet of agent-based modelling is that each agent has its own set of
internal state variables affected by its own history. This principle is often extended so that
each agent’s behaviour is governed by its own set of principles, and it may also be the case
that each occupies a discrete spatial location in the environment. The MAGICAL
software implements agents as entities that have a range of properties and possible
behaviours (or actions) which are appropriate for modelling human behaviour according
to the paradigm outlined above. They also possess a unique identifier and spatial
location. The properties currently implemented include energy level, rate of energetic
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return on foraging, and group membership; the actions include random and directed
movement, search, and the exchange of information with other agents. Three important
actions recently added to the software are birth, reproduction, and death. These and
other examples are illustrated in the simulation which is described later in this paper.

The MAGICAL software offers nonprogrammers flexibility for research within the
behavioural-ecology paradigm because the agent’s behavioural principles are not coded
into the software, but are instead provided at run-time in the form of a user-specified
‘genotype’. A given genotype may be shared among all agents or it may be unique to just
one. A genotype comprises a set of action and decision tokens that specify how an
agent’s properties are updated and how they influence subsequent decisionmaking. The
example in table 1 is best conceived as a table with one row for each possible (current)
action. The content of a given row specifies the conditions under which one or
more actions follow the current action. The conditions are (reverse-Polish) logical
expressions which refer to one or more of the agent’s properties, the contents of the
data maps, or the agent’s knowledge of the data maps. If a condition evaluates true then
the agent undertakes the associated activity.

The MAGICAL software implements the passage of time by allowing agents to
add events to a queue managed by a scheduler. Events are simply requests to perform a
particular action at a specified time in the future. The processing of events is contin-
uous throughout the simulation and takes place as follows. An agent, having decided
how and when to act next, adds the appropriate event to the queue. Meanwhile,
following each increment of the simulation clock, the scheduler traverses the queue
and removes all those events whose time stamps are less than or equal to the current
time. On removing each event the scheduler instructs the appropriate agent that it may
now perform the requested action. When that action is complete the agent decides
what to do next and adds a new event to the queue. This process continues until the
total simulated time has elapsed.

Table 1. Cultural learning genotype.

begin [crdnhb: al][rs: al][rd: al][shbp: al][jg: al][rab: al];

mtd [waita: stgz][die: stgz not][rad: stgz not][atr: al][dvh: stgz];

mdhb [id: al];

is [mbchbfd 0: at dhgeeb or sd not and][sdtt: sd not at not and dhgeeb not and]
[mdhb: sd][rcb: sdJ;

rgxid [crdnhb: dd not][crod: dd];

sixig [aga: al];

waita [waitc: at][waitd: at not];

id [rgxid: al][rs: al][ifc: al];

ee [mtd: al];

crod [ptb: al];

waitb [die: al][rad: al];

waitc [hvfd O: dhgz][rvhn 0: dhgz not];

waitd [hvfd O: dhgz dhgeeb and][rvhn 0: dhgz not dhgeeb not or];

sdtt [ee 0: al];

hvfd [rvhn O: al];

rvhn [is: all;

atrep [waitb: al];

ptb [atrep: aartb][ptb: aartb not];

crdhb [sdtt: al];

crdnhb [sdtt: al];

mbchbfd [sdtt: ergeone at not and][mbhb: ergeone not at or];
[

mbhb sdtt: at not][crdhb: at].
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The MAGICAL software achieves the spatial referencing of agent activities and
knowledge by means of close integration with the GRASS GIS package. Indeed, the
software is made available to the end user as a set of three GRASS commands. The
simulation program can access a GRASS database which may contain one or more
of three types of spatial data. The first, which is mandatory, is information about the
agents’ environment. This is stored in as many raster map layers as necessary.
Contrary to earlier documentation (Lake and Mithen, 1998), it is now possible for
agents to alter this environment by, for example, harvesting and thereby depleting
resources. The second type of data is the agents’ own knowledge about their environ-
ment. As noted above, this is stored in the form of cognitive (raster) maps. Each
agent has as many cognitive maps as there are environment map layers. The third
type of data records the spatial location of agent activities during the simulation. It is
possible, for example, to produce a raster map recording the frequency with which
agents visited each map cell, or the number of archaeological artefacts they deposited
in each cell.

The benefit for pedestrian modelling of integrating simulation with GIS is that it
allows both input and output (spatial) data to be manipulated using any of the
available GIS tools. Although there is at least one other example of such integration
(Westervelt and Hopkins, 1999), the MAGICAL software is unique in using the GIS
data structures to model both the agents’ environment and their knowledge of it. The
virtue of this approach is that it allows both the simulated environment and the agents’
knowledge to be analysed using the same tools.

3 The evolution of cultural learning

This part of the paper describes the use of the MAGICAL software to investigate a
research problem in early hominid archaeology. Since that research is still in its infancy
the results reported here are not conclusive, but they do serve to demonstrate the
relevance of pedestrian modelling for a growing area of archaeological research.

3.1 The research problem

It is often claimed that humans are unique among animals because we are cultural.
Although this is partly the result of the increased ‘intelligence’ that comes with our
exceptionally large brain size (relative to body size) there is another important factor:
our greatly enhanced ability to learn from one another. Without such learning, culture
would be much less complex since there would be no ‘ratchet effect’” whereby mod-
ifications to cultural traits accumulate over time (Tomasello et al, 1993, page 495). For
this reason, archaeologists and anthropologists are keen to understand the origin of the
so-called ‘cultural learning’ ability that is required to support the ratchet effect (Tom-
asello et al, 1993).

There is insufficient space here to review the psychology of cultural learning. The
following discussion simply summarises the position, argued at length in Lake (1995),
that underpins the pedestrian model described below. From an evolutionary perspec-
tive the key question is what is the minimum requirement for cultural learning? There
is much debate about whether imitation is the simplest form of cultural learning (for
example, Boyd and Richerson, 1985; Heyes, 1993; Heyes and Plotkin, 1989; Hull, 1982;
Rogers, 1988; Tomasello et al, 1993; Whiten and Ham, 1992), but I accept Heyes’s (1993)
argument that imitation (as defined by any of these authors) is not a form of cultural
learning because it does not adequately prevent or discourage the novice from modify-
ing information learned from the model. The problem is that excessive modification of
information learned from others causes a high enough frequency of reinvention that it
prevents the ratchet effect. Heyes thinks that such modification can be prevented only
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by additional psychological processes that allow individuals “to hold and transmit
information about temporally and spatially remote objects and events or metaphysical
entities”, “to adhere to social norms or hold moral beliefs”, and “to store information
extra-somatically” (page 1006).

Heyes’s position receives support from cognitive ethnology and evolutionary epis-
temology. The ethological evidence suggests that although chimpanzees can imitate
(Hayes and Hayes, 1952; Tomasello et al, 1993; Whiten, 1993; Whiten and Ham,
1992), so-called chimpanzee ‘culture’ (McGrew, 1985; 1992; McGrew and Tutin, 1978)
does not exhibit the ratchet effect (Heyes, 1993; Tomasello et al, 1993). Consequently, it
would appear that imitation is not sufficient to effect cultural learning. Following a
different line of reasoning, evolutionary epistemologists (Odling-Smee, 1983; Plotkin,
1994) argue that the adaptive function of cultural learning is to track environmental
change over a range of frequencies which, in the main, fall between those to which
biological evolution and individual learning are most sensitive. In other words, cultural
learning makes it possible to learn about changes that are too rapid or localised to
elicit a coherent genetic response, but too slow or distant to be apprehended by
individual learning. If Plotkin and Odling-Smee are correct, then the very function
of cultural learning is to allow individuals to hold and transmit information about
temporally and spatially remote objects and events.

I have suggested elsewhere (Lake, 1995) that this function might have become
particularly important around 2 million years ago. By that time our ancestors (early
members of Homo) and other early hominid species (such as the robust australopithe-
cines) were no longer tree dwellers, but largely terrestrial (Vrba, 1985). Habitation on
the highly seasonal savanna required novel foraging adaptations. It appears that the
robust australopithecines and the early members of Homo represent a divergence in
strategies to cope in the dry season, with the former opting for a low-quality diet and
the latter a high-quality diet (Foley, 1987; Vrba, 1985). The enlarged teeth of the robust
australopithecines (Jolly, 1970) coupled with patterns of tooth microwear (Grine, 1981;
Walker, 1981) support the idea that they spent long periods of time feeding on hard
objects, probably grass seeds and the coarse dry fruits found in savanna environments
(Kay, 1985). In contrast, early members of Homo do not possess the dental special-
isation of the australopithecines and are associated with archaeological evidence for
opportunistic meat eating (Potts, 1988), suggesting the expansion of the diet to include
meat. It is possible that this type of cultural learning evolved in early Homo because
the distribution of meat-bearing carcasses was subject to a degree of spatial and
temporal variation which was particularly difficult to track by individual learning
alone.

3.2 The model
The pedestrian model described in this section represents a first step towards testing
whether the spatial variability in carcass availability would have favoured the evolution
of cultural learning. It is not a realistic model of foraging by early Homo, but was
constructed to ascertain which measures of spatial variability capture those aspects of
resource distribution that influence the selective benefit of cultural learning. A more
realistic model will be constructed only if it can be demonstrated that resource dis-
tribution does indeed influence the selective benefit of cultural learning, and if suitable
measures of spatial variability can be identified. To date, the model captures three
aspects of foraging: an environment comprising a spatial distribution of resources,
explicit decisionmaking, and learning about the distribution of resources.

This first model was designed to establish whether fractal dimension measures an
aspect of resource distribution capable of influencing the selective benefit of cultural
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learning. Fractal dimension was chosen for this initial study for two reasons. First, it is
possible to compute theoretical surfaces of a given fractal dimension D. A method using
spectral synthesis (Saupe, 1988) has been implemented for the GRASS GIS (Wood,
1994). Consequently, by modelling the environment as a surface, such that the z value at
each (x, y) coordinate represents the energetic return available from harvesting resources
at that location, it is a simple matter to generate a series of raster maps representing
different resource distributions each of a known fractal dimension, D. For our pur-
poses, increasing values of D from D > 2 to D < 3 can be taken to imply increasing
spatial variability in the value of z. The second virtue is that it should be possible to
measure the fractal dimension of resource distribution in the modern analogs of past
environments. In this way, the spatial structure of the theoretical environments can be
compared with the conditions similar to those that actually prevailed.

Agent decisionmaking is explicitly modelled as part of the process of foraging.
Agents must sustain themselves by searching for and harvesting resources in their
environment. The rules used by animals to make decisions about where to forage and
what to harvest have been extensively studied by behavioural ecologists (Stephens and
Krebs, 1986) and form the core of optimal foraging theory (OFT). According to OFT
animals should attempt to maximise their long-term energy gain (Stephens and Krebs,
1986) so as to increase their reproductive success. Although it is doubtful whether
humans attain the optimal rate of energy gain (Martin, 1983), they do, nevertheless,
succeed in improving their foraging efficiencies, or ‘meliorising’ (Dawkins, 1982). It is
most likely that this is achieved through the use of rules of thumb rather than by
complex calculation (Mithen, 1990). Since this is even more likely to have been true
of early Homo, all agents were given the simple rule that they should move to and
harvest from the neighbouring map cell that offers the greatest net energetic return
given the cost of travel to and from each candidate map cell.

The model includes agent decisionmaking primarily as a means of ensuring that
the quality of an agent’s knowledge will affect its fitness. Since agents make decisions
according to the content of their cognitive maps, it follows that those with more
extensive or recent knowledge will typically achieve higher energetic returns and
eventually greater reproductive success. All agents begin life ignorant of their environ-
ment and then learn about it as the simulation proceeds. The mechanism by which a
given agent learns is determined by its genotype. Those with the ‘individual learning’
genotype learn solely from their own experience. When such an agent visits a map cell
the net energetic return available at that location is copied to the agent’s cognitive map.
If the agent harvests the cell, its cognitive map is updated accordingly. Once the agent
has left the cell it will remain ignorant of any subsequent changes in the return
available at that location until it revisits the cell. Agents with the ‘cultural learning’
genotype also learn from their own experience, but in addition they are able to learn
from one other. At the end of the day they share whatever information they gleaned in
the course of that day’s foraging by pooling their knowledge in a group cognitive map
which is then used to update their own cognitive maps.

The selective benefit of cultural learning is determined by allowing the population
of agents to breed according to their fitness. Breeding takes place at the end of each
generation by a process of tournament selection (Gilbert and Troitzsch, 1999, page 225).
Each agent randomly picks a partner and whichever has the achieved the highest
energetic return then produces two offspring. Offspring always inherit their parent’s
genotype. In this way, cultural learning will spread through the population if it
enhances the relative fitness of those agents who engage in it.

As explained above, the rules governing agent behaviour in a MAGICAL simu-
lation are specified in the agent genotypes. The ‘cultural learning’ genotype used in this
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model is reproduced in table 1. The activity sequence for a cultural learner is illustrated
as a flowchart in figure 1. Activities in part ‘S’ are performed many times during each
simulated day, those in part ‘D’ are performed only at the end of each day, and those in
part ‘G’ are performed only at the beginning and end of each simulated generation. The
individual activities are:

G3

G1 The agent is born with a copy of its parent’s genotype and initial properties, or
if this is the first generation, with the genotype and properties specified in an
initialisation file.

S1 The newly born agent randomly chooses a target cell to which it intends to
travel (crdnhb). That cell must be within the travel radius specified as one of the
agent’s properties. The agent then sets the target as its immediate destination (sdtt).

S3 The agent moves to its immediate destination (mtd) and expends energy (ee)
doing so. The amount of energy expended per cell traversed is specified as one of
the agent’s properties.

S4 If the agent’s energy level is no longer greater than zero (stgz) then it dies.

S5 If the net energetic return available at the agent’s new location is not greater
than zero (dhgz) then it makes no attempt to harvest the resource. If the energetic

evgeon-»r—1‘J
s2

mbcehbfd

e

e
-
-
......

Figure 1. Flowchart of cultural learning genotype.
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return is greater than zero then it harvests the resource if the new location is also
the target cell (at), or the energetic return is equal to or greater than that expected
at the target cell (dhgeeb).

S6 The agent always learns by observing the resources available in all cells within
the learning radius specified as one of its properties (rvhn). This effects individual
learning about the environment.

S7 The agent increments its step counter (is) It decides what to do next according
to whether or not it has reached the end of a day (sd).

S2 If the agent has not reached the end of a day it chooses a new destination
according to the contents of its cognitive map. If it had not reached its chosen
target cell, and the energetic return at the new (now current) location is less than
that expected at the target cell, then it sets its immediate destination to whichever
cell within the allowable travel radius is nearest the target. Alternatively, the agent
chooses a new target. It initially chooses the cell that offers the highest rate of
energetic return (including the cost of travel to it and back to the central place)
among those that are still accessible within the number of steps remaining
(mbchbfd). It makes this cell the target, so long as the expected rate of return is
greater than or equal to one (ergeone)—that is, the benefit exceeds the cost. If not,
then the agent attempts to reduce its losses by targeting the cell that offers the best
net energetic return en route back to the central place (mbhb). Either way, the agent
usually then sets its immediate destination to whichever cell within the allowable
travel radius is nearest the new target. The only exception occurs when the cell with
the best net energetic return en route back to the central place is actually the
current location. In this case the agent attempts to avoid eventual death by ‘risking’
a visit to a randomly chosen cell within the allowable travel radius (crdnhb).

D1 If the agent has reached the end of a day it will normally have returned to the
central place, but if not it does so now (mdhb).

D2 The agent increments its day counter (id) and resets the step counter (rs).

D3 The agent asks all other agents in the group to share whatever information they
gleaned in the course of the day’s foraging (rgxid). As a result it eventually
exchanges information with other cultural learners, but not individual learners.
This process of cultural learning about spatially remote resources is coordinated
by means of a group genotype not shown in figure 1. Once information exchange is
complete, the agent decides what to do next according to whether or not it has
reached the end of a generation (dd).

S1 If the agent has not reached the end of its maximum lifespan (the generation
interval) it randomly chooses a target cell to which it intends to travel (crdnhb).

G2 If the agent has reached the end of its lifespan then it prepares to breed (ptb) by
waiting until all other agents in its generation are also ready to breed. Once this
condition is met (aartb) it breeds by pairwise tournament selection (atrep), as
described earlier.

G383 The agent finally dies.

3.3 Experiments

To date, 1000 simulations have been run, divided between three theoretical environ-
ments. Figure 2 (see over) shows the three environments, characterised by fractal
dimensions (a) 2.1, (b) 2.5, and (c) 2.99. Each is a raster map created using the GRASS
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Figure 2. Environments with fractal dimension (a) 2.1, (b) 2.5, and (c) 2.99.

function r.surffractal and then scaled so that all cell values fall in the range +100
(white) to —100 (black), inclusive. Recall that these values represent the net energetic
return from harvesting resources in each cell.

Three identical sets of three experiments (a, b, and ¢) were conducted: one set per
environment. One additional experiment (d) was carried out for the environment with
fractal dimension 2.1. The individual experiments will be referred to as a2.1, a2.5, a2.99,
b2.1, ..., c2.99, d2.1. All ten experiments involved an initial population of three cultural
learning agents and three noncultural learning agents. As a result, the model ignores
the possibility that cultural learning might be able to evolve only when it is present at
some threshold frequency. Note, however, that any requirement for a minimum fre-
quency is likely to be an artefact of the simplifying assumption of discrete traits
(Wilson and Dugatkin, 1997). In all cases the population was allowed to evolve for

Table 2. Simulation parameters common to all experiments.

Parameter Value
Initial energy level of agents 1000.0
Energetic cost of traversing one map cell 2.0
Assumed energetic return from unknown map cells —200
Maximum number of map cells to move per time step 2
Number of steps per day 200
Number of days per generation 4

Total number of time steps per simulation 10000
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thirteen generations. Agents were always initialised with the properties listed in table 2.
The experiments within each set differed only in respect of agent harvesting behaviour.
In type-a experiments, agents harvested 100% of the resource available in a given cell,
whereas in type-b experiments they harvested 20%, in type-c experiments 10%, and
in the type-d experiment only 5%.

Each of the ten experiments required 100 simulations to control for occasional
randomness during decisionmaking and also for the arbitrary choice of central place.
Ten simulations were made for each of ten randomly chosen central places. The latter
are marked in figure 2, from which it can be seen that they cover a wide range of ‘local’
environments. Each of the ten simulations per central place were started with a different
seed for the random number generator.

Figures 3 and 4 (see over) provide a snapshot of agent behaviour during a typical
simulation. Figure 3(a) illustrates the paths of three cultural learning agents during the
first simulated day. Each has explored a different area: one to the upper right, one to
the upper left, and one to the lower left. The initial lack of consensus is expected
because the agents had not yet shared their initially limited knowledge. Figures 4(a) —
4(c) illustrate the three agents’ cognitive maps and confirm that they did, indeed,
possess very different knowledge prior to sharing information by cultural learning.
Figure 4(d) illustrates one of the agent’s cognitive maps immediately after sharing
information by cultural learning. As a result of this information exchange all three

(a) (b)
Figure 3. Traces of three sharing agents over (a) the first day and (b) the second day.

agents explored the same area during the second day; this is illustrated in figure 3(b).

Figures 5 and 6 (see over) illustrate population evolution in a single simulation run
as part of a type-a experiment on the environment with fractal dimension 2.1. Figure 5
records the actual numbers of agents and figure 6 records the corresponding relative
frequency of cultural learners in the population. Note that total population sizes
typically either remain fairly stable or dwindle towards extinction. The latter occurs
when the central place is located in a particularly resource-poor part of the environ-
ment. The infrequent occurrence of population growth is a result of the breeding
method, since on average half of the agents have two offspring and the other half
have none. Figure 7 (see over) records the changing relative frequency of cultural
learners in all 100 runs of experiment a2.1.

The results of all ten experiments are recorded in table 3 (see over). In all cases the
relative frequency of cultural learners in the population is the mean result from 100
simulations, as described above. Note also that it refers to the average relative frequency
at the end of thirteen generations, or immediately prior to extinction in cases where the
population became extinct before the simulation ceased. It is apparent from table 3 that
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Figure 4. Cognitive map of (a) agent 1, (b) agent 2, and (c) agent 3 before cultural learning, and
of (d) agent 3 after cultural learning.
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Figure 7. Relative frequency of cultural learners in the population (100 runs).

Table 3. Mean relative frequency of cultural learners after 13 generations, or immediately prior

to population extinction.

Fractal Experiment type
dimension

a b [ d
2.1 0.369 0.280 0.280 0.300
2.5 0.300 0.230 0.210 na
2.99 0.244 0.193 0.134 na

na, not applicable.
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reducing resource variability (in other words, decreasing fractal dimension, D) increases
the selective benefit of cultural learning, as witnessed by the increasing frequency of
cultural learners within the population. Nevertheless, since the relative frequency
of cultural learners is always less than 0.5, it appears that pure individual learning is
always the better strategy irrespective of resource variability. This is misleading to the
extent that it is only true on average.

Table 4 records, for each experiment, the percentage of simulations in which the
population fixed on one type of learning (in other words, the relative frequency of one
type was equal to one), and the percentage of those cases in which the population fixed
on cultural learning. It can be seen that in the majority of simulations the population
fixed on one or the other learning strategy, probably because they are not strictly
alternate strategies. In every experiment the population most frequently fixed on
individual learning alone, but in one case (type a experiment in environment with
D = 2.1) some 35.3% of simulations that went to fixation actually fixed on cultural
learning. More significantly, it is clear from table 4 that the percentage of fixations on
cultural learning is inversely correlated with the fractal dimension of the environment,
irrespective of experiment type. Consequently, although none of the three environ-
ments probabilistically favours cultural learning over individual learning, reduced
variability does nevertheless increase the selective benefit of cultural learning. Thus,
the results from these initial ten experiments support the general thrust of Plotkin and
Odling-Smee’s argument about the function of cultural learning, but do not identify a
general class of environments in which cultural learning would be expected to evolve
more often than not.

It is worth considering why the experiments have so far failed to identify a class of
environments that probabilistically favour cultural learning. One obvious possibility is
that cultural learning—as modelled here—results in competition for the same resour-
ces, thereby cancelling out the benefit of locating superior resources. This needs further

Table 4. Percentage of simulations that went to fixation (%FX) and percentage of fixations that
favoured cultural learning (%CL).

Fractal Experiment type
dimension

a b ¢ d

%FX %CL %FX %CL %FX %CL %FX C%L

2.1 98 353 100 28.0 100 28.0 100 30.0
2.5 98 28.4 100 23.0 100 21.0 na na
2.99 92 18.4 95 16.2 96 10.7 na na

na, not applicable.

Table 5. Number of simulations that favoured cultural learning as a percentage of those that
went to fixation, arranged by central places d—m in environment D = 2.1.

Experiment Central place

type

P d e f g h i j k 1 m

a 50.0 50.0 40.0 20.0 50.0 50.0 333 333 300 100
b 20.0 60.0 10.0 20.0 50.0 20.0 30.0 200 20.0 30.0

c 60.0 0.0 300 10.0 70.0 30.0 20.0 50.0 0.0 10.0

na, not applicable.
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investigation, although it is striking (table 4) that cultural learning was more strongly
favoured when competition was greater (in other words, when individuals harvested
100% of the resource in a given cell). Another possibility is that fractal dimension does
not measure the most relevant aspects of resource distribution. As already noted,
populations did sometimes fix on cultural learning, and table 5 shows that this was
more likely to occur for some choices of central place than for others (indeed, at some,
cultural learning actually evolved more often than not). For that reason it was decided
to investigate whether the frequency with which the population fixed on cultural
learning correlates with the resource availability at specific search distances from the
central place, on the assumption that cultural learning might confer greater selective
benefits when good resources are located further from the central place. Figure 8
illustrates the average net energetic return available from cells within 0-100.0,
100.0 - 141.4, 141.4—-173.2, and 173.2-200.0 steps of each of the ten central places, d—
m, in the environment with D = 2.1. These radii were chosen to provide bands of
equal area (sample size) in order to allow meaningful comparison of the variances. It is
clear from figure 8 that, in general, neither the mean resource availability, nor the
variance in resource availability are a function of search radius in this environment.
It follows that the central places where populations were more likely to fix on cultural
learning were not necessarily those that were located further from good resources. The
specific aspect of resource availability that probabilistically favours cultural learning
over individual learning remains to be identified.
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Figure 8. Resource availability by search radius for environment D = 2.1.

4 Concluding comments

In this paper I have argued that pedestrian modelling has the potential to overcome
some of the criticisms levelled at earlier archaeological uses of simulation. In partic-
ular, it provides a means of exploring current interests in individual fitness and agency,
in contexts where the spatial knowledge of past people is central to our understanding
of their behaviour. The MAGICAL software was developed to ease the process of
implementing pedestrian models for a class of archaeological problems that typically
focus on mobility, subsistence, and ‘rational’ decisionmaking. With additional program-
ming it may be extensible to other research areas such as the ‘choreography’ of ritual.
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The integration of the MAGICAL software within a GIS package is particularly
convenient for those conducting spatial analysis.

The close coupling between simulation and GIS was clearly illustrated in the
example application presented in section 3. This was a pedestrian model designed as
a first step towards testing the hypothesis that the need to locate high-quality foodstuffs
in savanna environments may have provided a strong selective pressure favouring the
evolution of enhanced cultural learning among early Homo. Its function was to help
discover what aspects of spatial structure potentially influence the selective benefit
conferred by cultural learning. The experiments conducted to date suggest that fractal
dimension (of a surface) measures a property of resource distribution that is, indeed,
correlated with the selective benefit of cultural learning. Nevertheless, the results also
suggest that other aspects of spatial structure are also—possibly more—important in
determining the probability that cultural learning will evolve. Future research will
continue the use of pedestrian modelling in an attempt to elucidate what these might be.

Acknowledgements. I am grateful to Mike Batty for his encouragement to write this paper. Many
of the ideas presented here were originally developed during PhD research funded by the Science
and Engineering Research Council and subsequently the Natural Environment Research Council
(NERC). Development of the MAGICAL software was made possible by a NERC award
(NERC GR3/9540) to Dr Steven Mithen at the University of Reading. This study was completed
during the tenure of a Leverhulme Trust Special Research Fellowship at the Institute of Archae-
ology, University College London. I am also grateful to two anonymous referees for their helpful
comments.

References

Aldenderfer M S, 1981, “Computer simulation for archaeology: an introductory essay”, in
Simulations in Archaeology Ed. J A Sabloff (University of New Mexico Press, Albergerque,
NM) pp 67118

Barrett J C, 1994 Fragments from Antiquity: An Archaeology of Social Life in Britain, 2900 — 1200 BC
(Blackwell, Oxford)

Bettinger R L, 1991 Hunter — Gatherers: Archaeological and Evolutionary Theory (Plenum, New
York)

Black S, 1978, “Polynesian outliers: a study in the survival of small populations”, in Simulation
Studies in Archaeology Ed. I Hodder (Cambridge University Press, Cambridge) pp 63 -76

Boesch C, Boesch H, 1984, “Mental map in wild chimpanzees: an analysis of hammer transports
for nut cracking” Primates 25 160 — 170

Boyd R, Richerson P J, 1985 Culture and the Evolutionary Process (University of Chicago Press,
Chicago, IL)

Cooke K L, Renfrew C, 1979, “An experiment on the simulation of culture changes”, in
Transformations: Mathematical Approaches to Culture Change Eds C Renfrew, K L Cooke
(Academic Press, New York) pp 327 - 348

Dawkins R, 1982 The Extended Phenotype (Freeman, Oxford)

Dean J S, Gumerman G J, Epstein J M, Axtell R L, Swedlund A C, Parker M T, McCarroll S,
2000, “Understanding Anasazi culture change through agent-based modeling”, in Dynamics
in Human and Primate Societies: Agent-based Modelling of Social and Spatial Processes
Eds T A Kohler, G J Gumerman, Santa Fe Institute Studies in the Sciences of Complexity
(Oxford University Press, New York) pp 179 —205

DeAngelis D L, Gross L J, 1992 Individual-based Models and Approaches in Ecology:
Populations, Communities and Ecosystems (Chapman and Hall, New York)

Doran J E, 1970, “Systems theory, computer simulations, and archaeology” World Archaeology 1
289-298

Doran J E, 1989, “Distributed Al-based modelling of the emergence of social complexity”
Science and Archaeology 31 3 11

Doran J E, 1997, “Distributed artificial intelligence and emergent social complexity”, in Time,
Process and Structured Transformation in Archaeology (Routledge, London) pp 283 —-297

Doran J E, Hodson F R, 1975 Mathematics and Computers in Archaeology (Edinburgh University
Press, Edinburgh)



The use of pedestrian modelling in archaeology 401

Doran J E, Palmer M, 1995, “The EOS project: integrating two models of Palaeolithic social change”,
in Artificial Societies: The Computer Simulation of Social Life Eds N Gilbert, R Conte (UCL
Press, London) pp 103 - 125

Doran J E, Palmer M, Gilbert N, Mellars P, 1994, “The EOS project: modelling Upper Palaeolithic
social change”, in Simulating Societies Eds N Gilbert, J Doran (UCL Press, London) pp 195 -
221

Epstein J M, Axtell R, 1996 Growing Artificial Societies: Social Science from the Bottom Up
(MIT Press, Cambridge, MA)

Foley R A, 1987 Another Unique Species (Longman, Harlow, Essex)

Gibbon G, 1989 Explanation in Archaeology (Basil Blackwell, Oxford)

Gilbert N, 1995, “Emergence in social simulations”, in Artificial Societies: The Computer
Simulation of Social Life Eds N Gilbert, R Conte (UCL Press, London) pp 144 —156

Gilbert N, Troitzsch K G, 1999 Simulation for the Social Scientist (Open University Press,

Milton Keynes, Bucks)

Grine F, 1981, “Trophic differences between ‘gracile’ and ‘robust’ australopithecines: a scanning
electron microscope analysis of occlusal events” South African Journal of Science 77 203 —230

Gunn J, 1979, “Occupation frequency simulation on a broad ecotone”, in Transformations.
Mathematical Approaches to Culture Change Eds C Renfrew, K L Cooke (Academic Press,
New York) pp 257274

Harvey D, 1969 Explanation in Geography (Edward Arnold, London)

Hayes K J, Hayes C, 1952, “Imitation in a home-raised chimpanzee” Journal of Comparative and
Physiological Psychology 45 450 —459

Hays D G, 1965, “Simulation: an introduction for anthropologists”, in The Use of Computers in
Anthropology Ed. D Hymes (Mouton, The Hague) pp 401 —426

Heyes C M, 1993, “Imitation, culture and cognition” Animal Behaviour 46 999 — 1010

Heyes C M, Plotkin H C, 1989, “Replicators and interactors in cultural evolution”, in What the
Philosophy of Biology Is Ed. M Ruse (Kluwer, Dordrecht) pp 139162

Hodder I, 1979, “Simulating the growth of hierarchies”, in Transformations: Mathematical
Approaches to Culture Change (Academic Press, New York) pp 117 - 144

Hodder 1, 1982 Symbolic and Structural Archaeology (Cambridge University Press, Cambridge)

Hodder I, 1986 Reading the Past (Cambridge University Press, Cambridge)

Hodder I, Okell E, 1978, “An index for assessing the association between distributions of points
in archaeology”, in Simulation Studies in Archaeology Ed. 1 Hodder (Cambridge University
Press, Cambridge) pp 97 - 108

Hodder I, Orton C, 1976 Spatial Analysis in Archaeology (Cambridge University Press, Cambridge)

Holland J H, Miller J H, 1991, “Artificial adaptive agents in economic theory” American Economic
Review, Papers and Proceedings 81 365 — 370

Hull D L, 1982, “The naked meme”, in Development and Culture: Essays in Evolutionary
Epistemology Ed. H C Plotkin (John Wiley, Chichester, Sussex) pp 273 — 327

Jolly C, 1970, “The seed eaters: a new model of hominid differentiation based on a baboon
analogy” Man, New Series 5526

Kay R, 1985, “Dental evidence for the diet of Australopithecus” Annual Review of Anthropology
14 315343

Kohler T A, Kresl J, West C V, Carr E, Wilshusen R H, 2000, “Be there then: a modelling
approach to settlement determinants and spatial efficiency among late ancestral Pueblo
populations of the Mesa Verde region, US southwest”, in Dynamics in Human and Primate
Societies: Agent-based Modelling of Social and Spatial Processes Eds T A Kohler,

G J Gumerman (Oxford University Press, New York) pp 145178

Kuipers B, 1983, “The cognitive map: could it have been any other way?”, in Spatial Orientation:
Theory, Research, and Application Eds H L Pick Jr, L P Acredolo (Plenum Press, New York)
pp 345-359

Lake M W, 1995 Computer Simulation Modelling of Early Hominid Subsistence Activities PhD
thesis, Department of Archaeology, University of Cambridge, Cambridge

Lake M W, 2000, “MAGICAL computer simulation of Mesolithic foraging”, in Dynamics in
Human and Primate Societies: Agent-based modelling of Social and Spatial Processes
Eds T A Kohler, G J Gumerman (Oxford University Press, New York) pp 107 — 143

Lake M W, Mithen S J, 1998, The MAGICAL project: integrating simulation modelling and
GIS analysis in archaeology with an application to Mesolithic Scotland”, unpublished
manuscript; copy available from the author



402 M Lake

Levison M, Ward R, Webb J, 1973 The Settlement of Polynesia: A Computer Simulation (University
of Minnesota Press, Minneapolis, MN)

Lewin R, 1992 Complexity: Life on the Edge of Chaos (Macmillan, New York)

Lloyd R, 1989, “Cognitive maps: encoding and decoding information” Annals of the Association
of American Geographers 79 101 — 124

McGlade J, 1997, “The limits of social control: coherence and chaos in a prestige goods economy”,
in Time, Process and Structured Transformation in Archaeology Eds S E van der Leeuw,

J McGlade (Routledge, London) pp 298 —330

McGrew W C, 1985, “The chimpanzee and the oil palm: patterns of culture” Social Biology and
Human Affairs 50 7—-23

McGrew W C, 1992 Chimpanzee Material Culture: Implications for Human Evolution
(Cambridge University Press, Cambridge)

McGrew W C, Tutin C E G, 1978, “Evidence for a social custom in wild chimpanzees?” Man,
New Series 13 234251

Mark D M, Frank A U, 1990, “Experimental and formal models of geographic space”, in Language,
Cognitive Science, and Geographic Information Systems Eds D M Mark, A U Frank, National
Center for Geographic Information and Analysis, University of California, 3510 Phelps Hall,
Santa Barbara, CA 93106-4060, pages 1 —24

Martin J F, 1983, “Optimal foraging theory: a review of some models and their applications”
American Anthropologist 85 612 — 629

Minar N, Burkhart R, Langton C, Askenazi M, 1996, “The Swarm simulation system: a toolkit
for building multi-agent simulations”, available at www.santafe.edu/projects/swarm/overview/
overview.html

Mithen S J, 1989, “Evolutionary theory and post-processual archaeology” Antiquity 63 483 —494

Mithen S J, 1990 Thoughtful Foragers: A Study of Prehistoric Decision Making (Cambridge
University Press, Cambridge)

Mithen S J, 1994, “Simulating prehistoric hunter-gatherer societies”, in Simulating Societies: The
Computer Simulation of Social Phenomena Eds N Gilbert, J] Doran (UCL Press, London)
pp 165-193

Mithen S J, forthcoming Hunter — Gatherer Landscape Archaeology: The Southern Hebrides
Mesolithic Project, 1988 — 98 The McDonald Institute for Archaeological Research,
Downing Street, Cambridge CB2 3ER

Odling-Smee F J, 1983, “Multiple levels in evolution: an approach to the nature — nurture issue
via applied epistemology”, in Animal Models of Human Behaviour Ed. G C L Davey (John
Wiley, Chichester, Sussex) pp 135158

O’Shea J M, 1978, “The simulation of Pawnee site development”, in Simulation Studies in
Archaeology Ed. 1 Hodder (Cambridge University Press, Cambridge) pp 39 -46

Plotkin H C, 1994 The Nature of Knowledge: Concerning Adaptations, Instinct and the Evolution
of Intelligence (Allen Lane, London)

Potts R, 1988 Early Hominid Activities at Olduvai (Aldine de Gruyter, New York)

Reynolds C W, 1987, “Flocks, herds and schools: a distributed behavioral model”, in Computer
Animation: CG87. Proceedings of the Conference held at Computer Graphics 87 (On-line
Publications, Pinner, Middx) pp 71 —87

Rogers A R, 1988, “Does biology constrain culture?” American Anthropologist 90 818 — 831

Saupe D, 1988, “Algorithms for random fractals”, in The Science of Fractal Images Eds H-O Peitgen,
D Saupe (Springer, New York) pp 71 — 136

Schelhorn T, O’Sullivan D, Haklay M, Thurstain-Goodwin M, 1999, “Streets, an agent-based
pedestrian model”, WP 9, Centre for Advanced Spatial Analysis, London; available at
www.casa.ucl.ac.uk/streets.pdf

Steele J, Adams J, Sluckin T, 1998, “Modelling Palaeoindian dispersals” World Archaeology 30
286305

Stephens D W, Krebs J R, 1986 Foraging Theory (Princeton University Press, Princeton, NJ)

Thomas D H, 1972, “A computer simulation model of Great Basin Shoshonean subsistence and
settlement”, in Models in Archaeology Ed. D L Clarke (Methuen, London)

Thompson J M T, Stewart H B, 1986 Nonlinear Dynamics and Chaos: Geometrical Methods for
Engineers and Scientists (John Wiley, Chichester, Sussex)

Tilley C, 1991, “Materialism and an archaeology of dissonance” Scottish Archaeological Review 8
14-22

Tolman E C, 1948, “Cognitive maps in rats and men” Psychological Review 55 189 —208


www.santafe.edu/projects/swarm/overview/overview.html
www.casa.ucl.ac.uk/streets.pdf

The use of pedestrian modelling in archaeology 403

Tomasello M, Kruger A C, Ratner H H, 1993, “Cultural learning” Behavioral and Brain Sciences
16 495552

van der Leeuw S E, McGlade J (Eds), 1997 Time, Process and Structured Transformation in
Archaeology (Routledge, London)

von Bertalanffy L, 1950, “An outline of general systems theory” British Journal of Philosophy of
Science 1 134—165

Vrba E S, 1985, “Ecological and adaptive changes associated with early hominid evolution”, in
Ancestors: The Hard Evidence Ed. E Delson (Alan R Liss, New York)

Walker A C, 1981, “Dietary hypothesis and human evolution” Philosophical Transactions of the
Royal Society of London, Series B 292 47—64

Westervelt J D, Hopkins L D, 1999, “Modeling mobile individuals in dynamic landscapes”
International Journal of Geographical Information Science 13 191 -208

Whallon R, 1972, “The computer in archaeology: a critical survey” Computers and the
Humanities 7 29 —45

Whiten A, 1993, “Comment on ‘cultural learning’” Behavioral and Brain Sciences 16 538 — 539

Whiten A, Ham R, 1992, “On the nature and evolution of imitation in the animal kingdom:
reappraisal of a century of research” Advances in the Study of Behaviour 21 239 —283

Wilson D S, Dugatkin L A, 1997, “Group selection and assortative interactions” American
Naturalist 149 336 —351

Wobst H M, 1974, “Boundary conditions for Palaeolithic social systems: a simulation approach”
American Antiquity 39 147178

Wood J, 1994, “GRASS Source Code: r.frac.surf”, available from www.geog.le.ac.uk/asssit/grass/
source/r.frac.surf.html

Zeeman E C (Ed.), 1977 Readings in Catastrophe Theory (Addison-Wesley, Reading, MA)

Zimmerman L J, 1977 Prehistoric Locational Behaviour: A Computer Simulation number 10,
Reports of the State Archaeologist of lowa (University of lowa Press, lowa, [A)

Zubrow E, 1975 Prehistoric Carrying Capacity: A Model (Cummings Press, Menlo Park, CA)

Zubrow E, 1981, “Simulation as a heuristic device in archaeology”, in Simulations in
Archaeology Ed. J A Sabloff (University of New Mexico Press, Albuquerque, NM) pp 143 -
188

Zubrow E B W, 1990, “Modelling and prediction with geographic information systems: a
demographic example from prehistoric and historic New York”, in Interpreting Space:
GIS and Archaeology Eds K M S Allen, S W Green, E B W Zubrow (Taylor and Francis,
London) pp 307318


www.geog.le.ac.uk/asssit/grass/source/r.frac.surf.html
www.geog.le.ac.uk/asssit/grass/source/r.frac.surf.html

© 2001 a Pion publication printed in Great Britain



	Abstract
	1 Computer simulation in archaeology
	2 The MAGICAL software
	3 The evolution of cultural learning
	4 Concluding comments
	References

