JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for ALLSTAT Archives


ALLSTAT Archives

ALLSTAT Archives


allstat@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

ALLSTAT Home

ALLSTAT Home

ALLSTAT  February 2021

ALLSTAT February 2021

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

RSS Glasgow: Statistical inference in cardiovascular modelling.

From:

Michael Waltenberger <[log in to unmask]>

Reply-To:

Michael Waltenberger <[log in to unmask]>

Date:

Tue, 2 Feb 2021 09:09:20 +0000

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (34 lines)

Hello all,
The next event of the Glasgow local group of the Royal Statistical Society will be on Tuesday the 9th of February from 2 - 4. Hopefully, you will be able to join us online via Zoom.
See details below for the event:

Title: Statistical inference in cardiovascular modelling.
Date/Time: 9th of February 2021/2-4 pm
Speakers: Mihaela Paun, Alan Lazarus, Agnieszka Borowska
Registration: Please register via the RSS webpage (link at the bottom of this e-mail)
Abstracts:
Mihaela Paun    
The importance of allowing for model mismatch in cardiovascular modelling
In this talk I will present a Bayesian approach to quantify the uncertainty of model parameters and haemodynamic predictions in a one-dimensional fluid-dynamics model of the pulmonary system by integrating mouse imaging data and haemodynamic data. The long-term aim is to devise a calibrated patient-specific model. I emphasize an often neglected, though important source of uncertainty: uncertainty in the mathematical model form, caused by the discrepancy between the model and the reality. I will demonstrate that minimising the mean squared error between the measured and the predicted data (the conventional method) in the presence of model mismatch leads to biased and overly confident parameter estimates and haemodynamic predictions. The proposed method in this study, based on Gaussian Processes, allows for model mismatch and corrects the bias, and is applicable to any cardiovascular model.
Alan Lazarus
Improving cardio-mechanic parameter estimation by including prior knowledge derived from ex-vivo data
Soft-tissue mechanical modelling in cardiac physiology is a topical research area, but a major challenge is to infer the biophysical parameters that determine the mechanical properties of the tissues and fibres non-invasively from cardiac magnetic resonance images. Knowledge of these parameters would be of significance to a clinical practitioner, providing information on disease prognosis as well as treatment planning. Of particular interest in that regard is to be able to learn these parameters efficiently and accurately, while also quantifying our uncertainty. Applying standard parameter estimation techniques relies on repeated evaluation of the mathematical model and the computational costs involved make these approaches ill-suited to the clinical setting. These computational complexities can be reduced by approximating the mathematical model with a statistical emulator, trained on a large batch of training simulations that are run in advance of the patient arriving in the clinic. These simulations are affected by the geometry of the left ventricle and this can change substantially between different patients. Problematically, the dimension required for accurate representation of the left ventricle geometry is too large to permit a dense enough coverage for accurate training of the emulator. This problem will be discussed in this talk, along with a solution that relies on a low dimensional representation of the left ventricle geometry.
Computational complexities aside, estimation of the constitutive parameters from strains extracted from in-vivo MRI scans can be challenging. The reason is that circumferential strains, which are relatively easy to extract from the CMR scans, are not sufficiently informative to uniquely estimate all parameters from the model. In this talk, I will show how cardio-mechanic parameter inference can be improved by incorporating prior knowledge from population-wide ex-vivo volume-pressure data. Our work is based on an empirical law known as the Klotz curve, which allows us to incorporate the behaviour of the tissue at higher pressure regions.
Agnieszka Borowska
Bayesian optimisation for improving accuracy and efficiency of cardio-mechanic parameter estimation
Parameter inference in cardio-mechanic models using clinical in vivo data is computationally challenging. The primary reason for this is that the equations underlying these models do not admit closed form solutions and hence need to be solved using computationally expensive numerical procedures. In consequence, computational run times associated with numerical optimisation or sampling are excessive for the uptake of these models in the clinical practice. I will discuss how the framework of Bayesian optimisation (BO) -- an efficient statistical technique of global optimisation -- can be employed to address this issue. BO seeks the optimum of an unknown black-box function by sequentially training a statistical surrogate-model and using it to select the next query point by leveraging the associated exploration-exploitation trade-off. I will then present how to guarantee that the estimates based on in vivo data are realistic also for high-pressures, unobservable in vivo, by including a penalty term based on a previously published empirical law developed using ex vivo data. Finally, I will demonstrate in two real-data case studies that the proposed BO procedure outperforms the state-of-the-art inference algorithm for cardio-mechanic parameter estimation in terms of both accuracy and efficiency. 
 
Registration link: https://rss.org.uk/training-events/events/statistical-inference-in-cardiovascular-modelling/#eventoverview

Best wishes,
RSS Glasgow Local Group committee


 

You may leave the list at any time by sending the command

SIGNOFF allstat

to [log in to unmask], leaving the subject line blank.

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

May 2024
April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager