JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for SPM Archives


SPM Archives

SPM Archives


SPM@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

SPM Home

SPM Home

SPM  March 2007

SPM March 2007

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

Re: Correlation between activation maps

From:

Ged Ridgway <[log in to unmask]>

Reply-To:

Ged Ridgway <[log in to unmask]>

Date:

Mon, 26 Mar 2007 14:05:52 +0100

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (92 lines)

Hi Gina, Satoru, everyone,

[Gina:]
>> I would like to correlate two activation maps to test the hypothesis
>> that the spatial distribution of activation over a predefined region-
>> of-interest is very similar under two conditions.

I'm also interested in this, for the purposes of comparing different 
analysis methods. A paper related to this issue
   http://dx.doi.org/10.1006/nimg.1999.0472
reports a "concordance correlation coefficient" (which is closely 
related to the standard Pearson correlation) between each pair of 
images, but avoids attempting to derive significance values for them.

Since the paper is pretty highly cited and includes some notable 
statisticians among the authors, it's tempting to think that this is:
a) fair enough
b) as far as you can go (e.g. perhaps valid significance values are 
very difficult to derive).

>> Now, the problem is that using N-2 (where N is the
>> number of voxels) as degrees of freedom in testing the significance
>> of the correlation coefficient is clearly uncorrect, because nearby
>> voxels are not independent (spatial autocorrelation). My intuition is
>> that degrees of freedom should be adjusted, e.g. using the gaussian
>> field theory... but how?

I don't think GRF would be immediately applicable, since the statistic 
you are interested in (correlation between two maps) is not itself a 
field.

There are other alternatives to the rho -> t (-> p) transformation 
though, which wouldn't involve the concept of degrees of freedom.

Permutation/randomisation based testing of the correlation might be 
one option, however, I'm not confident that exchangeability of the 
voxels could reasonably be assumed -- Satoru, I'd be interested in 
your thoughts on this, or anyone else's.

I wonder if a non-parametric correlation such as Spearman's R or 
Kendall's Tau would be appropriate? (p-values can be derived for 
these; exactly for small samples.) The only assumption that seems to 
be mentioned below is that the data can be ranked; nothing is said 
about homogeneity of variance, autocorrelation or anything like that:

http://www.statsoft.com/textbook/stnonpar.html

But I'm not completely confident that these methods would be okay. 
Anyone care to comment?

>> Note that a related problem has been posted some times ago, but in
>> that case the aim was to correlate values derived from two contrasts
>> over a set of subjects/scans, voxel by voxel, ending up with a
>> correlation map. The question was: is the activation of each voxel in
>> contrast A correlated to the activation of the same voxel in contrast
>> B (over a set of subjects/scans)? My question is instead: are the two
>> contrast images similar as to the spatial distribution of the
>> activation?

I think this is an important distinction, and your case is much more 
general than the former. E.g. you might be interested in correlation 
between contrast images from studies with different numbers of 
scans/subjects, or where there isn't a corresponding matching of the 
scans.

It's also very different to be able to report a single correlation 
value rather than an image. The former is much more useful if several 
methods are compared -- a whole bunch of subtly different correlation 
maps would be very difficult to interpret, but a table of values would 
be quite nice.

[Satoru:]
> [...] I think creating a voxel-by-voxel correlation
> map would be a lot easier in your case, and it could answer your
> question of whether voxel values in contrast A can predict voxel values
> in contrast B.
[...]
> You can create a voxel-by-voxel correlation map using the BPM toolbox.
> You can just calculate voxel-wise correlation between two sets of
> contrast images (A and B).

This presumably requires that the sets A and B have the same number of 
images, and that they are paired in some way. E.g. if one group of 
subjects were scanned under two different conditions. But I can't see 
how to generalise the approach...

Thanks in advance to anyone who can contribute to the discussion; I 
hope my ramblings are of some use/interest to you, Gina!

Best,
Ged.

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

May 2024
April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager