JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for DERIVE-NEWS Archives


DERIVE-NEWS Archives

DERIVE-NEWS Archives


DERIVE-NEWS@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

DERIVE-NEWS Home

DERIVE-NEWS Home

DERIVE-NEWS  June 2003

DERIVE-NEWS June 2003

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

The Uncertainty Principle Is Untenable

From:

guest <[log in to unmask]>

Reply-To:

guest <[log in to unmask]>

Date:

Tue, 17 Jun 2003 09:53:17 +0800

Content-Type:

text/plain

Parts/Attachments:

Parts/Attachments

text/plain (130 lines)

please reply to [log in to unmask]
thank you.

THE UNCERTAINTY PRINCIPLE IS UNTENABLE

By re-analysing Heisenberg's Gamma-Ray Microscope experiment and the ideal experiment from which the uncertainty principle is derived, it is actually found that the uncertainty principle can not be obtained from them. It is therefore found to be untenable.

Key words:
uncertainty principle; Heisenberg's Gamma-Ray Microscope Experiment; ideal experiment

Ideal Experiment 1

                 Heisenberg's Gamma-Ray Microscope Experiment


A free electron sits directly beneath the center of the microscope's lens (please see AIP page http://www.aip.org/history/heisenberg/p08b.htm or diagram below) . The circular lens forms a cone of angle 2A from the electron. The electron is then illuminated from the left by gamma rays--high energy light which has the shortest wavelength. These yield the highest resolution, for according to a principle of wave optics, the microscope can resolve (that is, "see" or distinguish) objects to a size of dx, which is related to and to the wavelength L of the gamma ray, by the expression:

dx = L/(2sinA) (1)

However, in quantum mechanics, where a light wave can act like a particle, a gamma ray striking an electron gives it a kick. At the moment the light is diffracted by the electron into the microscope lens, the electron is thrust to the right. To be observed by the microscope, the gamma ray must be scattered into any angle within the cone of angle 2A. In quantum mechanics, the gamma ray carries momentum as if it were a particle. The total momentum p is related to the wavelength by the formula,

p = h / L, where h is Planck's constant. (2)

In the extreme case of diffraction of the gamma ray to the right edge of the lens, the total momentum would be the sum of the electron's momentum P'x in the x direction and the gamma ray's momentum in the x direction:

P' x + (h sinA) / L', where L' is the wavelength of the deflected gamma ray.

In the other extreme, the observed gamma ray recoils backward, just hitting the left edge of the lens. In this case, the total momentum in the x direction is:

P''x - (h sinA) / L''.

The final x momentum in each case must equal the initial x momentum, since momentum is conserved. Therefore, the final x momenta are equal to each other:

P'x + (h sinA) / L' = P''x - (h sinA) / L'' (3)

If A is small, then the wavelengths are approximately the same,

L' ~ L" ~ L. So we have

P''x - P'x = dPx ~ 2h sinA / L (4)

Since dx = L/(2 sinA), we obtain a reciprocal relationship between the minimum uncertainty in the measured position, dx, of the electron along the x axis and the uncertainty in its momentum, dPx, in the x direction:

dPx ~ h / dx or dPx dx ~ h. (5)

For more than minimum uncertainty, the "greater than" sign may added.

Except for the factor of 4pi and an equal sign, this is Heisenberg's uncertainty relation for the simultaneous measurement of the position and momentum of an object.

Re-analysis

To be seen by the microscope, the gamma ray must be scattered into any angle within the cone of angle 2A.

The microscope can resolve (that is, "see" or distinguish) objects to a size of dx, which is related to and to the wavelength L of the gamma ray, by the expression:

dx = L/(2sinA) (1)

This is the resolving limit of the microscope and it is the uncertain quantity of the object's position.

The microscope can not see the object whose size is smaller than its resolving limit, dx. Therefore, to be seen by the microscope, the size of the electron must be larger than or equal to the resolving limit.

But if the size of the electron is larger than or equal to the resolving limit dx, the electron will not be in the range dx. Therefore, dx can not be deemed to be the uncertain quantity of the electron's position which can be seen by the microscope, but deemed to be the uncertain quantity of the electron's position which can not be seen by the microscope. To repeat, dx is uncertainty in the electron's position which can not be seen by the microscope.

To be seen by the microscope, the gamma ray must be scattered into any angle within the cone of angle 2A, so we can measure the momentum of the electron.

dPx is the uncertainty in the electron's momentum which can be seen by microscope.

What relates to dx is the electron where the size is smaller than the resolving limit. When the electron is in the range dx, it can not be seen by the microscope, so its position is uncertain.

What relates to dPx is the electron where the size is larger than or equal to the resolving limit .The electron is not in the range dx, so it can be seen by the microscope and its position is certain.

Therefore, the electron which relates to dx and dPx respectively is not the same. What we can see is the electron where the size is larger than or equal to the resolving limit dx and has a certain position, dx = 0.

Quantum mechanics does not rely on the size of the object, but on Heisenberg's Gamma-Ray Microscope experiment. The use of the microscope must relate to the size of the object. The size of the object which can be seen by the microscope must be larger than or equal to the resolving limit dx of the microscope, thus the uncertain quantity of the electron's position does not exist. The gamma ray which is diffracted by the electron can be scattered into any angle within the cone of angle 2A, where we can measure the momentum of the electron.

What we can see is the electron which has a certain position, dx = 0, so that in no other position can we measure the momentum of the electron. In Quantum mechanics, the momentum of the electron can be measured accurately when we measure the momentum of the electron only, therefore, we have gained dPx = 0.

And,

dPx dx =0. (6)

Ideal experiment 2

Single Slit Diffraction Experiment


Suppose a particle moves in the Y direction originally and then passes a slit with width dx(Please see diagram below) . The uncertain quantity of the particle's position in the X direction is dx, and interference occurs at the back slit . According to Wave Optics , the angle where No.1 min of interference pattern is can be calculated by following formula:

sinA=L/2dx (1)

and L=h/p where h is Planck's constant. (2)

So the uncertainty principle can be obtained

dPx dx ~ h (5)

Re-analysis

According to Newton first law , if an external force in the X direction does not affect the particle, it will move in a uniform straight line, ( Motion State or Static State) , and the motion in the Y direction is unchanged .Therefore , we can learn its position in the slit from its starting point.

The particle can have a certain position in the slit and the uncertain quantity of the position is dx =0. According to Newton first law , if the external force at the X direction does not affect particle, and the original motion in the Y direction is not changed , the momentum of the particle int the X direction will be Px=0 and the uncertain quantity of the momentum will be dPx =0.

This gives:

dPx dx =0. (6)

No experiment negates NEWTON FIRST LAW. Whether in quantum mechanics or classical mechanics, it applies to the microcosmic world and is of the form of the Energy-Momentum conservation laws. If an external force does not affect the particle and it does not remain static or in uniform motion, it has disobeyed the Energy-Momentum conservation laws. Under the above ideal experiment , it is considered that the width of the slit is the uncertain quantity of the particle's position. But there is certainly no reason for us to consider that the particle in the above experiment has an uncertain position, and no reason for us to consider that the slit's width is the uncertain quantity of the particle. Therefore, the uncertainty principle,

dPx dx ~ h (5)

which is derived from the above experiment is unreasonable.

Conclusion


From the above re-analysis , it is realized that the ideal experiment demonstration for the uncertainty principle is untenable. Therefore, the uncertainty principle is untenable.


Reference:
1. Max Jammer. (1974) The philosophy of quantum mechanics (John wiley & sons , Inc New York ) Page 65
2. Ibid, Page 67
3. http://www.aip.org/history/heisenberg/p08b.htm

Author : BingXin Gong
Postal address : P.O.Box A111 YongFa XiaoQu XinHua HuaDu
               GuangZhou 510800 P.R.China

E-mail: [log in to unmask]
Tel: 86---20---86856616

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

November 2022
October 2022
May 2022
April 2020
December 2019
September 2019
April 2019
June 2016
January 2016
November 2015
June 2015
December 2014
July 2014
June 2014
April 2014
March 2014
January 2014
December 2013
November 2013
October 2013
September 2013
April 2013
March 2013
January 2013
November 2012
August 2012
April 2012
December 2011
October 2011
September 2011
February 2011
January 2011
December 2010
September 2010
May 2010
March 2010
February 2010
January 2010
November 2009
October 2009
September 2009
August 2009
May 2009
April 2009
January 2009
December 2008
October 2008
September 2008
August 2008
July 2008
May 2008
December 2007
October 2007
September 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
May 2006
April 2006
March 2006
February 2006
December 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
March 2005
February 2005
January 2005
December 2004
October 2004
September 2004
August 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001
April 2001
March 2001
February 2001
January 2001
December 2000
November 2000
October 2000
September 2000
August 2000
July 2000
June 2000
May 2000
April 2000
March 2000
February 2000
January 2000
December 1999
November 1999
October 1999
September 1999
August 1999
July 1999
June 1999
May 1999
April 1999
March 1999
February 1999
January 1999
December 1998
November 1998
October 1998
September 1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager