JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for SPM Archives


SPM Archives

SPM Archives


SPM@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Monospaced Font

LISTSERV Archives

LISTSERV Archives

SPM Home

SPM Home

SPM  2000

SPM 2000

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

Re: How to use spm_dbm.m

From:

John Ashburner <[log in to unmask]>

Reply-To:

John Ashburner <[log in to unmask]>

Date:

Thu, 9 Nov 2000 10:57:56 +0000 (GMT)

Content-Type:

MULTIPART/mixed

Parts/Attachments:

Parts/Attachments

TEXT/plain (115 lines) , spm_sn3d2def.m (539 lines)


| I would like to know how to set parameters in spm_dbm.m
| when I try to use it to examine hemispheric asymmetry.

To test asymmetry, you need to use a symmetric template
and weighting image (the default is brainmask.img which
is asymmetric). The basis functions of a discrete cosine
transform consist of symmetric and anti-symmetric bases,
so tests for assymmetry are done entirely on the
anti-symmetric ones.

The tests done by spm_dbm.m are multivariate, so they just
test for a global difference.

|
| My interests are:
| (1) to examine whether the brains of a group show any
| significant hemispheric asymmetry of shape.
|
| and
|
| (2) to examine whether the brains of two groups show
| any significant differences in the tendency of
| hemisperic asymmetry of shape.
|
| The number(s) of subjects: case (1): 24
| case (2): 8 and 16
| (The subjects in the two cases are the same.)
|
| Normalization: affine+nonlinear(11*13*10)

I hate to tell you this, but spm_dbm reparameterises the deformation
fields (after removing a rigid body transform and an isotropic zoom)
by only 8x8x8 basis functions. Therefore, only about 1/3 of your
coefficiants will be used.

Because the tests are multivariate over the whole images, these
coefficients are further reduced by singular value decomposition.
After SVD, the deformation fields are only represented by a
small number of parameters (as the number of parameters per image
needs to be much less than the number of images in the study).

|
| Using the xtract_shapes function in spm_dbm.m, I made
| a 24subs_shape.mat file which contains 24 subjects'
| normalization data.
|
| Then I tried to use run_stats in spm_dbm.m. After choosing
| the file 24subs_shape.mat, I was asked to set
| 'Interesting Group weights',

These are effects of interest. If you have a shape.mat file for
the two groups, then you would enter:
1 0; 0 1

If you had four groups that you wanted to identify a difference
among, then you would enter: 1 0 0 0; 0 1 0 0; 0 0 1 0;0 0 0 1

A more complex example may involve looking for handedness
differences where you have male and female subjects. If the
groups were FR (female right-handed), FL, MR & ML, then you
would enter: 1 0 1 0 ; 0 1 0 1
However, you would include sex as a confounding effect by
including this in the 'Uninteresting Covariates' as:
1 1 0 0; 0 0 1 1
or you may also model sex-by-handedness interractions here by:
1 1 0 0; 0 0 1 1; 1 0 0 1; 0 1 1 0

| 'Interesting Covariates',

These are just covariates of interest. So (for example) to include
age and age squared as covariates of interest when you have a column
vector of ages in the workspace, you may enter something like:
a' ; a'.^2


| 'Uninteresting Group weights',
| 'Uninteresting Covariates', and

See above

| 'Restrict to asymmetries?'.
| I guess I should enter Yes in the last, but I am not sure what
| the first four mean. Should I enter, say, all 1s for the case (1),
| and eight 1s and sixteen -1s for the case (2)?

When you restrict to asymmetries, all the basis function coefficients
pertaining to symmetric warps are discarded.
|
| The function run_stats in spm_dbm.m seems to output a P value
| based on chi-square test. Is it the probability of the test agaist
| the hypothesis that there is no over-all(whole-hemisphere) asymmetry?

It is a test with a null hypothesis that the effects of interest do not
account for a significant amount of variance in the data.

| If so, how can we see local asymmetries? By using the function
| show_difference in spm_dbm.m?

show_differences shows a caricature of the differences among the groups.
It is either the absolute differences, scaled by some amount, or it can
be differences that are characterised by canonical variates analysis.

I suspect that what you really want is some kind of SPM that localises
significant shape differences (as done by Gaser et al). The simplest
way to do this would be to do tests of local volume differences, which
can be derived from the Jacobian determinants of the deformation fields.
Somewhere in the attached file is a routine that will write images of
Jacobian determinants.

Best regards,
-John
 


function spm_Deformations(varargin)
% Deformation field utilities (works on sn3d.mat files).
%
% This toolbox includes a number of utilities for extracting information
% from _sn3d.mat files created during spatial normalisation. Much of
% the information can be used for either deformation-based morphometry
% (DBM), or tensor-based morphometry (TBM).
%
% Deformations:
% Writes out the deformation fields as y1_*.img, y2_*.img and y3_*.img.
% These fields are the voxel to voxel mappings between an image
% normalised with the specified bounding-box and voxel sizes, and the
% original images. The deformations can be used for multivariate
% morphometric methods (DBM), but they will need some initial
% corrections for voxel-sizes and for some measure of global position
% and possibly size (Procrustes shape).
%
% Jacobian Matrices:
% Writes out the Jacobian matrix field as images a11_*.img, a12_*.img,
% a13_*.img, a21_*.img, a22_*.img, a23_*.img, a31_*.img, a32_*.img
% and a33_*.img.
%
% Jacobian Determinants:
% Writes out the volume change at each location in j_*.img. Fields
% involving a flip should have begative Jacobian determinants, but
% these are implicitly made positive to make things easier to
% understand. The determinants can be used for morphometric methods
% (TBM) that characterise volumetric differences.
%
% Strain Tensors:
% These are intended for voxelwise multivariate morphometry (TBM).
% Much of the notation and ideas are from:
% "Non-linear Elastic Deformations", by R. W. Ogden. Dover
% Publications, 1984.
%
% The transformation maps from elements in the template (x1,x2,x3)
% to elements in the original images (y1,y2,y3).
% An affine mapping from x to y is given by:
% y = A*x + c, where A is the deformation gradient (second order tensor
% which is the Jacobian matrix) and c is a constant representing
% translations.
% We wish to represent shape changes within the co-ordinate framework of
% the template images (Lagrangean framework, as opposed to the Eulerian
% framework where deformations are relative to the individual images).
% To do this, matrix A is decomposed (using polar decomposition), such
% that A = R*U. Matrix R is a rigid body transformation matrix, and U
% is a matrix that is purely shears and zooms (no rotations).
% This gives a mapping from template voxels to image voxels of the form
% y = R*U*x + c, which means zoom and shear the positions in the template,
% and then do a rigid body rotation (and also add the translation).
% We are not interested in the translations and rotations - only in the
% local zooms and shears. Therefore all the information we need is in
% the matrix U, which is simply obtained by U=(A'*A)^(1/2).
% Note that the zooms and shears are done while in the orientation of
% the template, before rotations to the orientation of the images are
% introduced.
%
% Strain tensors are defined that model the amount of distortion. If
% there is no strain, then the tensors are all zero. Generically,
% the family of Lagrangean strain tensors are given by:
% (U^m-eye(3))/m when m~=0, and logm(U) when m==0.
%
%
%_______________________________________________________________________
% %W% John Ashburner %E%

global sptl_BB sptl_Vx BCH

if nargin==0,
a1 = spm_input('Write what?',1,'m',...
['Deformations|Jacobian Matrices|Jacobian Determinants|' ...
'Strain Tensors'],...
[1 2 3 4],1);
arg = allowable(a1);
if strcmp(arg,'tensor')
tensorder = spm_input('Write what?',2,'m',...
['Strain Tensors, m=-2 (Almansi)|'...
'Strain Tensors, m=-1 |'...
'Strain Tensors, m= 0 (Hencky) |'...
'Strain Tensors, m= 1 (Biot) |'...
'Strain Tensors, m= 2 (Green) '],...
[-2 -1 0 1 2],3);
end;
else,
arg = lower(varargin{1});
switch arg,
case 'tensor',
if nargin >1,
tensorder = varargin{2};
else,
tensorder = 0;
end;
case {'def','jacmat','jacdet'},
otherwise,
error('Unknown argument');
end;
end;

if isempty(BCH),
files = spm_get(Inf,'*_sn3d.mat','Select *_sn3d.mat files');
else,
files = spm_input('batch', {},'sn3d_files');
end;

bboxes = [ -78 78 -112 76 -50 85
              -64 64 -104 68 -28 72
              -90 91 -126 91 -72 109
              -95 95 -112 76 -50 95];
bbprompt = [' -78:78 -112:76 -50:85 (Default)|'...
             ' -64:64 -104:68 -28:72 (SPM95) |'...
             ' -90:91 -126:91 -72:109 (Template)|'...
             ' -95:95 -112:76 -50:95 '];
voxdims = [ 1 1 1 ; 2 2 2 ; 3 3 3 ; 4 4 4 ; 5 5 5 ; 6 6 6 ; 7 7 7 ; 8 8 8 ; 9 9 9 ; 10 10 10];
voxprompts = ' 1 1 1 | 2 2 2 | 3 3 3 | 4 4 4 | 5 5 5 | 6 6 6 | 7 7 7 | 8 8 8 | 9 9 9 | 10 10 10';

bb = sptl_BB;
if prod(size(bb)) == 6,
tmp = find( sptl_BB(1) == bboxes(:,1) & sptl_BB(2) == bboxes(:,2) & ...
sptl_BB(3) == bboxes(:,3) & sptl_BB(4) == bboxes(:,4) & ...
sptl_BB(5) == bboxes(:,5) & sptl_BB(6) == bboxes(:,6));
if isempty(tmp), tmp = size(bboxes,1)+1; end;
else,
tmp = size(bboxes,1)+2;
bb = reshape(bboxes(1,:),2,3);
end;
ans = spm_input('Bounding Box?','+1','m',...
[ bbprompt '|Customise'], [1:size(bboxes,1) 0],...
tmp,'batch',{},'bounding_box');
if ans>0, bb=reshape(bboxes(ans,:),2,3);
else,
if prod(size(bb)) ~= 6, bb = reshape(bboxes(1,:),2,3); end;
directions = 'XYZ';
for d=1:3,
str = sprintf('%d %d', bb(1,d), bb(2,d));
bb(:,d) = spm_input(['Bounding Box ' directions(d) ],....
'+1', 'e',str, 2,'batch',{},...
sprintf('direction%d',d));
end;
end;

Vox = sptl_Vx;
if prod(size(Vox)) == 3,
tmp = find(voxdims(:,1) == Vox(1) & voxdims(:,2) == Vox(2) & voxdims(:,3) == Vox(3));
if isempty(tmp), tmp = size(voxdims,1)+1; end;
else, tmp = size(voxdims,1)+2; end;
ans = spm_input(...
['Voxel Sizes?'], '+1','m', [ voxprompts ....
'|Customise'], [1:size(voxdims,1) 0],....
tmp,'batch',{},'voxel_sizes');
if ans>0, Vox = voxdims(ans,:);
else,
vxdef = [8 8 8];
if (prod(size(Vox)) ~= 3) vxdef = [5 5 5]; end
Vox = spm_input('Voxel Sizes ','+0', 'e', ...
sprintf('%d %d %d', vxdef(1), vxdef(2), vxdef(3)), 3,...
'batch',{},'voxel_sizes_custom')';
Vox = reshape(Vox,1,3);
end;

for i=1:size(files,1),
sn3d(i) = load(deblank(files(i,:)));
end;
for i=1:size(files,1),
sn3d(i).fname = deblank(files(i,:));
end;


switch arg,
case 'tensor'
spm_progress_bar('Init',length(sn3d),...
['Computing Tensors (m= ' num2str(tensorder) ')'],...
'volumes completed');
case 'def'
spm_progress_bar('Init',length(sn3d),...
['Computing Deformations'],'volumes completed');
case 'jacmat'
spm_progress_bar('Init',length(sn3d),...
['Computing Jacobian Matrices'],...
'volumes completed');
case 'jacdet'
spm_progress_bar('Init',length(sn3d),...
['Computing Jacobian Determinants'],...
'volumes completed');
end;
spm('Pointer','Watch')
for i=1:length(sn3d),
%spm('FigName',['Deformations: working on subj ' num2str(i)],Finter,CmdLine);drawnow;
switch arg,
case 'tensor',
write_tensor(sn3d(i),Vox,bb,tensorder);
case 'def',
spm_write_defs(sn3d(i),Vox,bb);
case 'jacmat',
write_jacobianm(sn3d(i),Vox,bb);
case 'jacdet',
write_det(sn3d(i),Vox,bb);
end;
spm_progress_bar('Set',i);
end;
spm_progress_bar('Clear');
%spm('FigName','Deformations: done',Finter,CmdLine);
spm('Pointer');

return;
%_______________________________________________________________________

%_______________________________________________________________________
function write_jacobianm(sn3d,vox,bb)
vo = init_vo(sn3d,vox,bb);
for i=1:3,
for j=1:3,
[pth,nm,xt,vr] = fileparts(deblank(sn3d.fname));
if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end;
VO(i,j) = vo;
VO(i,j).fname = fullfile(pth,['a' num2str(i) num2str(j) '_' nm '.img']);
VO(i,j).dim(4) = spm_type('float');
VO(i,j).pinfo = [1 0 0]';
VO(i,j).descrip = ['Jacobian_Matrix(' num2str(i) ',' num2str(j) ')'];
VO(i,j) = spm_create_image(VO(i,j));
end;
end;
for p=1:vo.dim(3),
A = get_jacobian(sn3d, vo, p);
for i=1:3,
for j=1:3,
VO(i,j) = spm_write_plane(VO(i,j),A(:,:,i,j),p);
end;
end;
end;
return;
%_______________________________________________________________________

%_______________________________________________________________________
function write_det(sn3d,vox,bb)
VO = init_vo(sn3d,vox,bb);
[pth,nm,xt,vr] = fileparts(deblank(sn3d.fname));
if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end;
VO.fname = fullfile(pth,['j_' nm '.img']);
VO.dim(4) = spm_type('float');
VO.pinfo = [1 0 0]';
VO.descrip = ['Jacobian_Determinant'];
VO = spm_create_image(VO);
tmp = sn3d.MF*sn3d.Affine*inv(sn3d.MG);
sgn = sign(det(tmp(1:3,1:3)));

for p=1:VO.dim(3),
A = get_jacobian(sn3d, VO(1,1), p);
dtA = A(:,:,1,1).*(A(:,:,2,2).*A(:,:,3,3) - A(:,:,2,3).*A(:,:,3,2)) ...
- A(:,:,2,1).*(A(:,:,1,2).*A(:,:,3,3) - A(:,:,1,3).*A(:,:,3,2)) ...
+ A(:,:,3,1).*(A(:,:,1,2).*A(:,:,2,3) - A(:,:,1,3).*A(:,:,2,2));
if sgn < 0, dtA = -dtA; end;
VO = spm_write_plane(VO,dtA,p);
end;
return;
%_______________________________________________________________________

%_______________________________________________________________________
function write_tensor(sn3d,vox,bb,m)
vo = init_vo(sn3d,vox,bb);
ij = [1 1; 2 1; 3 1; 2 2; 3 2; 3 3];
for i=1:6,
[pth,nm,xt,vr] = fileparts(deblank(sn3d.fname));
if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end;
VO(i) = vo;
VO(i).fname = fullfile(pth,['e' num2str(ij(i,1)) num2str(ij(i,2)) 'm' num2str(m) '_' nm '.img']);
VO(i).dim(4) = spm_type('float');
VO(i).pinfo = [1 0 0]';
VO(i).descrip = ['Strain_Tensor(' num2str(ij(i,1)) ',' num2str(ij(i,2)) ') - m=' num2str(m)];
VO(i) = spm_create_image(VO(i));
end;
for p=1:vo.dim(3),
A = get_jacobian(sn3d, vo, p);
E = tensors_from_jacobian(A,m);
for i=1:6,
VO(i) = spm_write_plane(VO(i),E(:,:,i),p);
end;
end;
return;
%_______________________________________________________________________

%_______________________________________________________________________
function VO = init_vo(sn3d,vox,bb)
if nargin>=2,
        x = (bb(1,1):vox(1):bb(2,1))/sn3d.Dims(3,1) + sn3d.Dims(4,1);
        y = (bb(1,2):vox(2):bb(2,2))/sn3d.Dims(3,2) + sn3d.Dims(4,2);
        z = (bb(1,3):vox(3):bb(2,3))/sn3d.Dims(3,3) + sn3d.Dims(4,3);

        dim = [length(x) length(y) length(z)];

        origin = -bb(1,:)./vox + 1;
        off = -vox.*origin;
        mat = [vox(1) 0 0 off(1) ; 0 vox(2) 0 off(2) ; 0 0 vox(3) off(3) ; 0 0 0 1];
else,
        dim = sn3d.Dims(1,:);
        x = 1:dim(1);
        y = 1:dim(2);
        z = 1:dim(3);

        mat = sn3d.MG;
end;
VO = struct('fname','',...
        'dim',[dim NaN], 'mat',mat,...
        'pinfo',[NaN NaN NaN]',...
        'descrip','');

return;
%_______________________________________________________________________

%_______________________________________________________________________
function A = get_jacobian(sn3d, VO, j)
% Each element of the Jacobian matrix field consists of something analagous to the following:
% maple diff( m11*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m12*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m13, x1)
% maple diff( m11*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m12*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m13, x2)
% maple diff( m21*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m22*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m23, x1)
% maple diff( m21*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m22*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m23, x2)


Dims = sn3d.Dims;
MG = sn3d.MG;
MF = sn3d.MF;
Transform = sn3d.Transform;
Affine = sn3d.Affine;

dim = VO.dim(1:3);
mat = VO.mat;

% Assume transverse images, and obtain position of pixels in millimeters,
% and convert to voxel space of template.
%----------------------------------------------------------------------------
x = ((1:dim(1))*mat(1,1) + mat(1,4))/Dims(3,1) + Dims(4,1);
y = ((1:dim(2))*mat(2,2) + mat(2,4))/Dims(3,2) + Dims(4,2);
z = ( j*mat(3,3) + mat(3,4))/Dims(3,3) + Dims(4,3);

X = x'*ones(1,dim(2));
Y = ones(dim(1),1)*y;

bbX = spm_dctmtx(Dims(1,1),Dims(2,1),x-1);
bbY = spm_dctmtx(Dims(1,2),Dims(2,2),y-1);
bbZ = spm_dctmtx(Dims(1,3),Dims(2,3),z-1);

dbX = spm_dctmtx(Dims(1,1),Dims(2,1),x-1,'diff');
dbY = spm_dctmtx(Dims(1,2),Dims(2,2),y-1,'diff');
dbZ = spm_dctmtx(Dims(1,3),Dims(2,3),z-1,'diff');

M = MF*Affine*inv(MG);
sgn = sign(det(M(1:3,1:3)));

% Nonlinear deformations
%----------------------------------------------------------------------------
% 2D transforms for each plane
tbx = reshape( reshape(Transform(:,1),Dims(2,1)*Dims(2,2),Dims(2,3)) *bbZ', Dims(2,1), Dims(2,2) );
tby = reshape( reshape(Transform(:,2),Dims(2,1)*Dims(2,2),Dims(2,3)) *bbZ', Dims(2,1), Dims(2,2) );
tbz = reshape( reshape(Transform(:,3),Dims(2,1)*Dims(2,2),Dims(2,3)) *bbZ', Dims(2,1), Dims(2,2) );

tdx = reshape( reshape(Transform(:,1),Dims(2,1)*Dims(2,2),Dims(2,3)) *dbZ', Dims(2,1), Dims(2,2) );
tdy = reshape( reshape(Transform(:,2),Dims(2,1)*Dims(2,2),Dims(2,3)) *dbZ', Dims(2,1), Dims(2,2) );
tdz = reshape( reshape(Transform(:,3),Dims(2,1)*Dims(2,2),Dims(2,3)) *dbZ', Dims(2,1), Dims(2,2) );

% Jacobian of transformation from template
% to affine registered image.
%---------------------------------------------
j11 = dbX*tbx*bbY' + 1;
j12 = bbX*tbx*dbY';
j13 = bbX*tdx*bbY';

j21 = dbX*tby*bbY';
j22 = bbX*tby*dbY' + 1;
j23 = bbX*tdy*bbY';

j31 = dbX*tbz*bbY';
j32 = bbX*tbz*dbY';
j33 = bbX*tdz*bbY' + 1;

% Combine Jacobian of transformation from
% template to affine registered image, with
% Jacobian of transformation from affine
% registered image to original image.
%---------------------------------------------
A = zeros([size(j11) 3 3]);

A(:,:,1,1) = M(1,1)*j11 + M(1,2)*j21 + M(1,3)*j31;
A(:,:,1,2) = M(1,1)*j12 + M(1,2)*j22 + M(1,3)*j32;
A(:,:,1,3) = M(1,1)*j13 + M(1,2)*j23 + M(1,3)*j33;

A(:,:,2,1) = M(2,1)*j11 + M(2,2)*j21 + M(2,3)*j31;
A(:,:,2,2) = M(2,1)*j12 + M(2,2)*j22 + M(2,3)*j32;
A(:,:,2,3) = M(2,1)*j13 + M(2,2)*j23 + M(2,3)*j33;

A(:,:,3,1) = M(3,1)*j11 + M(3,2)*j21 + M(3,3)*j31;
A(:,:,3,2) = M(3,1)*j12 + M(3,2)*j22 + M(3,3)*j32;
A(:,:,3,3) = M(3,1)*j13 + M(3,2)*j23 + M(3,3)*j33;

return;
%_______________________________________________________________________

%_______________________________________________________________________
function tensor = tensors_from_jacobian(A, m)

d = size(A);
tensor = zeros([d(1:2) 6]);
I = eye(3);
if m==0,
% Hencky
for j=1:d(2),
for i=1:d(1),
J = squeeze(A(i,j,:,:));
T = logm(J'*J)*0.5;
tensor(i,j,:) = T([1 2 3 5 6 9]);
end;
end;
elseif m==2,
%
for j=1:d(2),
for i=1:d(1),
J = squeeze(A(i,j,:,:));
T = 0.5*(J'*J - I);
tensor(i,j,:) = T([1 2 3 5 6 9]);
end;
end;
else,
for j=1:d(2),
for i=1:d(1),
J = squeeze(A(i,j,:,:));
T = ((J'*J)^(m/2)-I)/m;
tensor(i,j,:) = T([1 2 3 5 6 9]);
end;
end;
end;
return;
%_______________________________________________________________________

%_______________________________________________________________________
function spm_write_defs(sn3d, vox,bb)
% Write deformation field.
% FORMAT spm_write_defs(matname, vox,bb)
% sn3d - information from the `_sn3d.mat' file containing the spatial
% normalization parameters.
% The deformations are stored in y1.img, y2.img and y3.img
%_______________________________________________________________________
% %W% John Ashburner %E%

matname = deblank(sn3d.fname);
Dims = sn3d.Dims;
MG = sn3d.MG;
MF = sn3d.MF;
Transform = sn3d.Transform;
Affine = sn3d.Affine;

if nargin>=3,
x = (bb(1,1):vox(1):bb(2,1))/Dims(3,1) + Dims(4,1);
y = (bb(1,2):vox(2):bb(2,2))/Dims(3,2) + Dims(4,2);
z = (bb(1,3):vox(3):bb(2,3))/Dims(3,3) + Dims(4,3);

dim = [length(x) length(y) length(z)];

origin = -bb(1,:)./vox + 1;
off = -vox.*origin;
mat = [vox(1) 0 0 off(1) ; 0 vox(2) 0 off(2) ; 0 0 vox(3) off(3) ; 0 0 0 1];
else,
dim = Dims(1,:);
x = 1:dim(1);
y = 1:dim(2);
z = 1:dim(3);

mat = MG;
end;

[pth,nm,xt,vr] = fileparts(deblank(matname));
if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end;

VX = struct('fname',fullfile(pth,['y1_' nm '.img']), 'dim',[dim 16], ...
'mat',mat, 'pinfo',[1 0 0]', 'descrip','Deformation field - X');
VY = struct('fname',fullfile(pth,['y2_' nm '.img']), 'dim',[dim 16], ...
'mat',mat, 'pinfo',[1 0 0]', 'descrip','Deformation field - Y');
VZ = struct('fname',fullfile(pth,['y3_' nm '.img']), 'dim',[dim 16], ...
'mat',mat, 'pinfo',[1 0 0]', 'descrip','Deformation field - Z');


X = x'*ones(1,VX.dim(2));
Y = ones(VX.dim(1),1)*y;


if (prod(Dims(2,:)) == 0),
affine_only = 1;
basX = 0; tx = 0;
basY = 0; ty = 0;
basZ = 0; tz = 0;
str = 'affine';
else
affine_only = 0;
basX = spm_dctmtx(Dims(1,1),Dims(2,1),x-1);
basY = spm_dctmtx(Dims(1,2),Dims(2,2),y-1);
basZ = spm_dctmtx(Dims(1,3),Dims(2,3),z-1);
str = 'nonlinear';
end

spm_create_image(VX);
spm_create_image(VY);
spm_create_image(VZ);

% Cycle over planes
%----------------------------------------------------------------------------
for j=1:length(z)

% Nonlinear deformations
%----------------------------------------------------------------------------
if (~affine_only)
% 2D transforms for each plane
tx = reshape( reshape(Transform(:,1),Dims(2,1)*Dims(2,2),Dims(2,3)) *basZ(j,:)', Dims(2,1), Dims(2,2) );
ty = reshape( reshape(Transform(:,2),Dims(2,1)*Dims(2,2),Dims(2,3)) *basZ(j,:)', Dims(2,1), Dims(2,2) );
tz = reshape( reshape(Transform(:,3),Dims(2,1)*Dims(2,2),Dims(2,3)) *basZ(j,:)', Dims(2,1), Dims(2,2) );

X1 = X + basX*tx*basY';
Y1 = Y + basX*ty*basY';
Z1 = z(j) + basX*tz*basY';
end

% Sample each volume
%----------------------------------------------------------------------------
Mult = MF*Affine;
if (~affine_only)
X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + Mult(1,3)*Z1 + Mult(1,4);
Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + Mult(2,3)*Z1 + Mult(2,4);
Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + Mult(3,3)*Z1 + Mult(3,4);
else
X2= Mult(1,1)*X + Mult(1,2)*Y + (Mult(1,3)*z(j) + Mult(1,4));
Y2= Mult(2,1)*X + Mult(2,2)*Y + (Mult(2,3)*z(j) + Mult(2,4));
Z2= Mult(3,1)*X + Mult(3,2)*Y + (Mult(3,3)*z(j) + Mult(3,4));
end

spm_write_plane(VX,X2,j);
spm_write_plane(VY,Y2,j);
spm_write_plane(VZ,Z2,j);

end
return;
%_______________________________________________________________________

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

May 2024
April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager