JiscMail Logo
Email discussion lists for the UK Education and Research communities

Help for SPM Archives


SPM Archives

SPM Archives


SPM@JISCMAIL.AC.UK


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

SPM Home

SPM Home

SPM  2000

SPM 2000

Options

Subscribe or Unsubscribe

Subscribe or Unsubscribe

Log In

Log In

Get Password

Get Password

Subject:

Re: Your Message Sent on Wed, 12 Jul 2000 14:23:58 +0100

From:

John Ashburner <[log in to unmask]>

Reply-To:

John Ashburner <[log in to unmask]>

Date:

Thu, 13 Jul 2000 10:17:32 +0100 (BST)

Content-Type:

MULTIPART/mixed

Parts/Attachments:

Parts/Attachments

TEXT/plain (32 lines) , spm_Deformations.m (508 lines)

| 1.  How can SPM best be used to compare a single subject to a group of
| controls in order to establish the pattern of regional abnormalities?  I
| have tried using the two sample t-test, two groups, one scan per subject
| model, with success, but was wondering if anyone had ideas about other
| approaches using the software.

This is probably the best approach, but it may be worth also modelling
confounding effects such as age or possibly nonlinear age effects
(by also including age^2 and age^3).

Depending how many controls you have, you may also wish to try a
non-parametric analysis using SNPM.

| 
| 2.  Can the SVC analysis be applied to any arbitrary contour defined by the
| user (say, a hand-drawn outline of the frontal lobe), and how would one
| accomplish this?

I'll let someone else answer this one.

| 
| 3. Can the SPM software generate a deformation map from the spatial
| normalization, so that one could see the patterns of correction in different
| regions?

There is nothing in the current release of SPM99 that will do this, but I have
appended a piece of Matlab code that should do what you want.

Best regards,
-John



function spm_Deformations % Deformation field utilities (works on sn3d.mat files). % % This toolbox includes a number of utilities for extracting information % from _sn3d.mat files created during spatial normalisation. Much of % the information can be used for either deformation-based morphometry % (DBM), or tensor-based morphometry (TBM). % % Deformations: % Writes out the deformation fields as *_y1.img, *_y2.img and *_y3.img. % These fields are the voxel to voxel mappings between an image % normalised with the specified bounding-box and voxel sizes, and the % original images. The deformations can be used for multivariate % morphometric methods (DBM), but they will need some initial % corrections for voxel-sizes and for some measure of global position % and possibly size (Procrustes shape). % % Jacobian Matrices: % Writes out the Jacobian matrix field as images a11_*.img, a12_*.img, % a13_*.img, a21_*.img, a22_*.img, a23_*.img, a31_*.img, a32_*.img % and a33_*.img. % % Jacobian Determinants: % Writes out the volume change at each location in j_*.img. Fields % involving a flip should have begative Jacobian determinants, but % these are implicitly made positive to make things easier to % understand. The determinants can be used for morphometric methods % (TBM) that characterise volumetric differences. % % Strain Tensors: % These are intended for voxelwise multivariate morphometry (TBM). % Much of the notation and ideas are from: % "Non-linear Elastic Deformations", by R. W. Ogden. Dover % Publications, 1984. % % The transformation maps from elements in the template (x1,x2,x3) % to elements in the original images (y1,y2,y3). % An affine mapping from x to y is given by: % y = A*x + c, where A is the deformation gradient (second order tensor % which is the Jacobian matrix) and c is a constant representing % translations. % We wish to represent shape changes within the co-ordinate framework of % the template images (Lagrangean framework, as opposed to the Eulerian % framework where deformations are relative to the individual images). % To do this, matrix A is decomposed (using polar decomposition), such % that A = R*U. Matrix R is a rigid body transformation matrix, and U % is a matrix that is purely shears and zooms (no rotations). % This gives a mapping from template voxels to image voxels of the form % y = R*U*x + c, which means zoom and shear the positions in the template, % and then do a rigid body rotation (and also add the translation). % We are not interested in the translations and rotations - only in the % local zooms and shears. Therefore all the information we need is in % the matrix U, which is simply obtained by U=(A'*A)^(1/2). % Note that the zooms and shears are done while in the orientation of % the template, before rotations to the orientation of the images are % introduced. % % Strain tensors are defined that model the amount of distortion. If % there is no strain, then the tensors are all zero. Generically, % the family of Lagrangean strain tensors are given by: % (U^m-eye(3))/m when m~=0, and logm(U) when m==0. % % %_______________________________________________________________________ % %W% John Ashburner %E% global sptl_BB sptl_Vx BCH SPMid = spm('FnBanner',mfilename,'%A%'); [Finter,Fgraph,CmdLine] = spm('FnUIsetup','Deformations'); spm_help('!ContextHelp',mfilename); a1 = spm_input('Write what?',1,'m',... ['Deformations|Jacobian Matrices|Jacobian Determinants|' ... 'Strain Tensors, m=-2 (Almansi)|Strain Tensors, m=-1 |Strain Tensors, m= 0 (Hencky)|'... 'Strain Tensors, m= 1 (Biot) |Strain Tensors, m= 2 (Green)'],... [100 101 102 -2 -1 0 1 2],3,'batch',{},'option'); if isempty(BCH), files = spm_get(Inf,'*_sn3d.mat','Select *_sn3d.mat files'); else, files = spm_input('batch', {},'sn3d_files'); end; bboxes = [ -78 78 -112 76 -50 85               -64 64 -104 68 -28 72               -90 91 -126 91 -72 109               -95 95 -112 76 -50 95]; bbprompt = [' -78:78 -112:76 -50:85 (Default)|'...              ' -64:64 -104:68 -28:72 (SPM95) |'...              ' -90:91 -126:91 -72:109 (Template)|'...              ' -95:95 -112:76 -50:95 ']; voxdims = [ 1 1 1 ; 2 2 2 ; 3 3 3 ; 4 4 4 ; 5 5 5 ; 6 6 6 ; 7 7 7 ; 8 8 8 ; 9 9 9 ; 10 10 10]; voxprompts = ' 1 1 1 | 2 2 2 | 3 3 3 | 4 4 4 | 5 5 5 | 6 6 6 | 7 7 7 | 8 8 8 | 9 9 9 | 10 10 10'; bb = sptl_BB; if prod(size(bb)) == 6, tmp = find( sptl_BB(1) == bboxes(:,1) & sptl_BB(2) == bboxes(:,2) & ... sptl_BB(3) == bboxes(:,3) & sptl_BB(4) == bboxes(:,4) & ... sptl_BB(5) == bboxes(:,5) & sptl_BB(6) == bboxes(:,6)); if isempty(tmp), tmp = size(bboxes,1)+1; end; else, tmp = size(bboxes,1)+2; bb = reshape(bboxes(1,:),2,3); end; ans = spm_input('Bounding Box?','+1','m',... [ bbprompt '|Customise'], [1:size(bboxes,1) 0],... tmp,'batch',{},'bounding_box'); if ans>0, bb=reshape(bboxes(ans,:),2,3); else, if prod(size(bb)) ~= 6, bb = reshape(bboxes(1,:),2,3); end; directions = 'XYZ'; for d=1:3, str = sprintf('%d %d', bb(1,d), bb(2,d)); bb(:,d) = spm_input(['Bounding Box ' directions(d) ],.... '+1', 'e',str, 2,'batch',{},... sprintf('direction%d',d)); end; end; Vox = sptl_Vx; if prod(size(Vox)) == 3, tmp = find(voxdims(:,1) == Vox(1) & voxdims(:,2) == Vox(2) & voxdims(:,3) == Vox(3)); if isempty(tmp), tmp = size(voxdims,1)+1; end; else, tmp = size(voxdims,1)+2; end; ans = spm_input(... ['Voxel Sizes?'], '+1','m', [ voxprompts .... '|Customise'], [1:size(voxdims,1) 0],.... tmp,'batch',{},'voxel_sizes'); if ans>0, Vox = voxdims(ans,:); else, vxdef = [8 8 8]; if (prod(size(Vox)) ~= 3) vxdef = [5 5 5]; end Vox = spm_input('Voxel Sizes ','+0', 'e', ... sprintf('%d %d %d', vxdef(1), vxdef(2), vxdef(3)), 3,... 'batch',{},'voxel_sizes_custom')'; Vox = reshape(Vox,1,3); end; for i=1:size(files,1), sn3d(i) = load(deblank(files(i,:))); end; for i=1:size(files,1), sn3d(i).fname = deblank(files(i,:)); end; if a1<100, spm_progress_bar('Init',length(sn3d),['Computing Tensors (m= ' num2str(a1) ')'],'volumes completed'); elseif a1==100, spm_progress_bar('Init',length(sn3d),['Computing Deformations'],'volumes completed'); elseif a1==101, spm_progress_bar('Init',length(sn3d),['Computing Jacobian Matrices'],'volumes completed'); elseif a1==102, spm_progress_bar('Init',length(sn3d),['Computing Jacobian Determinants'],'volumes completed'); end; spm('Pointer','Watch') for i=1:length(sn3d), spm('FigName',['Deformations: working on subj ' num2str(i)],Finter,CmdLine);drawnow; if a1<100, write_tensor(sn3d(i),Vox,bb,a1); elseif a1==100, spm_write_defs(sn3d(i),Vox,bb); elseif a1==101, write_jacobianm(sn3d(i),Vox,bb); elseif a1==102, write_det(sn3d(i),Vox,bb); end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); spm('FigName','Deformations: done',Finter,CmdLine); spm('Pointer'); return; %_______________________________________________________________________ %_______________________________________________________________________ function write_jacobianm(sn3d,vox,bb) vo = init_vo(sn3d,vox,bb); for i=1:3, for j=1:3, [pth,nm,xt,vr] = fileparts(deblank(sn3d.fname)); if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end; VO(i,j) = vo; VO(i,j).fname = fullfile(pth,['a' num2str(i) num2str(j) '_' nm '.img']); VO(i,j).dim(4) = spm_type('float'); VO(i,j).pinfo = [1 0 0]'; VO(i,j).descrip = ['Jacobian_Matrix(' num2str(i) ',' num2str(j) ')']; VO(i,j) = spm_create_image(VO(i,j)); end; end; for p=1:vo.dim(3), A = get_jacobian(sn3d, vo, p); for i=1:3, for j=1:3, VO(i,j) = spm_write_plane(VO(i,j),A(:,:,i,j),p); end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function write_det(sn3d,vox,bb) VO = init_vo(sn3d,vox,bb); [pth,nm,xt,vr] = fileparts(deblank(sn3d.fname)); if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end; VO.fname = fullfile(pth,['j_' nm '.img']); VO.dim(4) = spm_type('float'); VO.pinfo = [1 0 0]'; VO.descrip = ['Jacobian_Determinant']; VO = spm_create_image(VO); tmp = sn3d.MF*sn3d.Affine*inv(sn3d.MG); sgn = sign(det(tmp(1:3,1:3))); for p=1:VO.dim(3), A = get_jacobian(sn3d, VO(1,1), p); dtA = A(:,:,1,1).*(A(:,:,2,2).*A(:,:,3,3) - A(:,:,2,3).*A(:,:,3,2)) ... - A(:,:,2,1).*(A(:,:,1,2).*A(:,:,3,3) - A(:,:,1,3).*A(:,:,3,2)) ... + A(:,:,3,1).*(A(:,:,1,2).*A(:,:,2,3) - A(:,:,1,3).*A(:,:,2,2)); if sgn < 0, dtA = -dtA; end; VO = spm_write_plane(VO,dtA,p); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function write_tensor(sn3d,vox,bb,m) vo = init_vo(sn3d,vox,bb); ij = [1 1; 2 1; 3 1; 2 2; 3 2; 3 3]; for i=1:6, [pth,nm,xt,vr] = fileparts(deblank(sn3d.fname)); if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end; VO(i) = vo; VO(i).fname = fullfile(pth,['e' num2str(ij(i,1)) num2str(ij(i,2)) 'm' num2str(m) '_' nm '.img']); VO(i).dim(4) = spm_type('float'); VO(i).pinfo = [1 0 0]'; VO(i).descrip = ['Strain_Tensor(' num2str(ij(i,1)) ',' num2str(ij(i,2)) ') - m=' num2str(m)]; VO(i) = spm_create_image(VO(i)); end; for p=1:vo.dim(3), A = get_jacobian(sn3d, vo, p); E = tensors_from_jacobian(A,m); for i=1:6, VO(i) = spm_write_plane(VO(i),E(:,:,i),p); end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function VO = init_vo(sn3d,vox,bb) if nargin>=2,         x = (bb(1,1):vox(1):bb(2,1))/sn3d.Dims(3,1) + sn3d.Dims(4,1);         y = (bb(1,2):vox(2):bb(2,2))/sn3d.Dims(3,2) + sn3d.Dims(4,2);         z = (bb(1,3):vox(3):bb(2,3))/sn3d.Dims(3,3) + sn3d.Dims(4,3);         dim = [length(x) length(y) length(z)];         origin = -bb(1,:)./vox + 1;         off = -vox.*origin;         mat = [vox(1) 0 0 off(1) ; 0 vox(2) 0 off(2) ; 0 0 vox(3) off(3) ; 0 0 0 1]; else,         dim = sn3d.Dims(1,:);         x = 1:dim(1);         y = 1:dim(2);         z = 1:dim(3);         mat = sn3d.MG; end; VO = struct('fname','',...         'dim',[dim NaN], 'mat',mat,...         'pinfo',[NaN NaN NaN]',...         'descrip',''); return; %_______________________________________________________________________ %_______________________________________________________________________ function A = get_jacobian(sn3d, VO, j) % Each element of the Jacobian matrix field consists of something analagous to the following: % maple diff( m11*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m12*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m13, x1) % maple diff( m11*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m12*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m13, x2) % maple diff( m21*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m22*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m23, x1) % maple diff( m21*(x1+p11*b1(x1,x2)+p12*b2(x1,x2)) + m22*(x2+p21*b1(x1,x2)+p22*b2(x1,x2)) + m23, x2) Dims = sn3d.Dims; MG = sn3d.MG; MF = sn3d.MF; Transform = sn3d.Transform; Affine = sn3d.Affine; dim = VO.dim(1:3); mat = VO.mat; % Assume transverse images, and obtain position of pixels in millimeters, % and convert to voxel space of template. %---------------------------------------------------------------------------- x = ((1:dim(1))*mat(1,1) + mat(1,4))/Dims(3,1) + Dims(4,1); y = ((1:dim(2))*mat(2,2) + mat(2,4))/Dims(3,2) + Dims(4,2); z = ( j*mat(3,3) + mat(3,4))/Dims(3,3) + Dims(4,3); X = x'*ones(1,dim(2)); Y = ones(dim(1),1)*y; bbX = spm_dctmtx(Dims(1,1),Dims(2,1),x-1); bbY = spm_dctmtx(Dims(1,2),Dims(2,2),y-1); bbZ = spm_dctmtx(Dims(1,3),Dims(2,3),z-1); dbX = spm_dctmtx(Dims(1,1),Dims(2,1),x-1,'diff'); dbY = spm_dctmtx(Dims(1,2),Dims(2,2),y-1,'diff'); dbZ = spm_dctmtx(Dims(1,3),Dims(2,3),z-1,'diff'); M = MF*Affine*inv(MG); sgn = sign(det(M(1:3,1:3))); % Nonlinear deformations %---------------------------------------------------------------------------- % 2D transforms for each plane tbx = reshape( reshape(Transform(:,1),Dims(2,1)*Dims(2,2),Dims(2,3)) *bbZ', Dims(2,1), Dims(2,2) ); tby = reshape( reshape(Transform(:,2),Dims(2,1)*Dims(2,2),Dims(2,3)) *bbZ', Dims(2,1), Dims(2,2) ); tbz = reshape( reshape(Transform(:,3),Dims(2,1)*Dims(2,2),Dims(2,3)) *bbZ', Dims(2,1), Dims(2,2) ); tdx = reshape( reshape(Transform(:,1),Dims(2,1)*Dims(2,2),Dims(2,3)) *dbZ', Dims(2,1), Dims(2,2) ); tdy = reshape( reshape(Transform(:,2),Dims(2,1)*Dims(2,2),Dims(2,3)) *dbZ', Dims(2,1), Dims(2,2) ); tdz = reshape( reshape(Transform(:,3),Dims(2,1)*Dims(2,2),Dims(2,3)) *dbZ', Dims(2,1), Dims(2,2) ); % Jacobian of transformation from template % to affine registered image. %--------------------------------------------- j11 = dbX*tbx*bbY' + 1; j12 = bbX*tbx*dbY'; j13 = bbX*tdx*bbY'; j21 = dbX*tby*bbY'; j22 = bbX*tby*dbY' + 1; j23 = bbX*tdy*bbY'; j31 = dbX*tbz*bbY'; j32 = bbX*tbz*dbY'; j33 = bbX*tdz*bbY' + 1; % Combine Jacobian of transformation from % template to affine registered image, with % Jacobian of transformation from affine % registered image to original image. %--------------------------------------------- A = zeros([size(j11) 3 3]); A(:,:,1,1) = M(1,1)*j11 + M(1,2)*j21 + M(1,3)*j31; A(:,:,1,2) = M(1,1)*j12 + M(1,2)*j22 + M(1,3)*j32; A(:,:,1,3) = M(1,1)*j13 + M(1,2)*j23 + M(1,3)*j33; A(:,:,2,1) = M(2,1)*j11 + M(2,2)*j21 + M(2,3)*j31; A(:,:,2,2) = M(2,1)*j12 + M(2,2)*j22 + M(2,3)*j32; A(:,:,2,3) = M(2,1)*j13 + M(2,2)*j23 + M(2,3)*j33; A(:,:,3,1) = M(3,1)*j11 + M(3,2)*j21 + M(3,3)*j31; A(:,:,3,2) = M(3,1)*j12 + M(3,2)*j22 + M(3,3)*j32; A(:,:,3,3) = M(3,1)*j13 + M(3,2)*j23 + M(3,3)*j33; return; %_______________________________________________________________________ %_______________________________________________________________________ function tensor = tensors_from_jacobian(A, m) d = size(A); tensor = zeros([d(1:2) 6]); I = eye(3); if m==0, % Hencky for j=1:d(2), for i=1:d(1), J = squeeze(A(i,j,:,:)); T = logm(J'*J)*0.5; tensor(i,j,:) = T([1 2 3 5 6 9]); end; end; elseif m==2, % for j=1:d(2), for i=1:d(1), J = squeeze(A(i,j,:,:)); T = 0.5*(J'*J - I); tensor(i,j,:) = T([1 2 3 5 6 9]); end; end; else, for j=1:d(2), for i=1:d(1), J = squeeze(A(i,j,:,:)); T = ((J'*J)^(m/2)-I)/m; tensor(i,j,:) = T([1 2 3 5 6 9]); end; end; end; return; %_______________________________________________________________________ %_______________________________________________________________________ function spm_write_defs(sn3d, vox,bb) % Write deformation field. % FORMAT spm_write_defs(matname, vox,bb) % sn3d - information from the `_sn3d.mat' file containing the spatial % normalization parameters. % The deformations are stored in y1.img, y2.img and y3.img %_______________________________________________________________________ % %W% John Ashburner %E% matname = deblank(sn3d.fname); Dims = sn3d.Dims; MG = sn3d.MG; MF = sn3d.MF; Transform = sn3d.Transform; Affine = sn3d.Affine; if nargin>=3, x = (bb(1,1):vox(1):bb(2,1))/Dims(3,1) + Dims(4,1); y = (bb(1,2):vox(2):bb(2,2))/Dims(3,2) + Dims(4,2); z = (bb(1,3):vox(3):bb(2,3))/Dims(3,3) + Dims(4,3); dim = [length(x) length(y) length(z)]; origin = -bb(1,:)./vox + 1; off = -vox.*origin; mat = [vox(1) 0 0 off(1) ; 0 vox(2) 0 off(2) ; 0 0 vox(3) off(3) ; 0 0 0 1]; else, dim = Dims(1,:); x = 1:dim(1); y = 1:dim(2); z = 1:dim(3); mat = MG; end; [pth,nm,xt,vr] = fileparts(deblank(matname)); if length(nm)>6 & strcmp(nm(end-4:end),'_sn3d'), nm=nm(1:end-5); end; VX = struct('fname',fullfile(pth,['y1_' nm '.img']), 'dim',[dim 16], ... 'mat',mat, 'pinfo',[1 0 0]', 'descrip','Deformation field - X'); VY = struct('fname',fullfile(pth,['y2_' nm '.img']), 'dim',[dim 16], ... 'mat',mat, 'pinfo',[1 0 0]', 'descrip','Deformation field - Y'); VZ = struct('fname',fullfile(pth,['y3_' nm '.img']), 'dim',[dim 16], ... 'mat',mat, 'pinfo',[1 0 0]', 'descrip','Deformation field - Z'); X = x'*ones(1,VX.dim(2)); Y = ones(VX.dim(1),1)*y; if (prod(Dims(2,:)) == 0), affine_only = 1; basX = 0; tx = 0; basY = 0; ty = 0; basZ = 0; tz = 0; str = 'affine'; else affine_only = 0; basX = spm_dctmtx(Dims(1,1),Dims(2,1),x-1); basY = spm_dctmtx(Dims(1,2),Dims(2,2),y-1); basZ = spm_dctmtx(Dims(1,3),Dims(2,3),z-1); str = 'nonlinear'; end spm_create_image(VX); spm_create_image(VY); spm_create_image(VZ); % Cycle over planes %---------------------------------------------------------------------------- for j=1:length(z) % Nonlinear deformations %---------------------------------------------------------------------------- if (~affine_only) % 2D transforms for each plane tx = reshape( reshape(Transform(:,1),Dims(2,1)*Dims(2,2),Dims(2,3)) *basZ(j,:)', Dims(2,1), Dims(2,2) ); ty = reshape( reshape(Transform(:,2),Dims(2,1)*Dims(2,2),Dims(2,3)) *basZ(j,:)', Dims(2,1), Dims(2,2) ); tz = reshape( reshape(Transform(:,3),Dims(2,1)*Dims(2,2),Dims(2,3)) *basZ(j,:)', Dims(2,1), Dims(2,2) ); X1 = X + basX*tx*basY'; Y1 = Y + basX*ty*basY'; Z1 = z(j) + basX*tz*basY'; end % Sample each volume %---------------------------------------------------------------------------- Mult = Affine; if (~affine_only) X2= Mult(1,1)*X1 + Mult(1,2)*Y1 + Mult(1,3)*Z1 + Mult(1,4); Y2= Mult(2,1)*X1 + Mult(2,2)*Y1 + Mult(2,3)*Z1 + Mult(2,4); Z2= Mult(3,1)*X1 + Mult(3,2)*Y1 + Mult(3,3)*Z1 + Mult(3,4); else X2= Mult(1,1)*X + Mult(1,2)*Y + (Mult(1,3)*z(j) + Mult(1,4)); Y2= Mult(2,1)*X + Mult(2,2)*Y + (Mult(2,3)*z(j) + Mult(2,4)); Z2= Mult(3,1)*X + Mult(3,2)*Y + (Mult(3,3)*z(j) + Mult(3,4)); end spm_write_plane(VX,X2,j); spm_write_plane(VY,Y2,j); spm_write_plane(VZ,Z2,j); end return; %_______________________________________________________________________

Top of Message | Previous Page | Permalink

JiscMail Tools


RSS Feeds and Sharing


Advanced Options


Archives

May 2024
April 2024
March 2024
February 2024
January 2024
December 2023
November 2023
October 2023
September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2022
November 2022
October 2022
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
2006
2005
2004
2003
2002
2001
2000
1999
1998


JiscMail is a Jisc service.

View our service policies at https://www.jiscmail.ac.uk/policyandsecurity/ and Jisc's privacy policy at https://www.jisc.ac.uk/website/privacy-notice

For help and support help@jisc.ac.uk

Secured by F-Secure Anti-Virus CataList Email List Search Powered by the LISTSERV Email List Manager