What designs and statistical methods are used in Primary Care research?

Campbell MJ Armstrong GK Rigby AS Institute of Primary Care University of Sheffield m.j.campbell@sheffield.ac.uk

Summary of talk

- Review of use of statistics in Primary care and General Practice
- Describe a survey of 3 UK Primary Care Journals
- Discussion

Use of statistics in Primary Care

- Traditionally statisticians in Medical School located in Public Health Departments
- Statistics is distinct from Epidemiology
- Many GPs engaged in research may not have access to professional medical statisticians

Different uses of statistics

Statistics is more than data analysis Design of studies Sample size estimation Quantitative thinking Data display Risk communication Survey of Statistical methods in Primary Care Research

3 statisticians Each reviewed all papers in one journal for the year 2000 **Exclude** : editorials, Reviews and Views, correspondence and discussion papers Used checklists to decide on design methods used in analysis

Methods

10 papers were reviewed jointly to discuss scoring and disputes resolved by discussion Queries were brought to a meeting for joint resolution

Checklist based on earlier surveys

Journals

British Medical Journal (General Practice Section) (n=79) General medical journal *Family Practice* (n=81) Less academic - aimed at GPs British Journal of General Practice (n=145) Journal for Royal College of General Practitioners

Results of Survey: design of studies

Design	BMJ	Family Practice	BJGP	L.C.C.
	79 papers	81 papers	145 papers	Total
	n (%)	n (%)	n (%)	
Cross-sectional	18(22.7)	29(35.8)	57 (39.3)	104
study	6 5 5 5	いたていたいよう		-7757
Qualitative	2(2.5)	17(21.0)	16 (11.0)	35
Cohort	7(8.8)	4(4.9)	21(14.5)	32
RCT	12 (15.2)	8(9.9)	7(4.8)	27
Reviews	4 (5.1)	0(0)	8(5.5)	12
Reliability/	3 (3.8)	0 (0)	8(5.5)	1 11
diagnosis		The sector of	STIFFE WILL	
Cluster RCT	5(6.3)	2(2.5)	1 (0.7)	8
Case control	4(5.1)	3(3.7)	1(0.7)	8
Other	24(30.3)	18(22.2)	26(17.9)	68

Results of Survey: Statistical Methods: top 6

Methods	<i>BMJ</i> 79	Family Practice	BJGP 145	Total
	papers n (%)	81 papers n (%)	papers n (%)	n=305
No Statistics or simple summaries	24 (30.4)	33 (40.7)	47 (32.4)	104
Chi-squared tests	13 (16.5)	19 (23.5)	40 (27.6)	72
Logistic regression	14 (17.7)	11(7.5)	19(13.1)	44
Odds ratios/relative risks	8(10.1)	14(17.2)	13 (9.0)	35
t-tests	5 (6.3)	14 (17.2)	22 (15.2)	31
Non-parametric methods	11 (13.9)	4 (4.9)	24(16.6)	29
Regression (simple/multiple)	8 (10.1)	11(13.6)	10(6.9)	29

Results of survey: Statistical methods:remainder

Methods	BMJ	Family	BJGP	
PARAL DIST DEPT	79	Practice	145	Total
	papers	81 papers	papers	n=305
O-DATE AU DEA	n (%)	n (%)	n (%)	(11) -
Summaries with confidence	14 (17.7)	6 (7.4)	3 (2.1)	23
intervals	11511729			115-14
Карра	2 (2.6)	4 (4.9)	9 (6.2)	15
Sensitivity/specificity	4 (5.1)	0 (0)	10 (6.9)	14
Pearson correlation	2 (2.4)	6 (7.4)	6 (4.1)	14
Multiple comparisons	2 (2.6)	4 (4.9)	4 (2.8)	10
ANOVA	5 (6.3)	0 (0)	4 (2.8)	9
Random effects models	4(5.1)	0 (0)	4 (2.8)	8
Likelihood ratio	3(3.8)	0 (0)	3 (2.1)	6
Survival analysis (Kaplan	6(7.2)	0 (0)	0 (0)	6
Meier/Cox regression)	the second	11 state		
Other	6(7.6)	12(14.8)	14(9.7)	32

Other surveys

Methods	NEJM ¹ Chinese Med J ²		Primary Care	
	1978/79	1995	2000	
No stats	27	40	34	
t-tests	44	38	10	
X ² tests	27	23	26	
Non-parametric	11 6977	2	10	
Regression	13	4	10	
Logistic	4	0	15	
Odds ratios	9	2	12	

Emerson JD Colditz GA Use of statistical analysis in the New England Journal of Medicine. NEJM, 1983, 709-713.
 Wang Q, Zhang B. Research Design and Statistical methods in Chinese Medical Journals. JAMA 1998, 283-285.

Conclusions: Design

Most common sort of study in Primary Care journals is a cross-sectional study (e.g. prevalence study, questionnaire survey) Cohort design popular Subjects followed up over time Substantial number of RCTs, including cluster RCTs

Conclusions: Analysis

Fewer t-tests, than other surveys

Perhaps Primary Care more interested in binary data

More logistic regression than other surveys

Availability of software?

Wide range of other methods

Conclusions for teaching: Design

Cross-sectional studies Emphasise getting a representative sample Ensure response rates reported **Cohort studies** Subjects followed up over time **RCTs** Primary care = pragmatic trials? Cluster randomised trial design more common in Primary Care

Conclusions for Teaching: Analysis

Concentrate on binary data Odds ratios/relative risks instead of t-tests Cover logistic regression as well as multiple regression Binary data analysis not well covered by

many current elementary text books

Conclusion

Knowledge of elementary statistics is required to read and understand the majority of research papers published in Primary Care

Understanding chi-squared tests, odds ratios/relative risks increases coverage of understandable papers by 25%