Examining associations between gestational weight gain, birthweight and gestational age.

Kate Tilling, Corrie Macdonald-Wallis, Abigail Fraser, Laura D Howe, Tom Palmer and Debbie A Lawlor

Weight gain during pregnancy

 Maternal pre-pregnancy weight and gestational weight gain (GWG) associated with adverse perinatal health outcomes

IOM guidelines:

Pre-pregnancy BMI	Recommended weight gain (kg)
<18.5kg/m2	12.5-18
18.5-24.9kg/m2	11.5-16
25-29.9kg/m2	7-11.5
>=30kg/m2	5-9

Measuring GWG

- 1) total weight gained
- 2) rate of weight change
- 3) compliance with IOM recommendations
- All require baseline and final weights taken at same gestational ages.
- None investigate pattern of weight change.
- Confounding with length of gestation

IOM and length of gestation

Length of gestation:

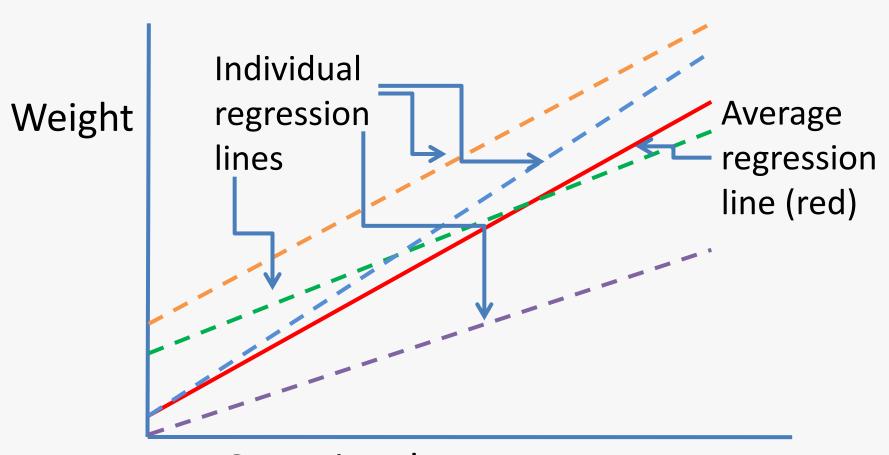
0.26 weeks shorter for <IOM rec

0.10 weeks longer for >IOM rec

Could be just artifact:

IOM based on difference between last and first weight measures

If born early, last weight measure will be lower.

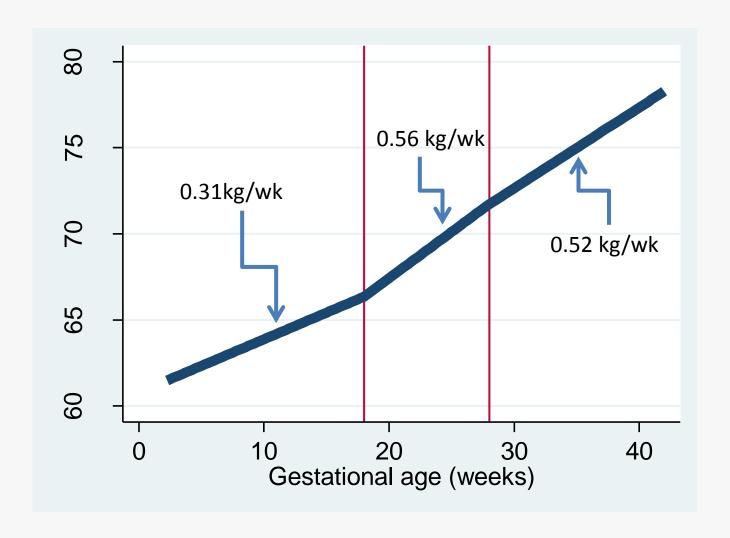

ALSPAC study - GWG

- Prospectively recruited 14,541 women in Avon, UK with EDD 1/4/91-31/12/92
- 11,702 term, singleton, livebirths surviving to at least 1 yr of age consented to data abstraction
- 6 midwives abstracted data from obstetric medical records

ALSPAC study - GWG

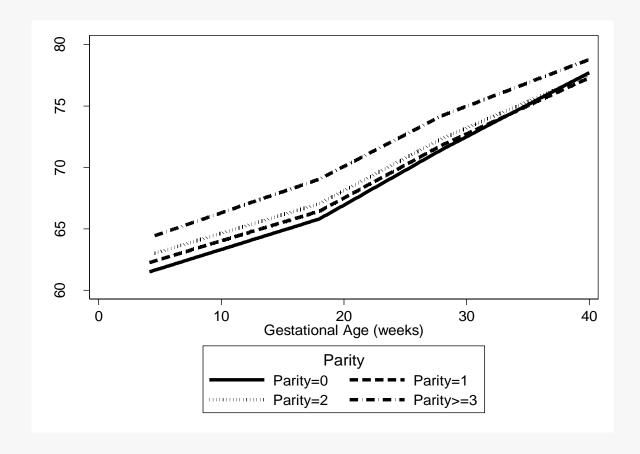
- 1) Number of measures varies by gestational age:
- 1106 women had weight <8 weeks
- 105 had weight>42 weeks.
- 2) Number of measures varies between women:
- Median number measures 10 (IQR 8, 11)
- 3) Measures on same woman correlated
 Social and Community Medicine

Multilevel models


Gestational age

Multilevel models

- Fractional polynomials used to find bestfitting pattern of weight gain
- Linear splines used to approximate curve
- Knots positioned at whole weeks of gestational age.
- Optimal knotpoints at 18 and 28 weeks
- For each individual, model estimates prepregnancy weight, weight gain from 0-18,


Pattern of weight gain

Model fit

Gestational age (weeks)	Number of measures	Actual weight (mean (sd))	Observed- predicted (mean (sd))	Observed- predicted (95% range)
<8	1,106	64.5 (12.4)	0.29 (0.7)	-0.8, 1.4
8-13	8,723	64.4 (11.9)	-0.02 (0.7)	-1.1, 1.0
13-18	11,023	65.6 (11.7)	-0.09 (0.7)	-1.3, 1.1
18-23	10,141	68.0 (11.8)	0.07 (0.8)	-1.1, 1.2
23-28	11,570	70.7 (11.8)	0.07 (0.8)	-1.2, 1.3
28-33	17,467	73.0 (11.8)	-0.06 (0.8)	-1.3, 1.2
33-38	20,273	75.4 (12.0)	0.02 (0.8)	-1.2, 1.2
>38	10,419	77.5 (12.1)	0.00 (0.7)	-1.1, 1,2

Parity and weight gain

Birthweight and GWG

BWT Mean=3.45kg, SD=0.52kg N= 9398

Regression of BWT on pre-pregnancy weight, IOM guidelines and covariates

BWT increased by 0.006kg for each 1kg increase in pre-pregnancy weight

BWT decreased by 0.17kg if GWG<IOM rec

BWT increased by 0.11kg if GWG>IOM rec

2) Regression of BWT on observed first and last

GWG

BWT

BWTi= $(\alpha+vi)$ +other covariates

Random effects matrix – allows BWT and GWG to be correlated

Estimate variances and covariances of:

uoi

u1i

u2i

u2i

Use random effects matrices to calculate regression coefficients.

```
β(BWT/pre-pregnancy weight) =
Covariance(BWT/pre-pregnancy
Variance(pight)) regnancy
weight)
```

Can also calculate adjusted regression coefficients cov(BWT/GWG018)*var(ppgWT)-cov(GWG018/ppgWT)*cov(ppgWT/BWT)

β(BWT/Wt gain 0-18wks|pre-pregnancy weight) = var(GWG018)*var(ppgWT)-cov2(GWG018\ppgWT)

Confidence intervals?

Non-linear combination of variances and covariances

Draw from the random effects matrix and use centiles of the realisations

Both implemented within Stata

Fixed effects

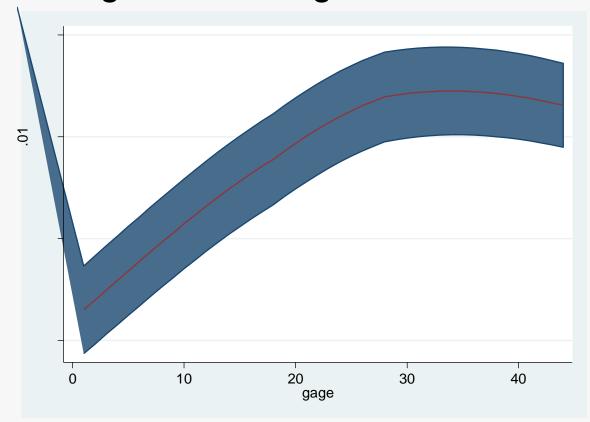
GWG greater in	BWT greater in
Nulliparous women	Multiparous women
Non-smokers	Non-smokers
Women who give up smoking	
Taller women	Taller women
Mothers of male offspring	Male offspring

Random effects variance/covariance matrix:

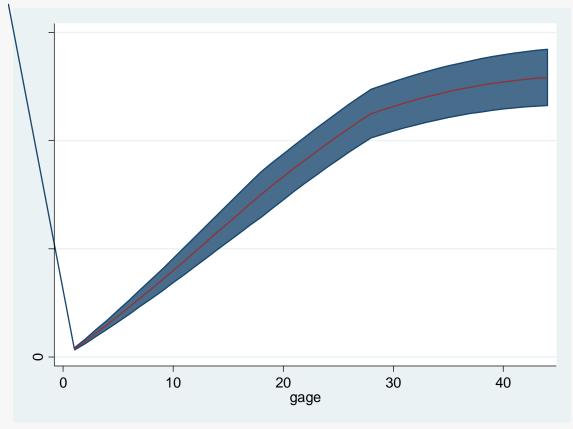
	BWT cons	Pre-pg wt	GWG 0-18	GWG 18-28	GWG 28-40
BWT cons	0.24				
Pre-pg wt	0.89	138			
GWG 0-18	0.013	-1.02	0.05		
GWG 18-28	0.015	-0.45	0.012	0.04	
GWG 28-40	0.011	0.023	0.005	0.018	0.04

Regression of birthweight (mean 3.4 (0.52) kg) on:

GWG	Mean (SD)	Unadjusted	Adjusted for previous GWG
Pre-pregnancy wt (kg)	60.7 (12.3)	0.006 (0.0004)	
Wt gain 0-18 weeks (kg/wk)	0.31 (0.18)	0.26 (0.03)	0.47 (0.03)
Wt gain 18-28 weeks (kg/wk)	0.54 (0.17)	0.42 (0.03)	0.42 (0.04)
Wt gain28-40 weeks (kg/wk)	0.47 (0.20)	0.26 (0.03)	0.03 (0.03)


Use random effects matrices to calculate regression coefficients.

E.g. $\beta(BWT/weight at time t)$


and

β(BWT/weight at time t, adjusting for pre-pregnancy weight)

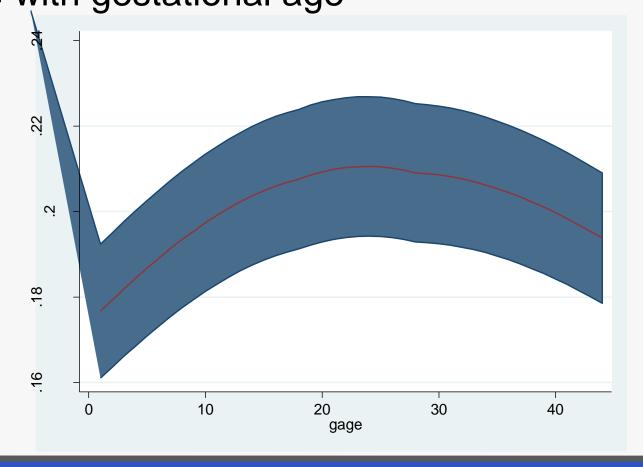
Unadjusted regression coefficients for BWT on GWG with gestational age

Regression coefficients for BWT on GWG with gestational age, adjusted for pre-pregnancy wt

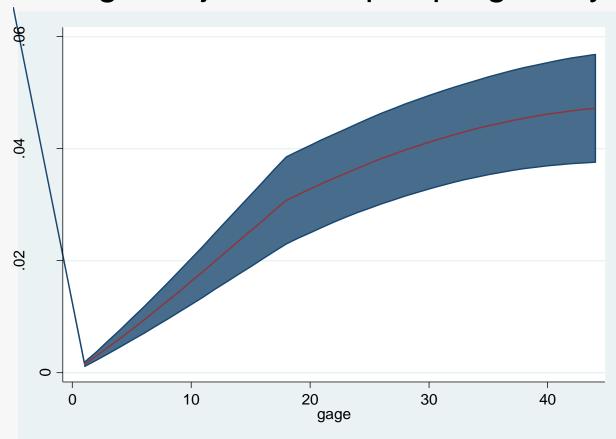
Other outcomes

Interest in whether GWG related to:

- CVD outcomes in mother
- Growth in offspring
- CVD outcomes in offspring
- Cognitive outcomes in offspring


Joint Model GWG/Wt at age 9

Regression of offspring wt at age 9 (34.7 (sd 7.4) kg) on:


GWG	Mean (SD)	Unadjusted	Adjusted for previous GWG
Pre-pregnancy wt (kg)	60.7 (12.3)	0.17 (0.008)	
Wt gain 0-18 weeks (kg/wk)	0.31 (0.18)	0.31 (0.57)	4.69 (0.59)
Wt gain 18-28 weeks (kg/wk)	0.54 (0.17)	0.78 (0.59)	1.95 (0.67)
Wt gain28-40 weeks (kg/wk)	0.47 (0.20)	2.59 (0.50)	1.43 (0.64)

Joint model GWG/WT at 9

Unadjusted regression coefficients for WT at 9 on GWG with gestational age

Regression coefficients for WT at 9 on GWG with gestational age, adjusted for pre-pregnancy wt

Joint models

Can be formulated to give equivalent results to SEMs

Assume:

- Normal distributions
- Linear relationships
- No interactions

One alternative

Use level-2 residuals as exposures

Lifecourse models (Mishra et al IJE)

A structured approach to modelling the effects of binary exposure variables over the life course
 Gita Mishra et al, Int J Epidemiol. 2009 April; 38(2): 528–537.

- Methods:
 - Fit saturated model for outcome on binary exposures

BWT as outcome, continuous exposures

Model	AIC	R-squared
Indep effects	12440.7	17.3%
Saturated	12390.3	17.8%
Accumulation	12495.7	16.8%
Critical period - early	12606.3	15.8%
Critical period - mid	12570.1	16.1%
Sensitive period – late*	12438.7	17.3%

^{*} Early=mid, no effect of late GWG

Conclusions

- Can model several outcomes jointly (have also modelled with length of gestation)
- Calculating regression coefficients straightforward (expressions get complex)
- Confidence intervals either nlcom or simulation give results similar to equivalent SEMs
- Avoids problem of length of gestation being related to total weight gain
- Lifecourse models need alternative metrics?

