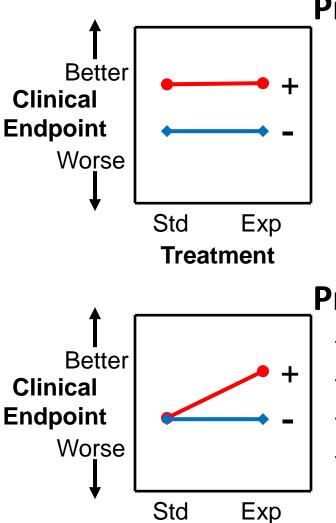


An adaptive two-stage design


for an early phase study of multiple biomarkers

Toby Prevost

Outline:

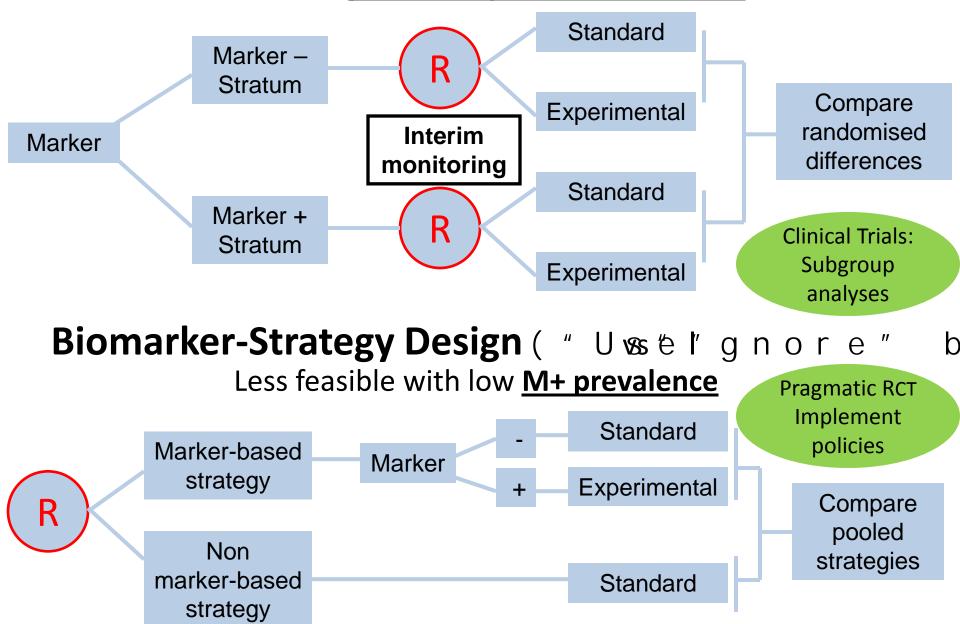
What are biomarkers --- which design when? A two-stage study to inform a biomarker trial Considerations for primary care research

Biomarkers – classifications and uses

Treatment

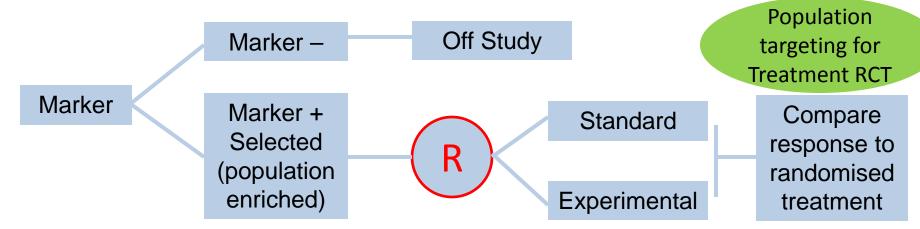
Prognostic:

- associated with **disease outcome**
 - (not specific to treatment)
- risk assess (+,-) to stratify for any treatment


___Predictive:

- associated with treatment response
- M+ benefit from experimental tmt
- individualise therapy
- personalised medicine

Biomarkers – roles in trials of various designs...


Biomarker-Stratified Design (Full specification)

Recommended when preliminary evidence of effect is less robust

Enrichment Design (targeted/selected)

Requires evidence of lack of benefit of experimental treatment in M-

Choice of design depends on... evidence for a biomarker role... quality (reproducibility, validation – relevant, robust, accurate) effect size of marker-treatment relationship lack of benefit in Mprevalence of M+ finding those effective ones from multiple biomarkers practical limits of sample size, cost, turnaround ' C o mb i n saidntific) dinical, statistical and ethical c o n s i d e Requires early phase studies to fill gaps and increase potential

So what / References – biomarker trial design

Mandrekar SJ, Sargent DJ (2009) *J of Bio<u>pharmaceutical</u> <u>Statistics</u> 19:530-42 Clinical Trial Designs for Predictive Biomarker Validation: One size does not fit all.*

Mandrekar SJ, Sargent DJ (2009) *J Clin <u>Oncol</u>*. 27:4027–34 Clinical trial designs for predictive **biomarker** validation: **theoretical** considerations and **practical** challenges.

Freidlin B, McShane LM, Korn EL (2010) *J Natl <u>Cancer</u> Inst* 102:152–60 Randomized Clinical **Trials** With Biomarkers: **Design** Issues.

Buyse M (2007) *Eur J <u>Cancer</u> Suppl.* 5:89–95 Towards validation of **statistically reliable** biomarkers.

Zhou X, Liu S, Kim ES, Herbst RS, Lee JJ (2008) Clin <u>Trials</u>. 5:181-93 Bayesian adaptive design for targeted therapy development in lung cancer— a step toward personalized medicine.

The "client", the tal

Aim

Identify biomarkers specific to Psoriasis that predict response from treatment singly and in combination, sufficiently well to inform a larger scale trial and given scarce resources

Basic design (Non-experimental)

Healthy controls + Controls with different skin condition Psoriasis patients on treatment Evaluation of biomarkers in all Evaluation of treatment response in Psoriasis patients

A I ternative' Hypotheses
Biomarker distribution differs between patients & controls.
Response to treatment depends on biomarker.
Multiple biomarkers may predict and may usefully combine.
Useless biomarkers identifiable early in-study, saving resources

Example 1 – <u>Rheumatoid Arthritis</u> Study

Davis JM et al. Journal of Immunology 2010;184:7297-304.

Early RA group (n=25) / controls (n=15)

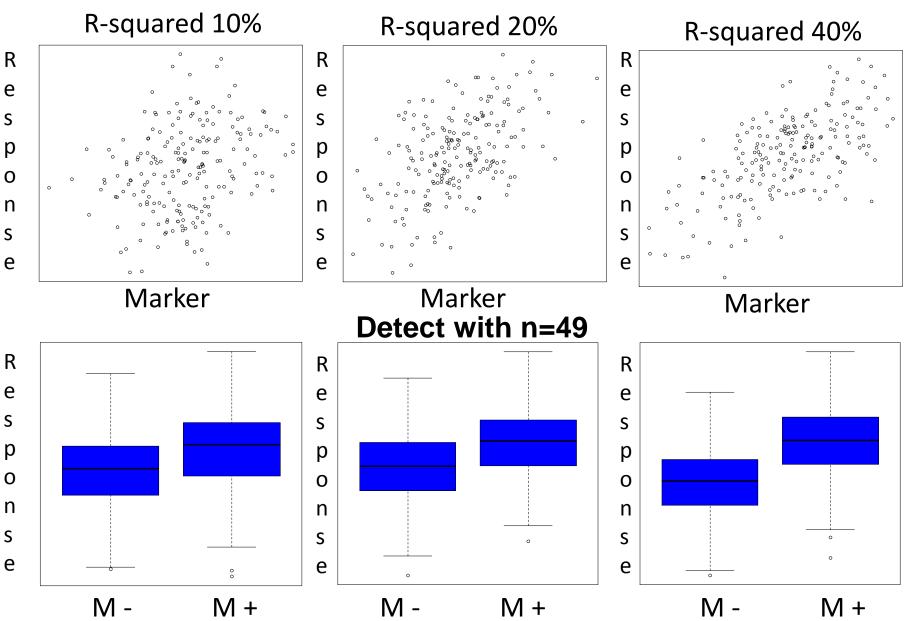
-develop immune response sc

But many variables / over-fitted model / abandoned methods Need to improve **reproducibility** of score **to increase sample size**

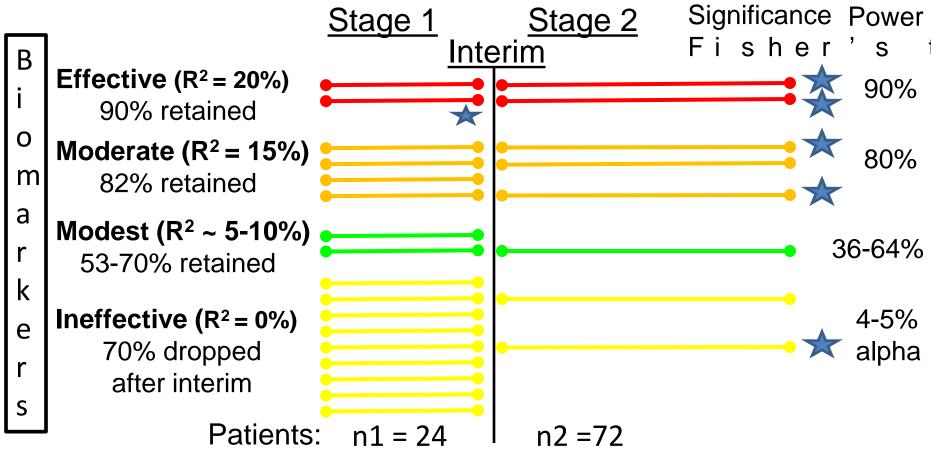
Example 2 – <u>Psoriasis</u> proof of principle Study

Kagami S et al. Journal of Investigative Dermatology 2010;130:1373-83.

n=5 patients treated with infliximab

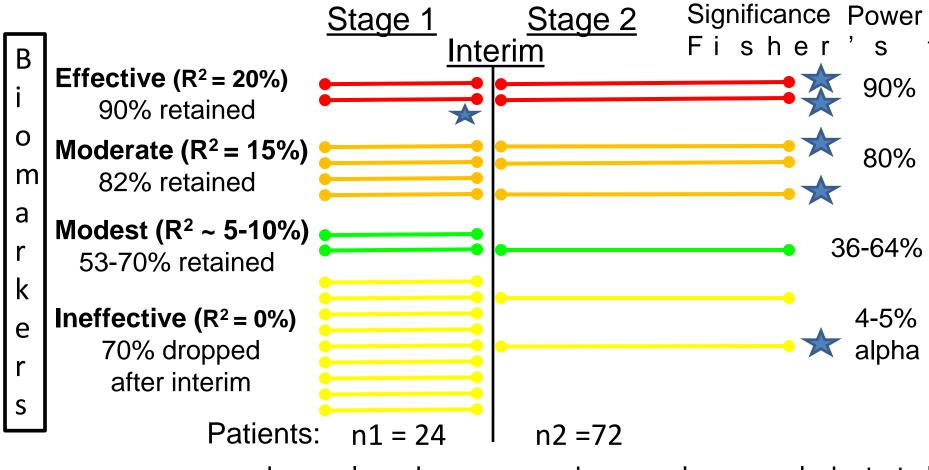

- decline in mean severity score
- decreases in Th17 / Th1 cells

(treatment) (response) (marker)


Assesspatient-level marker-response inlarger sampleConsidercontrol treatment to establish marker specific to infliximab

What effect size should be detectable?

(variation in treatment response explained by biomarker)


Alternatively: a 2-stage adaptive interim design

Bauer P, Kohne K Evaluation of experiments with adaptive interim analyses Biometrics 1994:50:1029-41

- early interim stopping: marker futility (p > 0.3; equivalent to $r^2 < 5\%$)
- a d d i t i o n a l "g u a r a n t e e "performoers r e t a
 larger sample (n2=72) with focused biomarkers to develop combination
 research into unbiased estimation of correlations and combinations

Alternatively: a 2-stage adaptive interim design

-power and alpha raised a litt

 - under H1 - 1.2% of tests produce opposite signed correlations reduces power by 0.4%

- under H0 – reduce Type 1 error rate by 2%
 if reject when signs of stage correlations are opposite

Further work – Jack Bowden

- Extend unbiased estimation to correlation coefficient
- Compare strategies for developing biomarker combinations
- Incorporate biomarker cost

Bowden J, Glimm E (2008) Unbiased Estimation of Selected Treatment Means in Two-Stage Trials. Biometrical Journal 50:515–27

Posch M, et al. (2005) Testing and estimation in flexible group sequential designs with adaptive treatment selection. Statistics in Medicine 24:3697–3714

Comparison with a primary care study

Two 2-stage studies	<u>Clinical study</u> to promote <i>biomarkers</i>	Primary care validation of <i>questions</i>	
Adapt by dropping	Biomarker(s)	Question(s)	
Outcome	Continuous – response on treatment	Binary – 'inheri of conditions	ted'
Stage 1 patients	Quarter	Half	
Interim rule	P>0.3	P>0.15	
Power	90%	95%	
Re-combine data?	Yes	No; conditional	

How can two stages offer value in early/late phases?
 Is it feasible/appropriate to re-combine stage data?

Concluding points

Biomarker trials

- " One size does not fit all" Later design choice informed by role/characteristics of marker
- Early phase studies increase potential to learn
 - which biomarkers / combination / prevalence
 - treatment specificity / effect size / which later phase design
- Consider adaptive element
 - cost-saving on markers
 - larger n & focus 2nd stage efforts on promising biomarkers
- Plan design and analysis together
 - to know the **effect size detectable**
 - with sample size based on power/ability to detect
 - analysis approach tested & tailored to objectives
 - towards markers valid / reproducible /applicable for purpose

Methodological research required