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Meta-analysis overview The heterogeneity issue

More challenges

Heterogeneity
The big bad wolf

@ When the effect of the intervention varies significantly from
one study to another.
@ It can be attributed to clinical and/or methodological
diversity.
@ Clinical: variability that arises from different populations,
interventions, outcomes and follow-up times.
e Methodological: relates to differences in trial design and
quality.
@ Detecting quantifying and dealing with heterogeneity can
be very hard.
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Meta-analysis overview

The heterogeneity issue
More challenges

Absence of heterogeneity

true effect

@ Assumes that the
true effects of the
studies are all

equal and
— deviations occur
because of
d : ‘ imprecision of
Chronic dissass - Prescription (FE modsl) results.

@ Analysed with the
fixed-effects
method.
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Meta-analysis overview The heterogeneity issue

More challenges

Presence of heterogeneity

@ Assumes that
there is variation in
the size of the true

‘ [ effect among

] d studies (in addition

to the imprecision

: > : : of results).

Chronic diseass - Prescription (DL model) @ Analysed with
random-effects
methods.

Moher, 2001

Cupples, 1984

true effects

Combined —{
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Meta-analysis overview : )
The heterogeneity issue

More challenges

Challenges with meta-analysis

@ Heterogeneity is common and the fixed-effect model is
under fire.

@ Methods are asymptotic: accuracy improves as studies
increase. But what if we only have a handful, as is usually
the case?

@ Almost all random-effects models (except Profile
Likelihood) do not take into account the uncertainty in 72.
Is this, practically, a problem?

@ DerSimonian-Laird is the most common method of
analysis, since it is easy to implement and widely available,
but is it the best?
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Meta-analysis overview : )
The heterogeneity issue

More challenges

Challenges with meta-analysis

...continued

@ Can be difficult to organise since...
e outcomes likely to have been disseminated using a variety
of statistical parameters
e appropriate transformations to a common format required
o tedious task, requiring at least some statistical adeptness
@ Parametric random-effects models assume that both the
effects and errors are normally distributed. Are methods
robust?

@ Sometimes heterogeneity is estimated to be zero,
especially when the number of studies is small. Good
news?
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the MetaEasy add-in
metaeff & metaan
Methods and performance
7 =0

A practical guide

Based on our original work...

MANCHESTER
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the MetaEasy add-in
metaeff & metaan
Methods and performance
2 =0

A practical guide

Organising

@ Data initially collected using data extraction forms.

@ A spreadsheet is the next logical step to summarise the
reported study outcomes and identify missing data.

@ Since in most cases MS Excel will be used we developed
an add-in that can help with most processes involved in
meta-analysis.

@ More useful when the need to combine differently reported
outcomes arises.
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the MetaEasy add-in
metaeff & metaan
Methods and performance
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A practical guide

What it can do

@ Help with the data collection using pre-formatted
worksheets.

@ lts unique feature, which can be supplementary to other
meta-analysis software, is implementation of methods for
calculating effect sizes (& SEs) from different input types.

@ For each outcome of each study...

e it identifies which methods can be used
e calculates an effect size and its standard error
e selects the most precise method for each outcome
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the MetaEasy add-in
metaeff & metaan
Methods and performance
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A practical guide

What it can do

...continued

@ Creates a forest plot that summarises all the outcomes,
organised by study.

@ Uses a variety of standard and advanced meta-analysis
methods to calculate an overall effect.

e a variety of options is available for selecting which
outcome(s) are to be meta-analysed from each study

@ Plots the results in a second forest plot.

@ Reports a variety of heterogeneity measures, including
Cochran’s Q, 2, Hy? and #2 (and its estimated confidence
interval under the Profile Likelihood method).
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A practical guide

Advantages

Free (provided Microsoft Excel is available).
Easy to use and time saving.

Extracted data from each study are easily accessible, can
be quickly edited or corrected and analysis repeated.

Choice of many meta-analysis models, including some
advanced methods not currently available in other software
packages (e.g. Permutations, Profile Likelihood, REML).

Unique forest plot that allows multiple outcomes per study.

Effect sizes and standard errors can be exported for use in
other meta-analysis software packages.
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A practical guide

Installing

@ Latest version available from www.statanalysis.co.uk

@ Compatible with Excel 2003, 2007 and 2010.
@ Manual provided but also described in:

e Kontopantelis E and Reeves D.
MetaEasy: A Meta-Analysis Add-In for Microsoft Excel.
Journal of Statistical Software, 30(7):1-25, 2009.
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A practical guide

Stata implementation

@ MetaEasy methods implemented in Stata under:
e metaeff, which uses the different study input to provide
effect sizes and SEs
e metaan, which meta-analyses the study effects with a
fixed-effect or one of five available random-effects models
@ To install, type in Stata:
e ssc install <command name>
help <command name>
@ Described in:
e Kontopantelis E and Reeves D.
metaan: Random-effects meta-analysis.
The Stata Journal, 10(3):395-407, 2010.
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A practical guide

Many random-effects methods

which to use?

@ DerSimonian-Laird (DL): Moment-based estimator of both
within and between-study variance.

@ Maximum Likelihood (ML): Improves the variance estimate
using iteration.

@ Restricted Maximum Likelihood (REML): an ML variation
that uses a likelihood function calculated from a
transformed set of data.

@ Profile Likelihood (PL): A more advanced version of ML
that uses nested iterations for converging.

@ Permutations method (PE): Simulates the distribution of
the overall effect using the observed data.
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A practical guide

Performance evaluation

our approach

Skewness=0/ Kurtosis=3

@ Simulated various distributions for the true
effects:

e Normal.
o Skew-Normal. ./\
e Uniform. [
e Bimodal.
@ Created datasets of 10,000
meta-analyses for various numbers of

studies and different degrees of
heterogeneity, for each distribution.
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A practical guide

Performance evaluation

our approach

@ Compared all methods in terms of:

e Coverage, the rate of true negatives when the overall true
effect is zero.

e Power, the rate of true positives when the true overall effect
iS non-zero.

e Confidence Interval performance, a measure of how wide
the (estimated around the effect) Cl is, compared to its true
width.
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A practical guide

Homogeneity

Zero between study variance
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A practical guide

Coverage performance

the MetaEasy add-in
metaeff & metaan
Methods and performance

Small and large heterogeneity under various distributional assumptions
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the MetaEasy add-in
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A practical guide

Power performance

Small and large heterogeneity under various distributional assumptions
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A practical guide

Cl performance

Small and large heterogeneity under various distributional assumptions
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A practical guide

Coverage by method

Large heterogeneity across various between-study variance distributions
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A practical guide

Power by method

Large heterogeneity across various between-study variance distributions
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Cl performance by method

Large heterogeneity across various between-study variance distributions
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A practical guide

Which method then?

@ Within any given method, the results were consistent
across all types of distribution shape.

@ Therefore methods are highly robust against even severe
violations of the assumption of normality.

@ Choose PE if the priority is an accurate Type | error rate
(false positive).

@ But low power makes it a poor choice when control of the
Type Il error rate (false negative) is also important and it
cannot be used with less than 6 studies.
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A practical guide

Which method then?

@ For very small study numbers (<5) only PL gives coverage
>90% and an acccurate CI.

@ PL has a ‘reasonable’ coverage in most situations,
especially for moderate and large heterogeneiry, giving it
an edge over other methods.

@ REML and DL perform similarly and better than PL only
when heterogeneity is low (/2 < 15%)

@ The computational complexity of REML is not justified.
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P 9 Methods and performance

#2 =0

Bring on the champagne?

@ Does not necessarily mean homogeneity.

@ Most methods use biased estimators and not uncommon
to get a negative 72 which is set to 0 by the model.

@ We identified a large percentage of cases where the
estimators failed to identify existing heterogeneity.

@ In our simulations, for 5 studies and 2 ~ 29%:

e 30% of the meta-analyses were erroneously estimated to
be homogeneous under the DL method.
e 32% for REML and 48% for ML-PL.
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A practical guide

What does it mean?

@ In these cases coverage was substandard and was over
10% lower than in cases where 72 > 0, on average.

@ The problem becomes less profound as the number of
studies and the level of heterogeneity increase.

@ Better estimators are needed.

@ There might be a large number of meta-analyses of
‘homogeneous’ studies which have reached a wrong
conclusion.

MANCHF%EI’\

Kontopantelis, Reeves Software and model selection challenges in meta-analysis



Summary

What to take home

@ MetaEasy can help you organise your meta-analysis and
can be especially useful if you need to combine continuous
and binary outcomes.

@ Methods implemented in Stata under metaeff and metaan.

@ A zero 72 is a reason to worry. Heterogeneity might be
there but we cannot measure or account for in the model.

@ If 72 > 0, even if very small, use a random-effects model.

@ The DL method works reasonably well, under all
distributions, especially for low levels of heterogeneity.

@ Profile likelihood, which takes into account the uncertaintly
in 72, works better when 2 > 15%.
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Appendix Thank you!

Key references

@ Comments, suggestions:
e.kontopantelis@manchester.ac.uk
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Thank you!
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