
ARTICLE IN PRESS
0098-3004/$ - se

doi:10.1016/j.ca

�Tel.: +44 1

E-mail addr
Computers & Geosciences 32 (2006) 1368–1377

www.elsevier.com/locate/cageo
The problem of missing data in geoscience databases

Stephen Henley�

Resources Computing International Ltd., 185 Starkholmes Road, Matlock, Derbyshire DE4 5JA, UK

Received 14 September 2005; received in revised form 5 December 2005; accepted 16 December 2005
Abstract

SQL is the (more or less) standardised language that is used by the majority of commercial database management

systems. However, it is seriously flawed, as has been documented in detail by Date, Darwen, Pascal, and others. One of the

most serious problems with SQL is the way it handles missing data. It uses a special value ‘NULL’ to represent data items

whose value is not known. This can have a variety of meanings in different circumstances (such as ‘inapplicable’ or

‘unknown’). The SQL language also allows an ‘unknown’ truth value in logical expressions. The resulting incomplete

three-valued logic leads to inconsistencies in data handling within relational database management systems. Relational

database theorists advocate that a strict two-valued logic (true/false) be used instead, with prohibition of the use of NULL,

and justify this stance by assertion that it is a true representation of the ‘real world’. Nevertheless, in real geoscience data

there is a complete gradation between exact values and missing data: for example, geochemical analyses are inexact (and

the uncertainty should be recorded); the precision of numeric or textual data may also be expressed qualitatively by terms

such as ‘approximately’ or ‘possibly’. Furthermore, some data are by their nature incomplete: for example, where samples

could not be collected or measurements could not be taken because of inaccessibility.

It is proposed in this paper that the best way to handle such data sets is to replace the closed-world assumption and its

concomitant strict two-valued logic, upon which the present relational database model is based, by the open-world

assumption which allows for other logical values in addition to the extremes of ‘true’ and ‘false’. Possible frameworks for

such a system are explored, and could use Codd’s ‘marks’, Darwen’s approach (recording the status of information known

about each data item), or other approaches such as fuzzy logic.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Relational database; Open-world assumption; Closed-world assumption; Missing data; SQL; Logic; Fuzzy logic
1. Introduction

Reports that say that something hasn’t happened
are always interesting to me, because as we know,
there are known knowns; there are things we
know we know. We also know there are known
unknowns; that is to say we know there are some
things we do not know. But there are also
e front matter r 2006 Elsevier Ltd. All rights reserved

geo.2005.12.008

629 581454.

ess: stephen.henley@resourcescomputing.com.
unknown unknowns—the ones we don’t know
we don’t know—Donald Rumsfeld, US Secretary
of Defense

In the geosciences (as in other observational
sciences, and as in military intelligence), it is very
common for observational data sets to be incom-
plete. Data items may be missing altogether, or they
may be imprecise in one way or another. There are
many things we do not know—and many more that
we do not know we do not know.
.

www.elsevier.com/locate/cageo

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–1377 1369
If the data are tabulated, then whether a database
management system is used or not, some place-
holder must be used to indicate the absence of a
data item. In systems which are based on SQL, this
placeholder is known as ‘NULL’ and convention-
ally represented by an empty character string.
However, from the earliest days of relational
databases it has been recognised that there can be
logical problems in handling relations in which there
are NULLs. Indeed, relational database theorists
(for example, Date, 1995, 2005; Date and Darwen,
1998, 2000; Pascal1) have insisted for many years
that a table which contains NULLs is not even a
relation, because they assert that the predicate (the
logical statement), corresponding to any tuple (row)
in which there are NULLs, has no meaning.

In order to deal with missing data, Pascal (see
footnote 1) advocates an absolutist approach which
eliminates the use of ‘NULL’ altogether. His
solution is to use a table containing the data (as a
user I/O medium—not constituting any part of the
database)—with nothing at all defined for data
items which are missing, but rather a separate audit
trail table listing the tuples and attributes which are
missing. The main data table, as long as it contains
‘holes’ (i.e. NULLs) is not accepted as a relation but
is merely a table, from which (using the audit trail
data) a set of valid relations can be created by
partitioning the table into a number of sub-tables—
each of which is a valid relation because it does not
contain any nulls. Unfortunately, the number of
relations which can be required increases steeply
(2m) with the number m of attributes that can
contain missing values. If it is required to carry out
operations such as a relational join on two or more
such tables, the number of relations needed can
soon become astronomical. Pascal dismisses this
complexity as something which can be hidden from
the user and automated within the database
management system implementation, although of
course the problem still remains, even if hidden.

However, it seems that the complexities of this
approach may be unnecessary if the predicate logic
proposition for a tuple is modified a little. For
example, the example proposition which he presents
(p. 10):

Employee uniquely identified by employee num-
ber (EMP#) has name (ENAME) works in
1Pascal, F: The Final Null in the Coffin, 2004, http://

www.dbdebunk.com
department (DEPT#), was hired on (HIRE-
DATE), earns salary (SALARY).

could be replaced by

Employee uniquely identified by employee num-
ber (EMP#) has name (ENAME) is reported to

work in department (DEPT#), is reported to have

been hired on (HIREDATE), is reported to earn

salary (SALARY).

As we shall see later, this re-formulation is very
important. The predicate logic used in relational
databases should be a set of statements about our
knowledge of the world rather than statements of
the ‘absolute truth’ which is usually unknowable.
Indeed, if they were statements about ‘absolute
truth’, then this would invalidate the use of
relational databases for all scientific applications—
as well as for military intelligence and many
business applications.

In the above example, if (SALARY) is unknown,
and represented by ‘NULL’, then the new formula-
tion is still true and still records a valid and
meaningful fact in its entirety: ‘yis reported to
earn a salary the actual value of which we do not
know at present’.

2. Darwen’s proposal

Another way that has been proposed to circum-
vent the logical problems associated with represent-
ing missing data was suggested by Darwen.2 In
Darwen’s example, although he reaches this by a
roundabout route involving horizontal and vertical
decompositions of the original relation, addition of
extra attributes, and subsequent recombination, the
effect is that a ‘salary’ attribute is replaced by an
attribute of ‘sal_info’ containing information about

salaries—which will be either the salary itself if
known, or words such as ‘salary unknown’ if
unknown or ‘unsalaried’ if inapplicable. The type
of such an attribute must be defined to allow both
the full range of possible actual values AND the full
set of descriptors that must be used in the absence of
an actual value. This is similar to the solution
proposed above. Such an interpretation of the data
in a table may allow it to retain its full relational
credentials, but of course this is at the cost of
requiring that either applications or the database
2http://www.TheThirdManifesto.com: How to handle missing

information without using nulls: presented at Warwick Uni-

versity, 9 May 2003.

http://www.dbdebunk.com
http://www.dbdebunk.com
http://www.TheThirdManifesto.com

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–13771370
management system itself recognise and have rules
for handling the missing-data cases (such as ‘salary
unknown’).

This solution suggested by Darwen implies the
creation of more complex attribute types, which are
internally heterogeneous, in that the action of
operators defined for these types varies depending
on the value of the operand—for example, simple
arithmetic operators on known integer values, or
one of a set of logical operators on ‘null’ or other
non-integer (descriptive text) values within the same
compound type.

It is of course possible (as Darwen himself
envisaged in his proposal) to use Darwen’s decom-
posed set of relations, in which there is one relation
(SALARY_UNK) containing a list of all employees
whose salary is unknown, and another (UNSA-
LARIED) containing a list of all who do not receive
a salary. This certainly answers the problem of
representation of the missing data without needing
any modification of type definitions and without
violating the closed-world assumption or requiring
more than two-valued logic. However, it is not clear
whether and how it resolves the problem of
manipulating such a data set, as can be demon-
strated.

In a real, geoscientific, case—for example, a
geochemical survey where a large number of
samples have been analysed for say 50 chemical
elements—it is very common for analyses to be
temporarily or permanently missing for many
elements in different samples. Were Darwen’s
decomposition solution to be adopted, this would
lead to 50 ‘X-UNK’ relations, each containing a list
of samples for which the analysis of chemical
element X is missing, and horizontal decomposition
of the original relation into perhaps a very large
number of relations, one for each different combi-
nation of attributes (chemical elements) in which
there are missing data. Apart from the complexity
of the data management (which might conceivably
be automated), there remains the problem of
defining the results of operators on the missing data.

In particular, it is unclear how such a solution
would help in selection of all samples ‘WHERE
Mg4Ca’ if the values for either (or both) of Mg and
Ca are missing in some samples. Whatever the data
organisation, and however the original relation
might have been decomposed to hide the fact that
data are missing, the correct result from such an
operator is the truth value ‘unknown’—prohibited
in the two-valued logic of the relational model.
3. Closed world and open world

Relational database theory was developed mainly
in the context of business applications, in which the
universe of discourse can be pre-defined, and the
absolute truth of all relevant facts is expected to be
known. For example, it makes no sense to have a
table of some employees, or even a table of all
employees in which only some of the relevant facts
are recorded for some of them. A table of employees
should contain a complete pre-defined set of data
for all employees in a department, or in a company
(or in the universe of discourse, which must be
specified). This is known as a closed-world model. A
simple definition of a closed-world model is that
anything not represented in the database is auto-
matically defined as false. This is an integral part of
the relational database model as currently defined
by Date and Darwen (1998, 2000).

Date and Darwen (1998) make it clear in their
statement (p. 136) that the relational database
model is built upon the closed-world assumption:
�
 If t appears in the body of r, then it is a true

instantiation of the predicate (i.e. the correspond-

ing proposition is considered to be true);

�
 conversely, if t does not appear in the body of r,

then it is a false instantiation (i.e. the correspond-

ing proposition is considered to be false),

where r is any relation and t is any possible tuple
that conforms to the heading of r.

This is made even more explicit in Date et al.
(2003, Chapter 1):
�
 Furthermore, we subscribe, noncontroversially, to

the Closed-World Assumption, which says that if

a given tuple conforms to the relation heading but

does not in fact appear in the relation body, then

the corresponding proposition is understood by

convention to be one that evaluates to false. In

other words, the body of the relation contains all

and only the tuples that correspond to propositions

that evaluate to true.

Thus anything within the defined universe of
discourse which is not represented in the database is
deemed to be false. This may be a necessary
presumption in, for example, a table of employees
or a table of components held in a warehouse. In
such cases the tables are expected to be complete
and correct—anyone missing from the ‘employees’

ARTICLE IN PRESS

3http://www.dbdebunk.com, More on the ‘‘Final Null in the

Coffin’’, 4 January 2005.

S. Henley / Computers & Geosciences 32 (2006) 1368–1377 1371
table is not an employee, and any component not in
the ‘components’ table is not held in the warehouse.
Within a limited closed world of clearly defined
business applications, perhaps subscribing to the
closed-world assumption might also be noncontro-
versial.

The closed-world assumption is expressed in
terms of existence or non-existence of tuples and
not explicitly to missing data placeholders. How-
ever, since the effect of decompositions such as
those proposed by Pascal or Darwen is to represent
individual missing data placeholders as omitted
tuples within decomposed relations, the closed-
world assumption applies to these too.

In contrast to the closed-world model, when
considering observational scientific data, by defini-
tion we are dealing with an open-world model
(unless, of course, the universe of discourse is defined
in a very limited and limiting way as simply the set
of observations already made—see below). Absence
of information from the database does not imply its
falseness. It is always possible to record information
additional to that which is already in the database.
Further geochemical samples may be collected and
analysed, or gravity measurements may be taken at
new locations, or additional spectra may be
obtained from stars not previously recorded.

A table in a scientific database will typically
contain a set of observations, where each tuple (each
row in the table) represents one observation of a
number of parameters at a defined location and time
or measured on a defined sample. It is obviously
incorrect to assert that all other possible tuples
(relating to other possible locations, times, and
samples) are false: the observations have simply not
been made, or are not yet recorded. However, it is
impracticable to re-define the universe of discourse
every time a new observation is made. Scientific
data are represented naturally by an ‘open-world’
model.

There are fundamental logical differences
between a closed-world database and an open-
world database. Although it can be shown that in
the closed-world case a two-valued logic should
always be sufficient, this cannot be demonstrated in
an open-world database.

In an open-world database model, a relation can
be properly constructed—say from a table of
geochemical analyses with attributes Sample_Num-

ber, SiO2%, Al2O3%, y The database may (indeed
should) be designed before any data have even been
collected. However, if an observation (say one of the
Al2O3% values for a particular sample) is missed
perhaps because of an instrument malfunction, it is
unreasonable to demand that the database be re-
structured simply to avoid the use of a NULL—
especially if it is expected that a later measurement
will be inserted into the space. Pascal is correct in
that such a table, with a hole, if interpreted using
simple (two-valued) predicate logic, under the
conditions of the closed-world assumption, does
not represent physical reality. However, it does
correctly represent the state of reporting of physical
reality.

McGoveran’s response3 to a suggestion that
scientific data might better be represented using
the open-world assumption, rather than the closed-
world assumption that the relational model re-
quires, fails to address this question directly, but
offers a philosophical interpretation. His suggestion
is that within the context of any scientific hypothesis
the universe of discourse is defined and closed. A
strict interpretation of his position is that it must be
re-defined each and every time that a new observa-
tion is added to the data set. He suggests that each
time this is done, ‘the impact on other hypotheses
(axioms and therefore database design in the
database world)’ must be re-evaluated in order to
avoid drawing erroneous conclusions. Clearly he is
not a practising scientist. The concept of reviewing
scientific hypotheses or database design after every
single new observation—though it might be con-
sidered desirable—is not how science is done. If this
is what is required in order for scientific data to be
managed through the relational database model as
narrowly defined by Date and Darwen, then it may
be more reasonable to suggest that perhaps their
database model is inappropriate.

4. Codd’s 1979 definition

It is interesting that the original developer of the
relational model, E.F. Codd, in a paper (Codd,
1979) in which he gives his definition of the
relational model which he names RM/T, does not
restrict it to follow the closed-world assumption but
allows also the open-world assumption which he
recognises as necessary to handle relations with
missing data. He allows databases, and even
individual relations within one database, to be
defined as ‘closed world’ or ‘open world’, and

http://www.dbdebunk.com

ARTICLE IN PRESS

4This is in contrast with the Scottish system, similar to a 3VL,

with ‘guilty’, ‘not guilty’, and ‘not proven’—the last correspond-

ing to a 3VL ‘unknown’.

S. Henley / Computers & Geosciences 32 (2006) 1368–13771372
devotes considerable attention to the three-valued
logic which is necessary for proper handling of
missing data. However, subsequent work by Date
and others has concentrated on a more rigorous, but
much narrower, definition of the relational model
based solely on the closed-world assumption.

5. Two-valued logic

The discussion that follows will examine in more
detail the cases for and against the use of NULL in
a closed-world database, before moving to the open-
world database structures which are needed for
observational science data.

Pascal (2000), as also Date (1995) and Date and
Darwen (1998,2000) note that SQL handles missing
data incorrectly by using an incomplete and
inconsistent three-valued logic (3VL). Additionally,
both Pascal and Date interpret Codd’s proposal
(Codd, 1990) separately to identify ‘missing’ and
‘inapplicable’ versions of NULL as leading to an
even more unworkable 4VL.

However, they have perhaps already identified a
solution, in their recognition that NULL, as an
entry in a relation, is not at all the same thing as an
‘unknown’ logic value that might result from an
SQL query. Perhaps there is no need to go beyond
2VL, however, many different types of NULL that
one wishes to use. All that may be required is
abandonment of the flawed SQL language, and the
definition of a set of rules on the results of
operations that involve NULLs of each particular
flavour.

It is of course essential to maintain the require-
ment that no primary keys may include any missing
data items. Then if any relational operation were to
yield a result that might, in SQL, be returned as
‘unknown’, it is clearly not TRUE and must
therefore be returned as FALSE. Pascal is quite
correct in his insistence that NULL is not a data
value and cannot be treated as if it were, hence, if
working within the constraints of the closed-world
assumption and a two-valued logic system, (almost)
any logical expression that includes an operand with
value NULL should return a FALSE value. The
only case where an expression containing a NULL
operand would return a TRUE value is the special
case of the ‘IS NULL’ monadic operator.

So, is the ‘IS NULL’ (monadic—single-operand)
operator itself valid? The question is whether
it is valid to frame queries which include such
conditions as
WHERE ½lithology_code� IS NULL

or

WHERE ½Au_assay� IS NOT NULL

These will always have definite true or false
values. There seems no particular reason to prohibit
them. What is important is to establish consistency
of treatment in dyadic (two-operand) operators—
such that comparisons in which one of the operands
has NULL value will return FALSE—since the
presence of a NULL operand means that the
comparison cannot be satisfied.

In the case of an equality test such as

WHERE ½start_salary� ¼ ½end_salary�

if one or both of the operands is NULL, the
unknown actual value of one operand may be equal
to the actual value (known or unknown) of the
other operand. However, it is unsafe in such
circumstances to select this tuple, and therefore
the test must be evaluated to FALSE, even if there is
a possibility that, were the values of both operands
to be known, it would be found actually to be
TRUE. If, of course, the test is an inequality, then
likewise it would have to be evaluated as FALSE,
because the NULL operand(s) would mean that the
test cannot be satisfied. At no time is a 3VL
‘unknown’ truth value required. What is important
is that the meanings of TRUE and FALSE be
understood.

Because the closed-world assumption and its
associated 2VL does not allow the luxury of
uncertainty, although TRUE means ‘true’ in the
generally accepted sense, FALSE could mean either
‘known to be false’ or ‘unknown’. This is analogous
to the English system of criminal justice,4 where a
‘guilty’ verdict corresponds to TRUE, while a ‘not
guilty’ verdict, corresponding to FALSE, can mean
innocent but can also mean ‘not proven guilty
beyond reasonable doubt’. Furthermore, if it is
necessary in any particular case to distinguish
between ‘known to be false’ and ‘unknown’, the IS
NULL operator can be used.

6. More on the prohibition of NULL

The four principal protagonists in the debate over
the prohibition of NULL have been Codd, Date,

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–1377 1373
Pascal, and Darwen. It is clear from Codd (1979,
1990) that the originator of the relational database
concept not only saw no fundamental problem in
using NULL (in the sense of a generic placeholder
for missing data, rather than the specific SQL
implementation of NULL), but on the contrary he
understood that there were a number of different
possible meanings of ‘missing data’—though, if
allowed, with the associated complication of using
multi-valued logic.

Date and Darwen (1998, 2000), however, adopt
the view that it is not legitimate to use NULL—and
that by definition any table which includes NULLs
is not a relation and forms no part of a relational
database. Their proposed alternative—to provide a
mechanism for representation of missing data—is to
insert ‘special values’ and to require applications
software to make sense of these as best it can.
Unfortunately, Codd (1990) had already examined
the special value (‘default value’ in Codd’s termi-
nology) approach to the problem and provided
powerful arguments against it.

Pascal5 goes further than Date and Darwen, and
supports development of the ‘transrelational (TM)’
model which re-structures relations completely,
effectively to a set of inverted indexes, one for each
attribute, removing any need for representation of
missing data. The status of this ‘transrelational
(TM)’ approach, of which public knowledge at
present is based solely on a patent application, is
unknown at present. It is not yet commercially
available due to unspecified legal problems. From
what little has been published about it there seem to
be serious performance issues,6 apart from the
likelihood that—if it really is nothing more than a
set of inverted indexes—it is not new technology
and hence not patentable.

Certainly, as Pascal identified in detail, the
implementation of NULL in SQL-based systems is
flawed (see Appendix A and discussion below), but
the arguments against this particular query lan-
guage are not necessarily valid criticisms of the use
of one (or more) NULL markers in relational
databases—whether built on closed-world or open-
world assumptions.
5Pascal, F., The final null in the coffin? Outline of a relational

solution to missing data, Practical Database Foundations #8,

http://www.dbdebunk.com
6Hewitt, J., http://www.thetechtwo.com/detail-8879800.html

and http://www.webservertalk.com/message480744.html
7. Prohibition of NULL in primary keys

In a relational database, each relation has a
special attribute (or set of attributes) that is defined
as the primary key. It is a pre-requisite that every
tuple contains an unique primary key value. For this
reason, the occurrence of NULL, or indeed any
other placeholder for missing data, is necessarily
forbidden in all primary keys. In scientific data,
however, there are other types of ‘partially missing’
data or data which have some element of uncer-
tainty. The extent to which these may be used in
primary keys is something which needs to be
examined in more detail. For example, one might
wish to use sample location as the primary key. If
this is a numeric co-ordinate vector (X ;Y ;Z), there
will generally be some positional uncertainty in the
recorded values. A relational operation on two such
sets of data in different relations using equality of
sample location (X ;Y ;Z) as the primary key cannot
be guaranteed to give the correct links between
samples, because of the likelihood that measure-
ment discrepancies lead to slightly different re-
corded positions for samples actually collected at
the same position—or to the same recorded posi-
tions for samples actually collected in two adjacent
but different positions.

Hence, in order to maintain referential integrity
of the database, the use of data containing any
element of uncertainty within a primary key

probably must be prohibited.

8. It is what you do with it that counts

Provided there are unambiguous and consistent
logical rules for handling expressions which contain
one or more NULLs, there should not be any need
for a prohibition on using NULL, or indeed using
any number of different ‘flavours’ of NULL with
different meanings (like Codd’s ‘missing but applic-

able’ and ‘missing and inapplicable’). If working in a
conventional relational database management
system, under the closed-world assumption, the
pre-requisite is that this system adheres strictly to
two-valued logic.

A consequence of this would be that, if NULL is
an acceptable placeholder for a missing data item,
then the re-structuring of relations, as Pascal (see
footnote 5) requires, is completely unnecessary.

However, Pascal also makes a series of criticisms
of the way in which SQL handles NULL, and these
criticisms must be considered insofar as they are

http://www.dbdebunk.com
http://www.thetechtwo.com/detail-8879800.html
http://www.webservertalk.com/message480744.html

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–13771374
potentially relevant to the use of a generic place-
holder ‘NULL’ itself (see Appendix A). It must be
noted that SQL in itself is a language developed in a
(flawed) attempt to implement the relational data-
base model. Although it has been taken up very
widely by the developers of database management
systems, SQL must never be confused with rela-
tional database theory. As a corollary, criticisms of
the handling of NULL in SQL, even if valid, are
not necessarily criticisms of the use of a ‘NULL’
in relational databases. Pascal’s paper7 contains
(page 9) a set of 10 specific criticisms of NULL as
implemented in SQL and its incomplete and
inconsistent 3VL. These are examined in detail in
Appendix A. The conclusion from this examination
is that none of Pascal’s criticisms of SQL’s NULL
have any general validity as criticisms of the use of a
generic missing data placeholder in relational
databases—though they do contribute to a very
strong case that SQL does not offer an appropriate
environment for handling databases whose relations
may contain NULLs. They are criticisms of SQL,
not of the use of NULL.

Codd (1979, 1990) intended to develop a richer
and more useful method of defining missing data
placeholders, in the I and A ‘marks’ which he
proposed. These are not in themselves NULL in the
sense that NULL is used in SQL, but include all of
the meaning of NULL (i.e. they are placeholders for
data elements which are missing for one reason or
another) while allowing more detailed representa-
tion of the reasons for absence of data. It can be and
has been argued that Codd’s I mark (for ‘missing
and inapplicable’) should not be needed—because it
can be removed simply by modifying the database
design. Nevertheless, the argument made by Date
(1995) that Codd’s proposal requires an (unwork-
able) four-valued logic system is perhaps based on a
misconception. However many varieties of missing-
data representation might be defined, there may be
no need to extend the logic by which they are
processed beyond the normal 2VL—as has been
shown above for the case of a single type of
NULL—provided that one can accept that the
result of any dyadic operator, any of whose
operands is a NULL, a mark, or other missing-
data placeholder, is false. This will yield a relational
database model which has well-defined properties.
7Pascal, F., The final null in the coffin? Outline of a relational

solution to missing data, Practical Database Foundations #8,

http://www.dbdebunk.com
One of these properties is that sometimes a
comparison involving a missing data placeholder
will return a false truth value when (if the data value
had been known) the operator should actually have
returned true.

All of this discussion, so far, concerns ‘closed-
world’ databases. Here a 2VL can be defined to be
always sufficient whether or not NULLs are
allowed, though at the cost of failing to allow any
distinction between ‘false’ and ‘unknown’.

9. The universe of discourse

Closed-world relational database systems are
necessarily defined to occupy and to fill a defined
‘universe of discourse’. For example, the universe of
discourse for a database of petroleum wells might be
‘Production Wells of Acme Oil Ltd. on 31 July
2005’. This would then be defined as a complete set
of the relevant information about the company’s
production as a snapshot on the specified date.
Every well owned by the company on that date
would be included, and the absence of a well would
mean, by definition, that it was not a producing well
owned by the company on that date. This is, in a
very strict sense, a closed-world database. Absence
of a tuple implies falseness of the corresponding
proposition.

The universe of discourse could, however, be
defined more broadly, for example, to allow the
contents of relations to be time-varying (reflecting
different states of ownership and production), as
‘Wells of Acme Oil Ltd.’ and this might then also
include relations containing information about dry
wells owned by the company, wells formerly
producing but now exhausted, and wells formerly
but no longer owned by the company. Absence of a
tuple for a particular well should again imply that
the specified well is not and was never owned by the
company.

If Acme Oil Ltd. is a very old company, the
contents of such a database may be incomplete.
Records may have been lost, or data may be
unreliable due to transcription errors. The absence
of a tuple then does not imply falseness. This is no
longer a closed-world database. Of course the
universe of discourse could be redefined as ‘All the
data we can locate about wells of Acme Oil Ltd.’,
but this is a very imprecise definition which will
change unpredictably. The absence of a tuple
implies falseness only in the sense that the specified
well is not in the set of ‘wells known to have been

http://www.dbdebunk.com

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–1377 1375
owned by the company at some time and whose
data have been transcribed correctly’.

With databases in observational sciences such as
geology the universe of discourse is commonly
drawn even more widely: for example, ‘Geochem-
istry of Tertiary volcanic rocks in north-west
Scotland’. Clearly this is not a closed-world model,
as it is always possible to add new tuples to relations
in such a database, and indeed to add new relations
representing different sample types, different sets of
analysed elements, or different analytical methods.

10. Open-world database management

Under the open-world assumption, the absence of
a tuple from the database does not imply its
falsehood:
�
 Any proposition which cannot be derived from the

facts and axioms present in the system is held to be

unknown.8 Things which are known to be true or

false must be stated explicitly, or else inferrable

from facts and axioms. (Contrast this with the

Closed-World assumption, which holds that all

which cannot be proven true is false).

The otherwise ‘excluded middle’ must be handled
in some way. The Open-World assumption allows
for real life uncertainty and imprecision in the data.

It has been proposed (Henley, 2005) that a variety
of forms of placeholder for missing and partially
missing data be established, based on the mark idea
proposed by Codd (1990). Representation issues
(i.e. how such placeholders are actually stored in
any real database) can be addressed as implementa-
tion questions. For example, there is one particular
issue which needs to be addressed—whether the
relational model itself allows the use of ‘marks’ as
flags on each data element. There is also, of course,
a much larger issue, whether open-world databases
can even be considered as relational—though Codd
(1979) clearly intended that they should.

All that needs to be added, but it is quite a large
‘all’, is the processing intelligence needed to
manipulate such data in order to generate correct
and useful results. Quite clearly, from what has been
written above, SQL or indeed any similar database
query/manipulation language already in existence
for business applications, will probably be inade-
quate. Scientific data tend to be numeric and to
8http://c2.com/cgi/wiki?OpenWorldAssumption
require extensive and intensive numerical proces-
sing.

What has to be provided as a database language
therefore includes two essential elements:-
(1)
 a data manipulation language which recognises
and can correctly operate upon relations which
include various flavours of missing and incom-
plete data
(2)
 a numerical data processing capability which is
fully integrated with the database management
system to provide a means of extracting valid
deductions.
This second aspect is crucial. There are a number
of possible approaches to providing this, but one
which appears to offer promise is that of fuzzy logic
(Bardossy and Fodor, 2004). This has the advantage
that it is grounded in rigorous logic theory and in
principle it should be possible to include within the
database model framework.

However, the generality of such an approach is
limited, because the way in which fuzzy methods are
used requires the application of subjective judg-
ment, in choosing thresholds, distribution curves,
etc. There may, of course, not be any option but to
accept this limitation. In any event, it will be
desirable to keep such subjective decisions visible,
and any database implementation using such
methods must of course keep such subjective
information totally separate from the data, if for
no other reason than the need to allow different
scientists to draw different (but perhaps equally
valid) conclusions from the same database, based on
their own models and hypotheses.

There are other possible approaches to providing
the richer logical and computational framework
needed for open-world database management sys-
tems. One which has been (partially) implemented is
to integrate general-purpose computational capabil-
ities—numerical processing including statistics—
with the database management system. This was
done first with the G-Exec system developed for
geoscience data handling applications (Jeffery and
Gill, 1976a–c), and subsequently in Datamine, an
integrated software system for mining industry
applications (Henley & Stokes, 1983; Henley,
1992). In these two products, database management
systems both formed the core of larger applications
packages.

http://c2.com/cgi/wiki?OpenWorldAssumption

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–13771376
11. Conclusions

There are severe problems in dealing with missing
data in the relational model as commonly imple-
mented in commercial products, especially those
which are built around the SQL language, which is
flawed in that it handles NULLs, or missing-value
placeholders, inconsistently. However, even if the
SQL problems are ignored, the relational database
model, defined under the constraints of the closed-
world assumption, may be unsuitable for handling
real data from the observational sciences, which by
their nature are incomplete and imprecise, with all
gradations from exact (‘crisp’) numbers through
imprecise and incomplete data to completely miss-
ing data items. It is, in general, not acceptable to
insist on a re-design of the database to avoid the risk
of missing data values in the middle of tables which
would otherwise be perfectly good relations.

There are different possible solutions to this
problem. The simplest is to ignore it, and treat
any logical operation with a missing data operand
as evaluating to false. Another way is to represent
missing data by a series of ‘special values’ and pass
all responsibility for their interpretation to the
applications software. One might adopt a radical
implementation solution such as the ‘transrelational
model (TM)’ as advocated by Pascal. Another
option might be to change the meaning of each
attribute from the value of the attribute to a
description of the state of knowledge of the
attribute, which is the ultimate effect of the proposal
by Darwen. However, there are problems with any
of these approaches, as was pointed out by Codd
(1990) and in the discussion above.

A more radical approach would be to abandon
the total reliance upon the closed-world assumption
which constrains the relational database model as
now defined. The alternative open-world assump-
tion allows for incompleteness and imprecision of
the data. It will be necessary to define how such an
open-world database management system might
operate. The basic structure and functionality will
necessarily be very similar to that of the conven-
tional relational database model—because an open-
world database in which there is actually no missing
data ought to be identical, in practice, to a standard
(closed-world) relational database. It is interesting
that this may be close to Codd’s (1979) RM/T
definition. It will clearly need an extended query and
manipulation language, which will have to include a
range of types of numerical (and logical) function-
ality to handle imprecise and incomplete data (as
Codd himself already envisaged in 1979). It may
also include features drawn from fuzzy data
handling methods, and will need to be sufficiently
flexible—with user-definable functionality and op-
erators—to handle an unlimited range of data types.

Acknowledgements

The author gratefully acknowledges useful dis-
cussions with and helpful suggestions by Professor
George Bardossy, Dr. T. Victor Loudon, and
Dr. Peter Robson.

Appendix A. Notes on Pascal’s criticisms of NULL

as implemented in SQL-based database management

systems

Pascal’s paper1 contains (page 9) a set of 10
specific criticisms (italicised in the list below) of SQL
and its incomplete and inconsistent 3VL. These are
examined in detail in Appendix A. Each of Pascal’s
items will be examined below to identify any general
points which might arise in relation to the use of
NULL:
�
 Aggregate functions, e.g. SUM(), AVG() ignore

NULLs, COUNT() does not. However useful
they may be, aggregate functions have nothing
directly to do with relational database theory.
Strictly speaking they are applications, and it
should be possible to define whatever behaviour
and rules are required into appropriate aggregate
functions.

�
 A scalar expression on a table without rows

evaluates incorrectly to NULL, instead of 0. This
behaviour of SQL may indeed be wrong, but this
says nothing about whether NULL should be
acceptable or otherwise.

�
 The expression NULL ¼ NULL evaluates to

NULL, yet ORDER BY treats NULLs as equal.

NULL ¼ NULL correctly evaluates to NULL.
The behaviour of ORDER BY is immaterial. In a
relation the ordering of tuples is irrelevant—this
is merely an export/presentation matter. In any
case, the ordering of NULLs is by definition
arbitrary and whatever ordering is chosen by
SQL cannot be ‘wrong’.

�
 SQL’s NOT is ‘not’ of natural language. This is a

problem with SQL, and not relevant to the
NULL question.

�
 It is unknown how SQL’s EXISTS should behave,

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 32 (2006) 1368–1377 1377
because no 3VL is defined for SQL (the definition

is ambiguous in 3VL systems). Again this is an
SQL problem because it attempts to use a 3VL,
but is irrelevant to the question of the accept-
ability or otherwise of NULL in a relational
database.

�
 Expressions evaluating to NULL do not violate

integrity constraints (NULL is treated as true).
NULL is of course not in itself a truth value, and
expressions in a 2VL cannot evaluate to un-

known. This is an SQL problem rather than a
problem with NULL. The only expressions that
can evaluate to NULL are those that are of a
defined data type. Given a truth-value data type,
it can indeed contain NULLs but these data
items do not have any truth value at all—by
definition—and they are certainly not of truth
value ‘unknown’ in the SQL sense.

�
 The truth-valued data type can take the values

true, false, and the non-value NULL, but the literal

NULL cannot appear in contexts in which any

literals can appear. This is a problem with SQL
and SQL-based DBMSs. It violates the principle
that NULL must not be capable of confusion
with any valid data representation. This principle
must be rigidly adhered to in any truly relational
DBMS. Codd’s marks, kept separately from the
data, are one solution to this problem.

�
 Since 3VL referencing rules are not defined, it is

unknown which primitive operators out of the 27

monadic and 19,683 dyadic would suffice to

express others and, therefore, whether all neces-

sary operators are supported or not. This is a
possibly valid criticism of SQL’s 3VL, but does
not bear directly on the NULL question.

�
 Highly complex operators. This is a matter

concerning SQL as an implementation language
but irrelevant to the NULL question.

Thus none of Pascal’s criticisms of SQL’s NULLs
have any general validity as criticism of the use of
NULL in relational databases—though they do
contribute to a very strong case that SQL does not
offer an appropriate environment for handling
databases whose relations may contain NULLs.
They are criticisms of SQL, not of NULL.
References

Bardossy, G., Fodor, J., 2004. Evaluation of Uncertainties and

Risks in Geology. Springer, Berlin (221pp).

Codd, E.F., 1979. Extending the database relational model to

capture more meaning. ACM Transactions on Database

Systems 4 (4), 397–434.

Codd, E.F., 1990. The Relational Model for Database Manage-

ment: Version 2. Addison-Wesley, Reading, MA (538pp).

Date, C.J., 1991. Relational Database Writings, 1994–1995.

Addison-Wesley, Reading, MA (542pp).

Date, C.J., 2005. Database in Depth: Relational Theory for

Practitioners; O’Reilly. Sebastopol, CA, USA (208pp).

Date, C.J., Darwen, H., 1998. Foundation for Object/Relational

Databases: The Third Manifesto. Addison-Wesley, Reading,

MA (496pp).

Date, C.J., Darwen, H., 2000. Foundation for Future Database

Systems: The Third Manifesto. Addison-Wesley, Reading,

MA (608pp).

Date, C.J., Darwen, H., Lorentzos, N.A., 2003. Temporal Data

and the Relational Model. Morgan Kaufmann, Amsterdam

(422pp).

Henley, S., 1992. Orebody modelling in a relational database

framework. In: Dowd, P.A., Royer, J.J. (Eds.), 2nd CODA-

TA Conference on Geomathematics and Geostatistics, vol.

31. Sciences de la Terre, Ser.Inf., Nancy, pp. 477–484.

Henley, S., 2005. The man who wasn’t there: the problem of

partially missing data. Computers & Geosciences 31 (6),

780–785.

Henley, S., Stokes, W.P.C., 1983. Use of graphics computers in

mine planning. In: Surface Mining and Quarrying. Institution

of Mining and Metallurgy, London, pp. 323–328.

Jeffery, K.G., Gill, E.M., 1976a. The design philosophy of the

G-EXEC system. Computers & Geosciences 2 (3), 345–346.

Jeffery, K.G., Gill, E.M., 1976b. The geological computer.

Computers & Geosciences 2 (3), 347–349.

Jeffery, K.G., Gill, E.M., 1976c. The use of G-EXEC for resource

analysis. Mathematical Geology 9 (3), 265–272.

Pascal, F., 2000. Practical Issues in Database Management: A

Reference for the Thinking Practitioner. Addison-Wesley,

Boston (256pp).

	The problem of missing data in geoscience databases
	Introduction
	Darwenaposs proposal
	Closed world and open world
	Coddaposs 1979 definition
	Two-valued logic
	More on the prohibition of NULL
	Prohibition of NULL in primary keys
	It is what you do with it that counts
	The universe of discourse
	Open-world database management
	Conclusions
	Acknowledgements
	Notes on Pascalaposs criticisms of NULL as implemented in SQL-based database management systems
	References

