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Wave height hindcasts from the Gulf of Mexico

Data supplied by Philip Jonathan at Shell Research UK.

Hindcasts of Y storm peak significant wave height (in metres)
in the Gulf of Mexico.

wave height: trough to the crest of the wave.
significant wave height: the average of the largest 1/3 wave
heights. A measure of sea surface roughness.
storm peak: largest value from each storm (cf. declustering).

a 6 × 12 grid of 72 sites (≈ 14 km apart).

Sep 1900 to Sep 2005 : 315 storms in total.

average of 3 observations (storms) per year, at each site.

Aim: quantify the extremal behaviour of Y at each site, making
appropriate adjustment for spatial dependence.
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Spatial dependence
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Spatial non-stationarity
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Modelling issues

Spatial non-stationarity.

Simple approach: model spatial effects on EV parameters as
Legendre polynomials in longitude and latitude.
More flexible approaches are possible.

Use a threshold that varies over space?

Spatial dependence.

Estimate parameters assuming conditional independence of
responses given covariate values.
Adjust standard errors etc. for spatial dependence.
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Extreme value regression model

Conditional on covariates xij exceedances over a high threshold
u(xij) follow a 2-dimensional non-homogeneous Poisson process.

If responses Yij , i = 1, . . . , 72 (space), j = 1, . . . , 315 (storm) are
conditionally independent:

L(θ) =
315∏
j=1

72∏
i=1

exp

{
− 1

λ

[
1 + ξ(xij)

(
u(xij)− µ(xij)

σ(xij)

)]−1/ξ(xij )
+

}

×
315∏
j=1

∏
i :yij>u(xij )

1

σ(xij)

[
1 + ξ(xij)

(
yij − µ(xij)

σ(xij)

)]−1/ξ(xij )−1
+

.

λ : mean number of observations per year;
µ(xij), σ(xij), ξ(xij) : GEV parameters of annual maxima at xij ;
θ : vector of all model parameters:
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Covariate-dependent thresholds

Arguments for:

Asymptotic justification for EV regression model : the
threshold u(xij) needs to be high for each xij .

Design : spread exceedances across a wide range of covariate
values.

Set u(xij) so that P(Y > u(xij)), is approx. constant for all xij .

Set u(xij) by trial-and-error or by discretising xij , e.g. different
threshold for different locations, months etc.

Quantile regression (QR) : model quantiles of a response Y
as a function of covariates.
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Constant threshold
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Quantile regression
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Model parameterisation

Let p(xij) = P(Yij > u(xij)). Then, if ξ(xij) = ξ is constant,

p(xij) ≈
1

λ

[
1 + ξ

(
u(xij)− µ(xij)

σ(xij)

)]−1/ξ
.

If p(xij) = p is constant then

u(xij) = µ(xij) + c σ(xij).

The form of u(xij) is determined by the extreme value model:

if µ(xij) and/or σ(xij) are linear in xij : linear QR;

if log(µ(xij) and/or log(σ(xij) is linear in xij : non-linear QR.
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Theoretical study (with Nicolas Attalides)

Data-generating process: for covariate values x1, . . . , xn

Yi | X = xi
indep∼ GEV (µ0 + µ1 xi , σ, ξ).

Set threshold
u(x) = u0 + u1 x .

Vary u1, set u0 so that the expected proportion of exceedances is
kept constant at p.

Calculate Fisher expected information for (µ0, µ1, σ, ξ).

Invert to find asymptotic V-C of MLEs µ̂0, µ̂1, σ̂, ξ̂ and hence
var(µ̂1).

Find the value of u1 that minimises var(µ̂1).
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Preliminary findings

Let ũ1 be the value of u1 that minimises var(µ̂1).

If covariate values x1, . . . , xn are symmetrically distributed
then ũ1 = µ1 (quantile regression).
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µ1 = 1 : symmetric x
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Preliminary findings

Let ũ1 be the value of u1 that minimises var(µ̂1).

If covariate values x1, . . . , xn are symmetrically distributed
then ũ1 = µ1 (quantile regression).

If x1, . . . , xn are positive (negative) skew then ũ1 < µ1
(ũ1 > µ1).
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µ1 = 1 : positive skew x (coeff. of skewness = 1)
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Preliminary findings

Let ũ1 be the value of u1 that minimises var(µ̂1).

If covariate values x1, . . . , xn are symmetrically distributed
then ũ1 = µ1 (quantile regression).

If x1, . . . , xn are positive (negative) skew then ũ1 < µ1
(ũ1 > µ1).

. . . but the loss in efficiency from using ũ1 = µ1 is small.

Extensions:

More general models.

Effect of model mis-specification due to low threshold;
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Adjustment for spatial dependence (for wave height data)

Independence log-likelihood:

lIND(θ) =
k∑

j=1

72∑
i=1

log fij(yij ; θ) =
k∑

j=1

lj(θ).

(storms) (space)

In regular problems, as k →∞,

θ̂ → N(θ0, I
−1 V I−1),

I = Fisher expected information: −E
(
∂2

∂θ2
lIND(θ0)

)
;

V = var
(
∂
∂θ lIND(θ)

)
=
∑
j

var (Uj(θ0)) =
∑
j

E
(
U2
j (θ0)

)
,

where

Uj(θ) =
∂lj(θ)

∂θ
.

18/29



Adjustment of lIND(θ)

Estimate

I by Fisher observed information, evaluated at θ̂;

V by
k∑

j=1

U2
j

(
θ̂
)

.

Let HA =
(
−Î−1 V̂ Î−1

)−1
and HI = −Î .

Chandler and Bate (2007):

lADJ(θ) = lIND(θ̂) +
(θ − θ̂)′HA(θ − θ̂)

(θ − θ̂)′HI (θ − θ̂)

(
lIND(θ)− lIND(θ̂)

)
,

Adjust lIND(θ) so that its Hessian is HA at θ̂ rather than HI .

This adjustment preserves the usual asymptotic distribution of
the likelihood ratio statistic.
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Simulation study

30 years of daily data on a spatial grid.

Spatial dependence : mimics that of wave height data.

Temporal dependence : moving maxima : extremal index 1/2.

Spatial variation: location µ linear in longitude and latitude.

ξ: −0.2, 0.1, 0.4, 0.7.

Thresholds: 90th, 95th, 99th percentiles.

SE adjustment: data from distinct years are independent.

Simulations with no covariate effects and/or no spatial
dependence for comparison.
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Findings of simulation study

Slight underestimation of standard errors : uncertainty in
threshold ignored.

Uncertainties in covariate effects of threshold are negligible
compared to the uncertainty in the level of the threshold.

Estimates of regression effects from QR and EV models are
very close : both estimate extreme quantiles from the same
data.

To a large extent fitting the EV model accounts for
uncertainty in the covariate effects at the level of the
threshold.
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Summary of modelling of wave height data

Threshold selection:

Choice of p: look for stability in parameter estimates.

Based on µ (and u) quadratic in longtiude and latitude, σ and
ξ constant . . .
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Threshold selection : µ intercept
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Threshold selection : µ coefficient of latitude
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Threshold selection : ξ
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Summary of modelling of wave height data

Choice of p: look for stability in parameter estimates.
Use p = 0.4.

Model diagnostics : slight underestimation at very high levels,
but consistent with estimated sampling variability.

QR model and EV model agree closely.

ξ̂ = 0.066, with 95% confidence interval (−0.052, 0.223).

Estimated 200 year return level at (long=7, lat=1) is 15.78m
with 95% confidence interval (12.90, 22.28)m.
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Conditional 200 year return levels
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Conclusions

Quantile regression:

a simple and effective strategy to set thresholds for
non-stationary EV models;

supported by simulation study;

theoretical work is on-going;

Kyselý, J., et al. (2010) use quantile regression to set a
time-dependent threshold for peaks-over-threshold GP modelling of
data simulated from a climate model.

Spatial dependence

adjust inferences for dependence; or

model dependence explicitly.
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