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Wave height hindcasts from the Gulf of Mexico

Data supplied by Philip Jonathan at Shell Research UK.

Hindcasts of Y storm peak significant wave height (in metres)
in the Gulf of Mexico.

e wave height: trough to the crest of the wave.

o significant wave height: the average of the largest 1/3 wave
heights. A measure of sea surface roughness.

o storm peak: largest value from each storm (cf. declustering).

a 6 x 12 grid of 72 sites (=~ 14 km apart).
Sep 1900 to Sep 2005 : 315 storms in total.

average of 3 observations (storms) per year, at each site.

(]

Aim: quantify the extremal behaviour of Y at each site, making
appropriate adjustment for spatial dependence.
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Spatial dependence
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Spatial non-stationarity
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Modelling issues

@ Spatial non-stationarity.
e Simple approach: model spatial effects on EV parameters as
Legendre polynomials in longitude and latitude.
e More flexible approaches are possible.
@ Use a threshold that varies over space?
@ Spatial dependence.

e Estimate parameters assuming conditional independence of
responses given covariate values.
e Adjust standard errors etc. for spatial dependence.
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Extreme value regression model

Conditional on covariates x;; exceedances over a high threshold
u(x;j) follow a 2-dimensional non-homogeneous Poisson process.

If responses Yj;,i=1,...,72 (space), j = 1,...,315 (storm) are
conditionally independent:

L) = ﬁ ﬁ exp {—i [1 +E(xg) <“(XU)“(XU)>]_”E(X”)}

j=1i=1 o (x;) +
315

LT oy [t (2 25900

11 o(x;i
J=1 ity>u(xj) u ( U)

~1/(x)~1

+
A : mean number of observations per year;

p(xij), o(xij), €(x;i) : GEV parameters of annual maxima at x;j;
0 : vector of all model parameters:
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Covariate-dependent thresholds

Arguments for:

@ Asymptotic justification for EV regression model : the
threshold u(x;;) needs to be high for each x;;.

@ Design : spread exceedances across a wide range of covariate
values.

Set u(x;j) so that P(Y > u(x;)), is approx. constant for all x;;.

@ Set u(x;;) by trial-and-error or by discretising x;;, e.g. different
threshold for different locations, months etc.

@ Quantile regression (QR) : model quantiles of a response Y
as a function of covariates.
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Model parameterisation

Let p(x;j) = P(Yj > u(xj;)). Then, if £(x;) = £ is constant,

If p(x;;) = p is constant then

u(xij) = p(xij) + co(x;).

The form of u(x;;) is determined by the extreme value model:
e if u(x;;) and/or o(x;;) are linear in x;: linear QR;

o if log(x(x;;) and/or log(o(x;;) is linear in x;;: non-linear QR.
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Theoretical study (with Nicolas Attalides)

Data-generating process: for covariate values xi, ..., X,

\/,‘ | X = Xj in’iep GEV(MO+M1Xi707§)'

Set threshold
u(x) = up + w1 x.

Vary uy, set ug so that the expected proportion of exceedances is
kept constant at p.
e Calculate Fisher expected information for (po, i1, 0, &).

@ Invert to find asymptotic V-C of MLEs ﬂo,ﬁl,ﬁ,gand hence
var(ji1).
@ Find the value of vy that minimises var(ji1).
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Preliminary findings

Let @iy be the value of uy that minimises var(ji1).

@ If covariate values xi, ..., x, are symmetrically distributed
then i3 = p1 (quantile regression).
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Preliminary findings

Let @11 be the value of vy that minimises var(ji1).

o If covariate values xi, ..., x, are symmetrically distributed
then 7 = p1 (quantile regression).

@ If x1,...,x, are positive (negative) skew then i} < p;
(lt'll > ,ul).
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Preliminary findings

Let & be the value of u; that minimises var(fi1).

o If covariate values x, ..., x, are symmetrically distributed
then @ = u1 (quantile regression).

@ If x1,...,xp are positive (negative) skew then &7 < pz
(l~11 > ,ul).

... but the loss in efficiency from using &i; = p1 is small.

Extensions:
@ More general models.

o Effect of model mis-specification due to low threshold;
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Adjustment for spatial dependence (for wave height data)

Independence log-likelihood:

k

Io(0) = Z Zlogf,, yii ) =) 1i(0).
j=1

j=1 i=1
(storms) (space)

In regular problems, as k — oo,

6 — N6, "LV ITY,

o | = Fisher expected information: —E <5L622 //ND(QO));

e V =var 89 /IND ZVE%I" 0)) = ZE (sz(@o))
J

where

91;(6)
a0

U;i(0) =

18/29



Adjustment of /jyp(60)

Estimate

@ | by Fisher observed information, evaluated at 5;
k
o Viby > U2 (D).
j=1
PN | ~
Let Hy = <—/*1 vrl) and Hy = —1.

Chandler and Bate (2007):

laps () = Inp(8) + ((09:?)/,,:/7((5:;)) <//ND(9) - //ND(g)) ;

e Adjust /inp(6) so that its Hessian is Hp at 0 rather than H;.

@ This adjustment preserves the usual asymptotic distribution of
the likelihood ratio statistic.
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Simulation study

30 years of daily data on a spatial grid.
@ Spatial dependence : mimics that of wave height data.
e Temporal dependence : moving maxima : extremal index 1/2.

@ Spatial variation: location p linear in longitude and latitude.

e ¢ —0.2,0.1,0.4,0.7.
@ Thresholds: 90th, 95th, 99th percentiles.
@ SE adjustment: data from distinct years are independent.

e Simulations with no covariate effects and/or no spatial
dependence for comparison.

20/29



Findings of simulation study

@ Slight underestimation of standard errors : uncertainty in
threshold ignored.

@ Uncertainties in covariate effects of threshold are negligible
compared to the uncertainty in the level of the threshold.

o Estimates of regression effects from QR and EV models are
very close : both estimate extreme quantiles from the same
data.

@ To a large extent fitting the EV model accounts for
uncertainty in the covariate effects at the level of the
threshold.

21/29



Summary of modelling of wave height data

Threshold selection:
@ Choice of p: look for stability in parameter estimates.

@ Based on p (and u) quadratic in longtiude and latitude, o and
& constant ...
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Threshold selection : 1 intercept
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Threshold selection : 1 coefficient of latitude
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Threshold selection : &
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Summary of modelling of wave height data

@ Choice of p: look for stability in parameter estimates.
Use p = 0.4.

@ Model diagnostics : slight underestimation at very high levels,
but consistent with estimated sampling variability.

@ QR model and EV model agree closely.
o £ =0.066, with 95% confidence interval (—0.052,0.223).

e Estimated 200 year return level at (long=7, lat=1) is 15.78m
with 95% confidence interval (12.90,22.28)m.
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Conditional 200 year return levels



Conclusions

Quantile regression:

@ a simple and effective strategy to set thresholds for
non-stationary EV models;

@ supported by simulation study;
@ theoretical work is on-going;

Kysely, J., et al. (2010) use quantile regression to set a
time-dependent threshold for peaks-over-threshold GP modelling of
data simulated from a climate model.

Spatial dependence
@ adjust inferences for dependence; or

@ model dependence explicitly.
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Thank you for your attention.
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