Fitting covariate models to extreme value data: an example from the formal investigation into the loss of the Derbyshire

RSS / ESSG short course

Janet Heffernan Lancaster University

November 6th 2001

2 The investigation

- the wreckage was found in 1994
- 2.5 miles under water
- 200 hours of video and 135,000 photos of the wreck
- enquiry was heard by Mr. Justice Colman during April – July 2000

Our role in the investigation:

• focus on the risk of waves on hold 1 (at the front of the vessel) exceeding the collapse pressure of 42 kPa

1 The bulk carrier MV Derbyshire

- caught in Typhoon Orchid on the 9th September 1980
- sank 350 miles south east of Japan
- all 44 people on board died
- no mayday was received
- largest UK ship ever lost at sea

3 The data

- know where ship sank
- satellite data gives Typhoon weather information
- wave experts *hindcast* wave conditions

4 The data

- Marine Research Institute, Netherlands (MARIN)
- replica of the Derbyshire
- range of ship and wave conditions in a test tank
- sensors recorded wave impacts on Hold 1

6 Model for impact distribution

Data are independent threshold exceedances.

Try Generalised Pareto family – $\mathsf{GPD}(\sigma,\xi)\colon$

$$F_u(x) = 1 - \left\{1 + \xi\left(\frac{x-u}{\sigma}\right)\right\}^{-1/\xi}$$

for x > u and $1 + \xi(x - u)/\sigma > 0$.

First step – fit GPD separately to each test:

- 1. determine suitable threshold
- 2. maximum likelihood
- 3. validate model fit

5 The data

peaks above 5 kPa separated by at least 8 seconds

- range of wave and ship conditions
- influences number and size of impacts

24 tests total to cover range of ship and wave conditions

7 Threshold choice - Mean residual life plots

If $X - u \mid X > u$ follows a GPD (σ, ξ) then (if $\xi < 1$) for all $u^* > u$,

$$E(X - u^* \mid X > u^*) = {\sigma + \xi(u^* - u)}/{(1 - \xi)}$$

This is linear in u^* with gradient $\xi/(1-\xi)$.

Choose threshold u = 10kPa.

8 Maximum likelihood - validate model fit

10 Fitting common shape parameter

Exceedances X - u from *i*th test follow $\text{GPD}(\sigma_i, \xi)$ Combine data from ALL tests to give 1180 points Standardised exceedances:

$$\frac{X - u}{\sigma_i}$$

will then follow $GPD(1, \xi)$.

PP and QQ plots on common scale:

Common shape parameter estimate $\xi = -0.33$ Different scale parameters σ_i depend on conditions of *i*th test.

9 Maximum likelihood

Fit GPD to threshold exceedances.

Data	n	σ	(s.e.)	ξ	(s.e.)
Damaged, low	88	18.8	(2.3)	-0.38	(0.07)
Damaged, high	110	16.4	(1.9)	-0.23	(0.07)
Intact, low	1	-	-	-	_
Intact, high	20	10.65	(3.6)	-0.37	(0.27)

- different numbers of points
- different scale parameters
- evidence of same shape parameter?

Remember:

- shape parameter most difficult to estimate
- beneficial to share information across data sets

...must check whether data support this.

11 Think about original problem again...

AIM:

- model distribution of impacts on Hold 1
- range of weather conditions experienced during Typhon Orchid
- range of boat conditions, as flooding state of boat deteriorated

PROGRESS SO FAR:

- have GPD model which fits test data well
- ullet one shape parameter
- separate scale parameter for each test (= 24 parameters)

CAN WE ANWSER THE QUESTION YET?

- test weather conditions don't cover all weather conditions in Typhoon
- test boat conditions don't cover all boat conditions we want to investigate

12 Using covariates...

Differences between impact distributions due to:

- weather conditions
- boat conditions

Let z represent all this information.

Wave theory then gives us the summary variable:

m(z) =expected value of impacts above 10 kPa

14 Fitting the covariate model

Likelihood with different scale parameters (no covariates yet!):

$$L(\boldsymbol{\sigma}, \boldsymbol{\xi}) = \prod_{i=1}^{24} \prod_{j=1}^{n_i} \frac{1}{\sigma_i} \left\{ 1 + \boldsymbol{\xi} \frac{(x_{i,j} - u)}{\sigma_i} \right\}^{-(1+1/\xi)}$$

- 1 shape parameter
- 24 scale parameters
- maximised numerically

To fit the covariate model, replace each σ_i with

$$\sigma_i = \sigma(oldsymbol{z}_i) = a_0 + a_1 F(oldsymbol{z}_i) + a_2 \{m(oldsymbol{z}_i) - u\}.$$

- 1 shape parameter
- three other parameters
- scale parameters are functions of covariates
- maximised numerically

13 Using covariates...

So σ depends on

- m(z)
- damaged / intact

In fact – the real variable we should look at is not just a damage *indicator* but

$$F(z) = freeboard$$

distance from fore deck to still water level.

Based on picture, postulate model:

$$\sigma_i = \sigma(oldsymbol{z}_i) = a_0 + a_1 F(oldsymbol{z}_i) + a_2 \{m(oldsymbol{z}_i) - u\}.$$

where z_i are boat and storm conditions in *i*th test. (try range of models for best fit and parsimony)

15 Using covariates...

$$\sigma(z) = a_0 + a_1 F(z) + a_2 \{ m(z) - u \}.$$

16 Validate model fit

Has reduction in number of parameters worsened fit of model?

Use formal tests (likelihood ratio etc...)

Fit still excellent,

Shape parameter $\hat{\xi} = -0.30$

- light tail
- impact distribution has finite upper end point
- value of upper end point depends on covariates through scale parameter $\sigma(z)$

18 Maximum impact in any hour

Number of impacts is also random.

Wave theory gives us further summary of sea and ship conditions:

$$\lambda(z)$$

expected number of impacts > 10 kPa on Hold 1 in hour with conditions z.

We assume number of such impacts is

• Poisson with mean $\lambda(z)$

The distribution of the maximum impact C_j in hour j, given covariates z_j is then:

$$\Pr\{C_j \le x \,|\, \boldsymbol{z}_j\} = \exp[-\lambda(\boldsymbol{z}_j)\{1 - F_u(x; \boldsymbol{z}_j)\}]$$

for x > u.

Here $F_u(x; z_j)$ is distribution of impacts > u kPa.

We have modelled $F_u(x; z_j)$ as GPD with parameters $\sigma(z_j)$ and ξ .

17 Benefits of covariate model

No longer have one σ_i for each test, instead

- three parameters a_0 , a_1 and a_2 ,
- models scale of impact distribution as function of covariates

Model has physical interpretation:

- sea conditions $worsen \sigma$ increases
- freeboard $decreases \sigma$ increases

Can also now use model to predict impact distribution for all Typhoon conditions:

- calculate m(z) for all Typhoon conditions
- calculate F(z) for deteriorating state of boat

19 Maximum impact in storm

The maximum impact over d consecutive hours has distribution function

$$\prod_{i=1}^d \Pr(C_j \le x \,|\, \boldsymbol{z}_j).$$

This assumes:

- wave and ship conditions (represented by z_j) are stationary over any hour j
- the C_j are conditionally independent given the z_j

Since m(z), $\lambda(z)$ and F(z) were available for the evolving typhoon conditions we can estimate this distribution for each hour of the storm.

20 Risk estimates

The estimated risk of hold 1 receiving an impact above 42 kPa during the typhoon

- is negligible if no initial flooding has occurred
- varies between zero and one over the range of flooding scenarios

Initial	Waves	Pr(impact>42 kPa)
flooding		(95% conf int)
None	Hindcast	$0.00 \ (0.00, 0.00)$
	10% higher	$0.01\ (0.00, 0.29)$
Stores	Hindcast	$0.00 \ (0.00, 0.05)$
Deep tank		0.00 (0.00, 0.03)
Ballast tank		$0.71 \; (0.38, 0.96)$

Likelihood based confidence intervals let us tell whether the risk estimates are truly different from each other.

22 Investigation outcome

The Judge's report attributes the loss to

- initial damage to ventilation and air pipes caused by sustained wave loading
- flooded various of the vessel's cavities and reduced the freeboard
- increasing impacts to hold 1 and finally causing the hatch cover to fail
- ullet hold 1 would then have flooded rapidly
- damage imperceptible from bridge, at stern
- flooding of holds 2 and 3 would follow
- ship would then inevitably be lost

More information at www.mv-derbyshire.org.uk

21 Summary / discussion

- GPD gives excellent fit to data recording excesses over thresholds
- more sophisticated modelling is needed as prediction is required for scenarios not represented by the test data
- covariates provide explanation of differences between tests
- likelihood framework natural for fitting complex models of this type
- confidence intervals vital to show uncertainty in risk estimates

