envstat list

Home page - meeting info etc.
http://www.jiscmail.ac.uk/files/envstat
Message archives
http://www.jiscmail.ac.uk/lists/envstat.html
E-mail subscription
envstat-subscribe-request@jiscmail.ac.uk
envstat-signoff-request@jiscmail.ac.uk
Contact list owner
envstat-request@jiscmail.ac.uk
Send messages
envstat@jiscmail.ac.uk

Trends in temperatures: exploration and estimation

Howard Grubb
School of Applied Statistics
The University of Reading
http://www.rdg.ac.uk/~snsgrubb

ESSG, March 14, 2002

Outline

1. Central England Temperature

- Long series - data meeting
- Monthly patterns
- Aggregation
- Shorter series

2. CET daily

- Annual extremes
- Other functionals (timing)
- Monthly extremes
- Shorter series

1. Central England Temperature

- Average of several sites in "Central England"
- Bristol, Manchester, London
- data meeting
- Average monthly temperature
- 341 years
- 4092 observations

1.1 Annual - linear trend

	Rise 'C/100Y	\mathbf{p}	rho1
Annual Mean	0.226	0.000	$\mathbf{0 . 2 2}$
With AR(1)	0.227	0.000	
$1878-$	0.773	0.000	$\mathbf{0 . 1 7}$

- rhol>0.11, reduces significance

1.2 Seasons - linear trend

Season	Rise ${ }^{‘} \mathbf{C}$ $/ \mathbf{1 0 0 Y}$	\mathbf{p}	rho1
DJF	0.35	0.000	-0.01
MAM	0.23	0.000	$\mathbf{0 . 1 9}$
JJA	0.06	0.179	0.10
SON	0.25	0.000	$\mathbf{0 . 2 0}$

1.3 Seasons - shorter series

Season	$\mathbf{a l l}$	$\mathbf{1 8 7 8}$	\mathbf{p}	rho1
DJF	0.35	$\mathbf{0 . 5 5}$	0.101	0.10
MAM	0.23	$\mathbf{0 . 7 4}$	0.000	0.13
JJA	0.06	$\mathbf{0 . 6 4}$	0.003	-0.01
SON	0.25	$\mathbf{1 . 0 9}$	0.000	0.00

1.4 Months

- Smooth variation through year
- Are trends better-defined by not aggregating?

Month	Trend 'C/100Y	\mathbf{p}	rho1
December	0.36	0.000	0.02
January	0.44	0.000	0.01
February	0.27	0.008	-0.05
March	0.38	0.000	0.07
April	0.20	0.002	0.12
May	0.11	0.072	0.15
June	-0.02	0.736	-0.06
July	0.11	0.086	0.04
August	0.11	0.070	0.15
September	0.15	0.010	0.15
October	0.32	0.000	0.09
November	0.30	0.000	0.07

1.4a Monthly vs annual?

- Trade-off is variance: annual confidence intervals are $1 / \mathrm{sqrt}(12)=0.29$ of monthly
- But averaging obviously different trends brings estimate towards zero
- Should model structure

1.5 Months - shorter series

- 1878- only
- Trade-off - shorter length reduces precision, but trends may be larger
- Can also consider short series at various points
- sensitivity of 100 Y trend

1.6 One model? Heterogeneity

- Could put all months together
- if variances are homogeneous
- Slight summer/winter heterogeneity
- One model saves 11 variance d-o-f
- For large samples, relatively little benefit

1.7 Changing seasons

- Different trends in different months - changing seasonal pattern
- Seasonal cycle has become (slightly) compressed

1.8 Linear modelling assumptions?

- Normal
- symmetry for estimation
- full Normality for significance
- data are averages
- Independence
- autocorrelation - okay for season/month lags

2. Daily series

- 1772-
- Can now look at other characteristics
- 227 annual extremes (each of 365+ values)
- As well as actual value, consider timing:
- min is usually in January
- and max is usually in July
- Other functionals - degree days

2.1 Trends in (annual) extremes

- Summer maxima
- no trend ($\mathrm{p}=0.13$)
- Winter (overlapping Dec) minima

	Trend 'C/C	s.e.
Linear	0.87	0.24
GEV	0.67	0.22

2.2 Monthly extremes

- 30 (ish) values
- 30 daily temperatures - extremes
- Monthly minima
- Monthly maxima

2.3 Shorter data series

- As before, consider 1878-
- Trends/changes somewhat stronger

3. Remarks

- Linear trends are useful exploratory tools
- Take account of:
- structure - seasons
- heterogeneity - may not put everything in one model
- autocorrelation? May be small effect at seasonal lag
- data length - trade-off strength and consistency vs significance
- other forms of pooling (sites)
- Look at patterns/trends in functionals of interest (timing, cumulative)

