
An Introduction to Extremes

RSS / ESSG Short Course

Stuart Coles
University of Bristol

6, Nov, 2001

stuart.coles@bristol.ac.uk

http://www.statistics.bristol.ac.uk/˜masgc

1

Applications of Extremes

1. Environmental: Sea-levels, wind speeds,
pollutant concentrations,. . .

2. Reliability: Breaking strength, corrosion level,
pit depth, . . .

3. Financial: Insurance risk, portfolio risk,
value-at-risk,. . .

4. Miscellaneous: Management strategy, sports
data, . . .
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Sea Levels
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Objective: Design coastal defence to af-
ford protection against extreme sea-levels.
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Breaking Strengths
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Objective: Predict minimum possible
breaking strength.
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Price Index Series
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Objective: Estimate risk of large change
in daily price.
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Venezuelan Annual Maximum Rainfall
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Objective: Assess likelihood of future
catastrophic rainfall levels.
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Basics of extreme value theory

Simplest case: independent variables
�������������
	���

. Require accurate inferences on tail
of
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The principal issues in considering this problem are
as follows . . .
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Issues in building models for extremes

� By definition, extremes are rare;

� Estimates are often required beyond
�������

, the
largest observed data value;

� Standard density estimation techniques fit well
where the data have greatest density, but can be
severely biased in estimating tail probabilities.

Absence of physical or empirical basis for
extrapolations leads to the extreme value
paradigm:

Asymptotic arguments should be used to
generate suitable families of models for
extremes.
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Model Building

Let
� ��� � � ��������� �
	 is a sequence of iid random

variables with distribution function


, and define� 	������
	���������� � ����������� 	� �
Then the distribution function of

� 	
is found as:������� 	������� ������������� ��������� �
	������ �������������� ������������� 	������ ��� !��"# 	 �

But:


is unknown.

Hence, approximate the distribution by limit
distributions as $&%�' .

What distributions can arise?
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The Generalized Extreme Value
Distribution

Careful analysis implies that (subject to regularity)
the approximate distribution of

 	  (��"
for large $

falls within the family)  (��"���*�	,+.-0/21436587�9 ��/;:<>=@?�A ��B�CED �
defined on

�
�GFH36587� (��/8:&"�I <KJML  .
The parameters

:
and < are location and scale

parameters;
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is a shape parameter determining the
rate of decay in the tail.
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The Gumbel Distribution

The special case of the GEV distribution in which7N� L , referred to as the Gumbel distribution, is of
special interest. It is obtained by letting

7 % L in the
GEV family, leading to the distribution function)  (��"���*O	H+ 1 /G*O	H+QP@/ 9 ��/;:<>=.RS? �
defined on

/ 'UT � T�' .
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Quantiles

In terms of quantiles:�EVQ��:�/ < 7�W 3@/X�Y/GZ []\� �3@/_^`"a A COb �
where

)  (�EVc"��d3@/_^
.

In extreme value terminology,
�,V

is the return level
associated with the return period
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Plotting on this scale ensures:

1. Effects of extrapolation are clearly highlighted;

2. Plots are linear when
7Q� L .

12



Inference

Given observed ‘annual maxima’
� ��� � � ��������� ��� ,

we need to make inferences on the GEV parameters !: � < ��7Y" . Possibilities include:

� Graphical techniques;

� Moment-based estimators;

� Maximum Likelihood.

Reasons for preferring Maximum Likelihood
include:

1. Simple approximations for standard error and
confidence interval calculations;

2. Large sample optimality properties;

3. Provides framework for model building and
extension.
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Modelling Procedure

1. Specification of log-likelihood function:

� � �����	��
��� ��� ��� ����� ��� � � � ������ 
�� � ���"! �#�$
&%#' �
� ��)(+*�,! �#�$
&%#' � � ��)(+*

� � �
�- ./�0
2. Numerical maximization of log-likelihood.

3. Calculation of standard errors from inverse of
observed information matrix (also obtained
numerically).

4. Diagnostic checks: probability plots, quantile
plots, return level plots.

5. Calculation of confidence intervals for return
levels.
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Example: Venezuelan Rainfall

gev.fit(rain)

$nllh:

[1] 224.0537

$mle:

[1] 49.0496173 19.9318432 0.1662012

$se:

[1] 3.365197 2.662967 0.139700
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Example: Venezuelan Rainfall (Gumbel
Model)

gum.fit(rain)

$nllh:

[1] 224.8877

$mle:

[1] 50.90696 21.54820

$se:

[1] 3.261058 2.545455
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GEV or Gumbel?

Is GEV model preferable to Gumbel?

1. Estimate of
7

in GEV model is 0.166 with
standard error of 0.140. Estimate is little more
than one standard error from zero, suggesting
data are consistent with

7N� L .
2. Consider deviance statistic

� ���c������� � ��� /	����� � L�
  �d3 � ��� �
The bigger the value of

�
, the stronger the

evidence for
7�� L . More formally, the strength

of evidence for
7��� L is approximated by the

exceedance probability of
�

on a �
� �

distribution:

1-pchisq(1.68,1)

0.1949245

3. Despite 1. and 2. the diagnostic plots of the
Gumbel model are poorer than those of the
GEV.
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The bigger picture

In actual fact, the Gumbel model proved to be
hopelessly inadequate when the 1999 event
occurred.
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Conclusion: Even if formal tests support
model reduction from GEV to Gumbel,
the GEV model should be preferred, as its
conservatism affords increased protection.
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Threshold Models

Modelling only annual maxima is wasteful if other
data are also available. For example, the
Venezuelan data:
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Modelling threshold exceedances

Threshold approach leads to approximate families
for ���� � T�� 5���� � J � "�� J�L
for large values of the threshold � . Similar
arguments to those leading to GEV generate the
Generalized Pareto family:

�  ��,"��d3@/ 9 365 7��
�<K= A ��B�C

defined on
����F�� J�L and

 365 7��,I �< " JML  .

20



Threshold Modelling Strategy

1. Determine suitable threshold (various
diagnostics available – look for linearity of
mean residual life plot);

2. Maximize likelihood of GPD model for
threshold exceedances;

3. Calculate standard errors etc.;

4. Validate model fit;

5. Use model to estimate return levels.

��� �
�
5 < 7�W  �� $����
	 " C /�3 b �
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Example: Venezuelan data

gpd.fit(rain.day)

$nllh:

[1] 1884.81

$mle:

[1] 10.2016905 0.2607349

$se:

[1] 0.75118031 0.06041446

Probability Plot

Empirical

M
od

el

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile Plot

Model

E
m

pi
ric

al

50 100 150

20
40

60
80

10
0

14
0

Return Level Plot

Return Period (years)

R
et

ur
n 

Le
ve

l

0.1 1.0 10.0 100.0 1000.0

0
20

0
60

0
10

00

20 40 60 80 100 120 140

0.
0

0.
02

0.
06

0.
10

Density Plot

x

f(
x)

22

Other Issues 1: Temporal Dependence

In practice data usually display temporal
dependence.
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However:

Standard limit results are not inval-
idated provided dependence is ‘short
range’.
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In particular:

1. GEV can be estimated for annual maximum
without any alteration to procedure;

2. GPD can also be estimated for distribution of
threshold exceedances, though allowance
should be made for fact that observations are
not independent. (Various techniques available:
simplest is to identify clusters of extremes and
fit GPD to cluster maxima only).
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Other Issues 2: Non-Stationarity

Data are often non-stationary: trends, seasonality
etc.
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Usual approach:

Model non-stationarity as time-variation
in extreme value parameters. Estimate
model through maximum likelihood.
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Other Issues 3: Multivariate Extremes

Extremes of different processes may be statistically
related.

Annual Maximum Wind Speed (knots) at Albany (NY)
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A joint analysis of extremes of several processes,
using multivariate analogs of the standard extreme
value models, enables:

� Improved precision through information
transfer;

� Probability estimates of combined extreme
events.
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Other Issues 4: Bayesian Inference

Modern computational techniques (MCMC) enable
‘straightforward’ Bayesian inferences for extreme
value models as an alternative to Maximum
Likelihood. Advantages include:

� Facility to incorporate genuine prior knowledge
or information;

� Inferences that have a simplified interpretation
and that do not rely on asymptotic
approximations of the likelihood function;

� More coherent approach to inference.
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In particular, predictive versions of return level
plots can be produced that account for parameter
uncertainty.
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