
1 / 26

The Bayesian approach to long term climate prediction:
general principles

Michael Goldstein
Department of Mathematical Sciences,

Durham University



Climate of suspicion: Fred Pearce The Guardian, June 7 2008

2 / 26

“Recently I attended a conference in Reading where some of the world’s top
experts discussed their failings ... This sudden humility was not unconnected
with their end-of-conference call for the world to spend a billion dollars on a
global centre for climate modelling. A ”Manhattan project for the 21st century”,
as someone put it. Even so, scientists are concerned that many of their
predictions about how climate change will play out in different parts of the world
are little better than guesses. But whatever the local wrinkles and whatever
natural cycles may intervene, man-made global warming is real, current and
matters a great deal.”
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Many atmosphere-ocean models show a slowdown of thermohaline circulation
in simulations of the 21st century with the expected rise in greenhouse gases.
[This is due to a combination of effects which reduce the density of surface
waters, which makes it harder for them to sink.]
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Many atmosphere-ocean models show a slowdown of thermohaline circulation
in simulations of the 21st century with the expected rise in greenhouse gases.
[This is due to a combination of effects which reduce the density of surface
waters, which makes it harder for them to sink.]

“ The weight of evidence makes it clear that climate change is a real and
present danger. The Exeter conference was told that whatever policies are
adopted from this point on, the Earth’s temperature will rise by 0.6F within the
next 30 years. Yet those who think climate change just means Indian summers
in Manchester should be told that the chances of the Gulf stream - the Atlantic
thermohaline circulation that keeps Britain warm - shutting down are now
thought to be greater than 50%.”

[Burying carbon Leader Column Thursday February 3, 2005 The Guardian]
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The chances of the Gulf stream shutting down are now thought to be greater
than 50%

Questions

• What does this statement mean?

• What analysis was actually done to reach this conclusion?

• What analysis could possibly be done to justify (or contradict) this
conclusion?

• What do we learn about climate from the analysis of (necessarily imperfect)
models?
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[1] Exploring the behaviour of our favourite climate model gives us qualitative
and semi-quantitative insights about climate behaviour.
However, behaviour of our model is not the same as the behaviour of actual
climate. Analysing models helps us to make judgements, but model analyses
are not the same as judgements about climate.

[2] When we consider what actions we should take, we are concerned with
actual climate. For policy development, the basic question is:
what does the collection of models, scientific theories, observations and
analysis of the likely implications arising from our imperfect knowledge,
[model deficiency, observation error, uncertainty about physical constants, etc.]
tell us about actual climate behaviour?
Such analysis results in our Best Current Judgements as to future climate
behaviour, expressed as uncertainties.
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To form our best current judgements, we must first consider many specific
detailed modelling questions - each of which is hard. There will always be more
work to be done on such questions. But we can’t wait forever.

Because of the incomplete status of current climate science, there are three
distinct levels of best current judgements.

Stage 1 The best current judgements of an individual expert (expressed as
probabilities).
(This is a subjective Bayes analysis)

Stage 2 A careful analysis of the range of uncertainty judgements that it would
be reasonable to hold given the differing views of experts.
(This is a scientific Bayes analysis)

Stage 3 An analysis so clear and compelling that it would command agreement
from all knowledgeable experts.
(This is an objective Bayes analysis (note non-standard use of “objective”!), and
the only case where we can talk about, eg THE probability of THC collapse. )
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‘Best’ is a high standard to set for our judgements (though why aim for less?).
What we require is care and clarity. These are challenging requirements, but no
more challenging, in principle, than the process of collecting climate data and
building and analysing climate models themselves. However, this does require
a different tool-set and proper resources to carry through.

To understand the tool-set, we first need to look at the tool-set for individual
models, and then consider how this tool-set extends to collections of models.
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[1] Expert has model for THC. To evaluate the model, we need to specify a
vector of inputs. More than half of the input choices show THC shutdown.

Issues If the model is slow to evaluate, this is computationally expensive.

[2] Same as [1], but expert has chosen input parameters to match various
historical climate features. As history is measured with error, this implies a
probability distribution on the inputs. Drawing from this distribution, more than
half of the input choices show THC shutdown.

Issues The model calibration step is statistically and computationally
challenging (it is a very high-dimensional ill-posed inverse problem).

[3] Same as [2], but expert has carefully distinguished between the model and
the true physical system and therefore assessed a probability of actual THC
shutdown given model THC shutdown.

Issues Serious assessment of model discrepancy is hard.
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Large climate models take months to run on supercomputers. The biggest
computer in the world is the Earth Simulator in Japan, which is often used for
running climate models.



Leading climate models

11 / 26

One leading climate model at the moment is HadCM3, based at the UK Met
Office. One component of this model is HadAM3, the atmospheric module. In a
simple experiment to study the effect of CO2-doubling (Murphy et al, 2004,
Nature), this is coupled with simple mixed-layer ocean sea-ice models.
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One leading climate model at the moment is HadCM3, based at the UK Met
Office. One component of this model is HadAM3, the atmospheric module. In a
simple experiment to study the effect of CO2-doubling (Murphy et al, 2004,
Nature), this is coupled with simple mixed-layer ocean sea-ice models.
The climate model (HadSM3) has about 100 uncertain parameters, including:

1. Large scale cloud. Six parameters
2. Convection. Six parameters
3. Sea ice. Two parameters
4. Radiation. Four parameters
5. Dynamics. Four parameters
6. Land surface. Four parameters
7. Boundary layer. Four parameters

We have a few hundred evaluations of HadSM3, made over a period of about
three years. These evaluations will be one of the main resources for the UK
Climate Impacts Programme 2008 (UKCIP08), which is intended as a fairly
definitive statement about how climate change will impact the UK.
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• Basic ingredients:
x∗: system properties (unknown)
y: system behaviour (influenced by x∗)
z: partial observation of y (with error)

• Ideally, we would like to construct a deterministic model f , embodying the
laws of nature , which satisfies

y = f(x∗)

• In practice, however, the our actual model f is inadequate:

◦ f simplifies the physics;
◦ f approximates the solution of the physical equations

• The fundamental question: What does the imperfect f tell us about the
system values (x∗, y)?

• In particular, input and output very high dimensional and evaluating f(x) for
any x may be VERY expensive.
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evaluations

Actual
climate

Climate
observations

1. We start with a collection of model evaluations, and some observations on actual
climate

2. We link the evaluations to the notion of a ‘best’ evaluation

3. We link the ‘best’ evaluation to the actual climate

4. We incorporate measurement error into the observations

5. There are many useful statistical approaches to assess each individual aspect of
uncertainty. The key strength of the Bayesian approach is in the unified treatment
of all of the sources of uncertainty.
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An emulator is a probabilistic belief specification for a deterministic function.
Our emulator for component i of f might be

fi(x) =
∑

j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions
of x, and u(x) is a weakly stationary stochastic process.
[A simple case is to suppose, for each x, that u(x) is normal with constant
variance and Corr(ui(x), ui(x

′)) is a function of ‖x − x′‖.]
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An emulator is a probabilistic belief specification for a deterministic function.
Our emulator for component i of f might be

fi(x) =
∑

j

βij gij(x) + ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions
of x, and u(x) is a weakly stationary stochastic process.
[A simple case is to suppose, for each x, that u(x) is normal with constant
variance and Corr(ui(x), ui(x

′)) is a function of ‖x − x′‖.]
The emulator expresses prior uncertainty judgements about the function.
These are modified by function evaluations. From the emulator, we may extract
uncertainty statements for the function, at each input value x, e.g.

µi(x) = E(fi(x))
κi(x, x′) = Cov(fi(x), fi(x

′)),
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We fit the emulator, f = Bg(x) + u(x), given a collection of model
evaluations, using our favourite statistical tools - generalised least squares,
maximum likelihood, Bayes - with a generous helping of expert judgement.

So, we need careful experimental design to choose which evaluations of the
model to make, and detailed diagnostics, to check emulator validity.

We have some useful backup tricks - for example, if we can only make a few
evaluations of our model, we may be able to make many evaluations of a
simpler approximate version of the model to get us started.

Interpretation: in this formulation, Bg(x) expresses global variation in f . u(x)
expresses local variation in f

When the input dimension is high, relative to the number of function evaluations
we can make, then most of what we may learn about the function comes
through the global component. For simplicity, we therefore often suppose that
the simulator behaviour can be summarised by the global behaviour (as we
dont learn much about local behaviour).
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f(x) = Bg(x) + u(x), y = f(x∗) + ǫ, z = y + e
The Bayesian treatment of this structure involves:

• a prior distribution for best input x∗

• a probabilistic emulator for the computer function f
• a probabilistic discrepancy measure relating f(x∗) to the system y
• a likelihood function relating historical data z to y

This full probabilistic description provides a formal framework to synthesise
expert prior judgement, historical data and a careful choice of simulator runs.
We may then use our collection of computer evaluations and historical
observations to analyse the physical process

• to determine “correct” settings for simulator inputs (calibration);
• to assess the future behaviour of the system (forecasting);
• to “optimise” the performance of the system (control).

For problems of moderate size, this approach is very powerful and effective.
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For very large scale problems a full Bayes analysis is very hard because
(i) it is difficult to make meaningful probability specifications over high
dimensional spaces;
(ii) the computations, for learning from data (observations and computer runs),
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(iii) the likelihood surface is extremely complicated, and any full Bayes
calculation (based on emulation) may be extremely non-robust.
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For very large scale problems a full Bayes analysis is very hard because
(i) it is difficult to make meaningful probability specifications over high
dimensional spaces;
(ii) the computations, for learning from data (observations and computer runs),
particularly when choosing informative runs, may be technically difficult;
(iii) the likelihood surface is extremely complicated, and any full Bayes
calculation (based on emulation) may be extremely non-robust.
However, the idea of the Bayesian approach, namely capturing our expert prior
judgements in stochastic form and modifying them by appropriate rules given
observations, is conceptually appropriate (and there is no obvious alternative).
The Bayes Linear approach is (relatively) simple in terms of belief specification
and analysis, as it is based only on the mean, variance and covariance
specification which, following de Finetti, we take as primitive.
For a full account, see
Michael Goldstein and David Wooff (2007) Bayes Linear Statistics: Theory and
Methods, Wiley.
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History Matching is concerned with learning about best inputs, x∗, using
simulator evaluations and data, z. Using the emulator we obtain, for each input
choice x, the adjusted values of E(f(x)) and Var(f(x)). We rule out regions
of x space for which f(x) is likely to be a very poor match to observed z.
To achieve this, we calculate, for each output fi(x), the implausibility:

I(i)(x) = |E(fi(x)) − zi|
2/Var(fi(x) − zi)

This calculation can be performed univariately, or over sub-vectors. The
implausibilities are then combined, such as by using IM (x) = maxi I(i)(x),
and can then be used to identify regions of x with large IM (x) as unlikely to be
good choices for x∗.
We iteratively refocus on the ‘non-implausible’ regions of the input space, by
further model runs and refitting our emulator over the sub-region and repeating
the analysis. This process is a form of iterative global search aimed at finding
all choices for x∗ which would give acceptable fits to historical data.
If all values of x are implausible, this is important diagnostic information!
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mean and variance of f∗ by conditioning on x∗ and then integrating with
respect to a prior distribution on x∗.
Given E(f∗), Var(f∗), Var(ǫ), Var(e) , it is now straightforward to compute
the joint mean and variance of the collection (y = f∗ + ǫ, z = yh + e).
We now evaluate the adjusted mean and variance for yp adjusted by z using
the Bayes linear adjustment formulae. This analysis gives system forecasts
without model calibration, and therefore is tractable even for large systems.
In particular, if we are cautious about assigning physical meaning to the inputs,
then we may view the model as a device for deriving relationships between past
and future observables which we directly exploit, as above.
Where appropriate, we can improve accuracy by adding a Bayes linear
calibration stage to the forecasting (while retaining tractability).
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How does learning about f inform us about y?

The simplest (and therefore most popular) way to relate uncertainty about the
simulator and the system is the so-called “Best Input Approach”.
We proceed as though there exists a value x∗ independent of the function f
such that the value of f∗ = f(x∗) summarises all of the information that the
simulator conveys about the system. This means that we consider the model
discrepancy, ǫ = y − f∗, to be independent of f, x∗.

This formulation raises serious questions.
In particular, does x∗ correspond to “true” system properties?

If so, why should they give best fit to our imperfect model?

If not, why should there even be any such “best” inputs, and what does it mean
to have expert judgements about x∗?

Further, surprising contradictions arise when we try to construct joint
specifications linking collections of models to climate in this way.
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of real physical quantities and processes (through approximations in physics,
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more realistic simulator f∗, for which real, physical x∗ would be the best input,
in the sense that (y − f∗(x∗)) would be judged independent of (x∗, f∗).
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Why should we consider that there is a ‘best input’ x∗?
What does a simulator f really tell us about a physical system y?
How do we combine the information about y from a collection of simulators?

Consider both our inputs x and the simulator f as abstractions/simplifications
of real physical quantities and processes (through approximations in physics,
solution methods, level of detail, limitations of current understanding) to a much
more realistic simulator f∗, for which real, physical x∗ would be the best input,
in the sense that (y − f∗(x∗)) would be judged independent of (x∗, f∗).

We call f∗ the reified simulator (from reify: to treat an abstract concept as if it
was real).

Reifying principle
[1] Simulator f is informative for climate, y, because f is informative for f∗ and
f∗(x∗) is informative for y.
[2] A collection of simulators f1, f2, ... is jointly informative for y, as the
simulators are jointly informative for f∗.
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uncertain Γ, correlate u(x) and u∗(x), but leave u∗(x,w), involving any
additional parameters, w, uncorrelated.
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Suppose that our emulator for f is

f(x) = Bg(x) + u(x)

Our simplest emulator for f∗ might be

f(x,w) = B∗g(x) + u∗(x) + u∗(x,w)

where we might model our judgements as B∗ = CB + Γ for known C and
uncertain Γ, correlate u(x) and u∗(x), but leave u∗(x,w), involving any
additional parameters, w, uncorrelated.

Structured reification: systematic probabilistic modelling for all those aspects of
model deficiency whose effects we are prepared to consider explicitly.

Comment: All our previous methods are unchanged - all that has changed is
our description of the joint covariance structure.
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We have suggested a conceptual/graphical framework for unifying our
qualitative and quantitative knowledge about all such uncertainties within a
structure which is both logical and tractable, so that we can focus on science
rather than technical/computational issues.
We need new methodology to construct the general language and tool kit
required for making this synthesis in principle, and a close joint effort between
statisticians and climate scientists to achieve the synthesis in practice.
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To assess best current judgements about future climate, it is enormously
helpful to have an overall framework to unify all the uncertainties arising from
Uncertain model parameters, outputs and discrepancies
Uncertain observations/initial conditions/forcing functions
Uncertain relationships between different modelling approaches
Uncertain effects of our attempts to influence future climate
We have suggested a conceptual/graphical framework for unifying our
qualitative and quantitative knowledge about all such uncertainties within a
structure which is both logical and tractable, so that we can focus on science
rather than technical/computational issues.
We need new methodology to construct the general language and tool kit
required for making this synthesis in principle, and a close joint effort between
statisticians and climate scientists to achieve the synthesis in practice.
If climate is worth studying (which clearly it is!), then careful and detailed
uncertainty analysis is a crucial component of this study. Such analysis poses
serious challenges, but they are no harder than all of the other modelling,
computational and observational challenges involved with studying climate.
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And check out the website for the
Managing Uncertainty in Complex Models (MUCM) project
[A consortium of Aston, Durham, LSE, Sheffield and Southampton all hard at
work on developing technology for computer model uncertainty problems.]
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