Collapse of the thermohaline circulation

Emulators

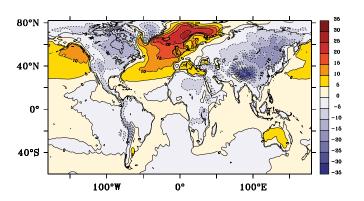
Some Experiments

Towards Trajectories

How we might put this into practice: the probability that the Atlantic circulation collapses

Peter Challenor, Doug McNeall

National Oceanography Centre, Southampton


The thermohaline circulation

North West Europe is warm compared to similar latitudes

Collapse of the thermohaline circulation

Emulators

Some

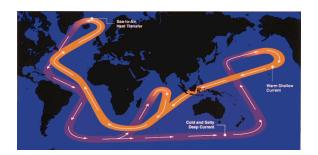
The thermohaline circulation

Collapse of the thermohaline circulation

Emulators

Some Experiments

- This is because heat is transported N in the Atlantic
- This heat comes, not from the Gulf Stream but from the Thermohaline Circulation


The thermohaline circulation

Collapse of the thermohaline circulation

Emulators

Some Experiments

- Cold salty water sinks in the North and flows south at depth
- Warm, fresh water is brought north

The Big Question

Collapse of the thermohaline circulation

Emulators

Some Experiments

- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) will collapse by 2100?
- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) in a ensemble of different models will collapse by 2100?
- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) in a particular model will collapse by 2100?

The Big Question

Collapse of the thermohaline circulation

Emulator:

Some Experiments

- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) will collapse by 2100?
- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) in a ensemble of different models will collapse by 2100?
- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) in a particular model will collapse by 2100?

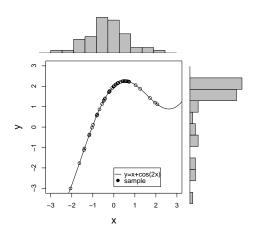
The Big Question

Collapse of the thermohaline circulation

Emulator:

Some Experiments

- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) will collapse by 2100?
- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) in a ensemble of different models will collapse by 2100?
- What is the probability that the Meridional Overturning Circulation in the North Atlantic (MOC) in a particular model will collapse by 2100?


Monte Carlo Estimate

Collapse of the thermohaline circulation

Emulators

Some Experiments

Towards Trajectories

MC error is proportional to $\frac{1}{\sqrt{n}}$

Collapse of the thermohaline circulation

Emulators

Some Experiments

- An emulator is statistical approximation to the computer model
- Or an encapsulation of our beliefs about the model
- A Gaussian Process that models a non-linear function as a mean function plus a stochastic process
- All marginal and conditional distributions are Gaussian; with mean function $\mu(x)$ and a covariance function $\rho(x_1, x_2)$
- We not only get a estimate of the climate model output at our input, x, but also a measure of its uncertainty

Collapse of the thermohaline circulation

Emulators

Some Experiments

- An emulator is statistical approximation to the computer model
- Or an encapsulation of our beliefs about the model
- A Gaussian Process that models a non-linear function as a mean function plus a stochastic process
- All marginal and conditional distributions are Gaussian; with mean function $\mu(x)$ and a covariance function $\rho(x_1, x_2)$
- We not only get a estimate of the climate model output at our input, x, but also a measure of its uncertainty

Collapse of the thermohaline circulation

Emulators

Some Experiments

- An emulator is statistical approximation to the computer model
- Or an encapsulation of our beliefs about the model
- A Gaussian Process that models a non-linear function as a mean function plus a stochastic process
- All marginal and conditional distributions are Gaussian; with mean function $\mu(x)$ and a covariance function $\rho(x_1, x_2)$
- We not only get a estimate of the climate model output at our input, x, but also a measure of its uncertainty

Collapse of the thermohaline circulation

Emulators

Some Experiments

- An emulator is statistical approximation to the computer model
- Or an encapsulation of our beliefs about the model
- A Gaussian Process that models a non-linear function as a mean function plus a stochastic process
- All marginal and conditional distributions are Gaussian; with mean function $\mu(x)$ and a covariance function $\rho(x_1, x_2)$
- We not only get a estimate of the climate model output at our input, x, but also a measure of its uncertainty

Collapse of the thermohaline circulation

Emulators

Some Experiments

- An emulator is statistical approximation to the computer model
- Or an encapsulation of our beliefs about the model
- A Gaussian Process that models a non-linear function as a mean function plus a stochastic process
- All marginal and conditional distributions are Gaussian; with mean function $\mu(x)$ and a covariance function $\rho(x_1, x_2)$
- We not only get a estimate of the climate model output at our input, x, but also a measure of its uncertainty

Some Maths

Collapse of he hermohaline

Emulators

Some Experiments

Towards Trajectories The Prior

$$\mu(\mathbf{x}) = \mathbf{h}(\mathbf{x})^{\mathsf{T}} \beta$$

h(.) is a known vector of regressor (or basis) functions e.g. $h(x)^T = (1, x, x^2)$ β is a vector of unknown parameters

$$\rho(x_1, x_2) = \sigma^2 c(||x_1, x_2||)$$

$$c(x_1, x_2) = exp\left(-\frac{||x_1, x_2||^2}{\theta}\right)$$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

The Posterior

Collapse of the thermohaline circulation

Emulators

Some Experiments

Towards Trajectories

$$\eta(x) \sim t_{n-q}$$

$$E(\eta(x)) = h(x)^T \beta' + t(x)^T A^{-1} (y - H\beta')$$
$$\beta' = \left(H^T A^{-1} H\right)^{-1} H^T A^{-1} y$$

H is the matrix $\{h(x_1), \cdots, h(x_n)\}^T$

$$t(x) = \{c(x, x_1), \cdots, c(x, x_n)\}\$$

A is the matrix $\{c(x_i, x_j)\}$

And there are similar, but more complex, expressions for the variance

Collapse of the thermohaline circulation

Emulators

Some Experiments

Towards Trajectories

\bullet θ is the smoothness or scale of the GP

- $egin{aligned} & \theta \end{aligned}$ is not included in our posterior because it isn't included in the Bayesian solution
- Use maximum posterior (likelihood) or cross validation to estimate θ
- This is non-trivial
- Does it matter?

Collapse of the characteristic control control

Emulators

Some Experiments

- \bullet θ is the smoothness or scale of the GP
- $oldsymbol{ heta}$ is not included in our posterior because it isn't included in the Bayesian solution
- Use maximum posterior (likelihood) or cross validation to estimate θ
- This is non-trivial
- Does it matter?

Collapse of the thermohaline circulation

Emulators

Some Experiments

- \bullet θ is the smoothness or scale of the GP
- $m{ heta}$ is not included in our posterior because it isn't included in the Bayesian solution
- Use maximum posterior (likelihood) or cross validation to estimate θ
- This is non-trivial
- Does it matter?

Collapse of the characteristics of the charac

Emulators

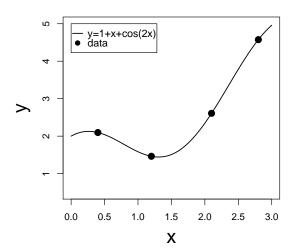
Some Experiments

- \bullet θ is the smoothness or scale of the GP
- $oldsymbol{ heta}$ is not included in our posterior because it isn't included in the Bayesian solution
- Use maximum posterior (likelihood) or cross validation to estimate θ
- This is non-trivial
- Does it matter?

Collapse of the characteristics of the charac

Emulators

Some Experiments

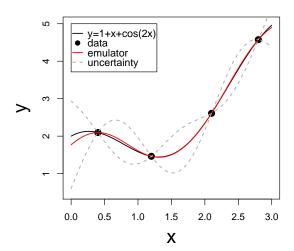

- \bullet θ is the smoothness or scale of the GP
- θ is not included in our posterior because it isn't included in the Bayesian solution
- Use maximum posterior (likelihood) or cross validation to estimate θ
- This is non-trivial
- Does it matter?

Example

Collapse of the thermohaling circulation

Emulators

Some Experiments



Example

Collapse of the thermohaline circulation

Emulators

Some

Collapse of the thermohalin circulation

Emulators

Some Experiments

- We have fitted the model $\eta(x) = \mu(x) + \phi(x)$
- This goes exactly through each data point
- We could fit $\eta(x) = \mu(x) + \phi(x) + \epsilon$
- where ϵ is a 'nugget' term $\sim N(0,\sigma_{\epsilon}^2)$

Collapse of the thermohalin circulation

Emulators

Some Experiments

- We have fitted the model $\eta(x) = \mu(x) + \phi(x)$
- This goes exactly through each data point
- We could fit $\eta(x) = \mu(x) + \phi(x) + \epsilon$
- where ϵ is a 'nugget' term $\sim N(0,\sigma_{\epsilon}^2)$

Collapse of the thermohaling circulation

Emulators

Some Experiments

- We have fitted the model $\eta(x) = \mu(x) + \phi(x)$
- This goes exactly through each data point
- We could fit $\eta(x) = \mu(x) + \phi(x) + \epsilon$
- where ϵ is a 'nugget' term $\sim N(0, \sigma_{\epsilon}^2)$

Collapse of the thermohalin circulation

Emulators

Some Experiments

- We have fitted the model $\eta(x) = \mu(x) + \phi(x)$
- This goes exactly through each data point
- We could fit $\eta(x) = \mu(x) + \phi(x) + \epsilon$
- where ϵ is a 'nugget' term $\sim N(0,\sigma_{\epsilon}^2)$

Collapse of he hermohaline circulation

Emulators

Some Experiment

- We have a strong prior that the emulator should be equal to the climate model at these points
- BUT . . .
- With a small nugget estimate of the scale parameter is much more stable
- Although we no longer reproduce our deterministic inputs in general we get a smaller prediction error for points not in the calculation
- It is a way of dealing with non-active variables

Collapse of the characteristic control control

Emulators

Some Experiments

- We have a strong prior that the emulator should be equal to the climate model at these points
- BUT . . .
- With a small nugget estimate of the scale parameter is much more stable
- Although we no longer reproduce our deterministic inputs in general we get a smaller prediction error for points not in the calculation
- It is a way of dealing with non-active variables

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have a strong prior that the emulator should be equal to the climate model at these points
- BUT ...
- With a small nugget estimate of the scale parameter is much more stable
- Although we no longer reproduce our deterministic inputs in general we get a smaller prediction error for points not in the calculation
- It is a way of dealing with non-active variables

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have a strong prior that the emulator should be equal to the climate model at these points
- BUT . . .
- With a small nugget estimate of the scale parameter is much more stable
- Although we no longer reproduce our deterministic inputs in general we get a smaller prediction error for points not in the calculation
- It is a way of dealing with non-active variables

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have a strong prior that the emulator should be equal to the climate model at these points
- BUT . . .
- With a small nugget estimate of the scale parameter is much more stable
- Although we no longer reproduce our deterministic inputs in general we get a smaller prediction error for points not in the calculation
- It is a way of dealing with non-active variables

Collapse of the thermohaline circulation

Emulators

Some Experiments

- If we have a large number of input variables we can divide them into
- Active variables which matter
- Non-active variables which don't
- e.g. In a problem with 20 input variables we may find that 5 of the variables in the μ term explain 90% of the variation. We can now reduce our problem to 5 active variables + 15 non-active variables
- Model the effect of the non-active variables as a nugget

Collapse of the thermohaline circulation

Emulators

Some Experiments

- If we have a large number of input variables we can divide them into
- Active variables which matter
- Non-active variables which don't
- e.g. In a problem with 20 input variables we may find that 5 of the variables in the μ term explain 90% of the variation. We can now reduce our problem to 5 active variables + 15 non-active variables
- Model the effect of the non-active variables as a nugget

Collapse of the thermohaline circulation

Emulators

Some Experiments

- If we have a large number of input variables we can divide them into
- Active variables which matter
- Non-active variables which don't
- e.g. In a problem with 20 input variables we may find that 5 of the variables in the μ term explain 90% of the variation. We can now reduce our problem to 5 active variables + 15 non-active variables
- Model the effect of the non-active variables as a nugget

Collapse of the thermohaline circulation

Emulators

Some Experiments

- If we have a large number of input variables we can divide them into
- Active variables which matter
- Non-active variables which don't
- e.g. In a problem with 20 input variables we may find that 5 of the variables in the μ term explain 90% of the variation. We can now reduce our problem to 5 active variables + 15 non-active variables
- Model the effect of the non-active variables as a nugget

Collapse of the thermohaline circulation

Emulators

Some Experiments

- If we have a large number of input variables we can divide them into
- Active variables which matter
- Non-active variables which don't
- e.g. In a problem with 20 input variables we may find that 5 of the variables in the μ term explain 90% of the variation. We can now reduce our problem to 5 active variables + 15 non-active variables
- Model the effect of the non-active variables as a nugget

Collapse of the thermohaline circulation

Emulators

Some Experiment

- Specify an uncertainty distribution for each model parameter
- Run a designed set of model runs to span this parameter space
- Estimate the parameters of the emulator
- Sample a large number (thousands) of points from the uncertainty distributions
- Evaluate the emulator at each of these points.
- Estimate the pdf and calculate the probability of being less than a specified value

Collapse of the thermohaline circulation

Emulators

Some Experiments

- Specify an uncertainty distribution for each model parameter
- Run a designed set of model runs to span this parameter space
- Estimate the parameters of the emulator
- Sample a large number (thousands) of points from the uncertainty distributions
- Evaluate the emulator at each of these points.
- Estimate the pdf and calculate the probability of being less than a specified value

Collapse of the thermohaline circulation

Emulators

Some Experiments

- Specify an uncertainty distribution for each model parameter
- Run a designed set of model runs to span this parameter space
- Estimate the parameters of the emulator
- Sample a large number (thousands) of points from the uncertainty distributions
- Evaluate the emulator at each of these points.
- Estimate the pdf and calculate the probability of being less than a specified value

Collapse of the thermohaline circulation

Emulators

Some Experiment

- Specify an uncertainty distribution for each model parameter
- Run a designed set of model runs to span this parameter space
- Estimate the parameters of the emulator
- Sample a large number (thousands) of points from the uncertainty distributions
- Evaluate the emulator at each of these points.
- Estimate the pdf and calculate the probability of being less than a specified value

Collapse of the thermohaline circulation

Emulators

Some Experiments

- Specify an uncertainty distribution for each model parameter
- Run a designed set of model runs to span this parameter space
- Estimate the parameters of the emulator
- Sample a large number (thousands) of points from the uncertainty distributions
- Evaluate the emulator at each of these points.
- Estimate the pdf and calculate the probability of being less than a specified value

Collapse of the thermohaline circulation

Emulators

Some Experiments

- Specify an uncertainty distribution for each model parameter
- Run a designed set of model runs to span this parameter space
- Estimate the parameters of the emulator
- Sample a large number (thousands) of points from the uncertainty distributions
- Evaluate the emulator at each of these points.
- Estimate the pdf and calculate the probability of being less than a specified value

GENIE aka C-GOLDSTEIN

Collapse of the thermohaline circulation

Emulators

Some Experiments

- GENIE is a framework of intermediate complexity climate models
- GENIE-1 has a thermocline ocean model component and an energy balance atmosphere
- We are not going to consider versions with dynamic atmospheres or explicit bio-geochemistry


GENIE-1 grid

- Atmosphere ocean sea ice
- Intermediate complexity 64 x 32 x 8 (36 x 36 x 8)
- (pretty) fast 100 years in a few hours

tnermonalli circulation

Liliulators

Some Experiments

GENIE-1

Collapse of the characteristics of the charac

Emulators

Some Experiments

Towards Trajectories • GENIE has about 15 (+2) unknown input parameters

Inputs

Parameters

- Ocean viscosity
- Moisture transport
- Climate Sensitivity ...

Forcings

- Carbon dioxide
- Greenland Melting ...

Outputs

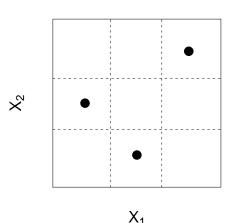
- Ocean/air temperature
- Rainfall
- Salinity
- Heat/moisture fluxes
- Ocean currents
- Max. Atlantic overturning circulation

The Training Experiment

Collapse of the thermohaline

Emulators

Some Experiments

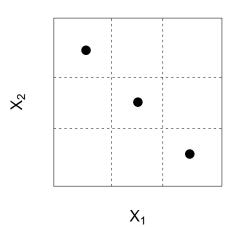

- To generate the training set we run the model in a designed experiment
- This ensemble is not designed to give a realistic climate but to span parameter space
- The most common design is the Latin Hypercube
- In our experiments we have one hundred member ensembles for training

The Latin hypercube

Collapse of the thermohaline circulation

Emulators

Some Experiments

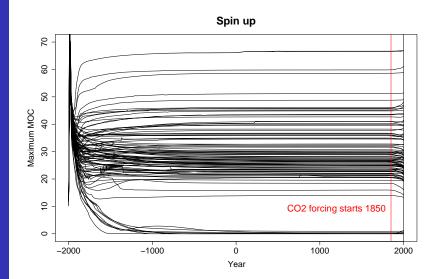


Not all Latin hypercubes are equal

Collapse of the thermohaline circulation

Emulators

Some Experiments

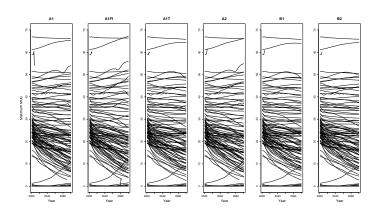


Spin-up of GENIE-1

Collapse of the thermohaline circulation

Emulators

Some Experiments

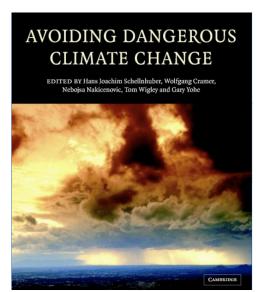


GENIE projects the Future

Collapse of the thermohaline

Emulators

Some Experiments


The Avoiding Dangerous Climate Change book experiment

Collapse of the thermohaline circulation

Emulators

Some Experiments

Towards Traiectorie:

The Avoiding Dangerous Climate Change book experiment

A previous experiment:

- defined collapse as < 5 Sv at 2100
- Found high probability of collapse around 30% 40% depending on the scenario
- Used GENIE 36 x 36 x 8

Table 2. Probability of Atlantic overturning falling below 5 Sv by 2100

		SRES scenario						
Uncertainty								
Case								
5455	A1	A2	B1	B2	A1FI	A1T		
default uncertainty								
Case 1a	0.37	0.38	0.31	0.32	0.43	0.32		
Case 1b	0.38	0.40	0.30	0.31	0.46	0.31		
doubled uncertainty in C	limate sensitivity							
Case 2a	0.37	0.38	0.33	0.33	0.43	0.33		
Case 2b	0.39	0.40	0.31	0.32	0.46	0.32		
doubled uncertainty in At	tlantic-Pacific me	oisture flux						
Case 3a	0.37	0.38	0.32	0.33	0.43	0.33		
Case 3b	0.40	0.40	0.30	0.30	0.46	0.32		
doubled uncertainty in C	O₂ uptake							
Case 4a	0.38	0.38	0.31	0.32	0.44	0.33		
Case 4b	0.38	0.39	0.31	0.31	0.44	0.32		
doubled uncertainty in G	reenland melt ra	te						
Case 5a	0.37	0.38	0.31	0.32	0.43	0.32		
Case 5b	0.38	0.39	0.30	0.32	0.45	0.32		
					▶ 4 🗗 > 4	医医闭塞 医	- 1	990

Collapse of the thermohaline circulation

Emulators

Some Experiments

Trajectorie

Don't panic

Collapse of the thermohaline circulation

Emulator:

Some Experiments

- This version of GENIE (36 x 36 x8) tends to collapse
- Higher resolution versions (64 x 32 x 8) don't
- Wider Atlantic?

Multivariate outputs

Collapse of he hermohaline circulation

Emulators

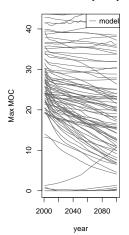
Some Experiments

Towards Trajectories

We would like to:

- We want to predict high dimensional output from GENIE.
- We only emulate a single output variable (at present)
- We can perform an PCA analysis of model output across the ensemble.
- We can predict a few principal components, each with a separate emulator.

Maximum MOC ensemble


Collapse of the thermohaline

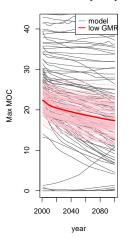
Emulators

Some Experiments

Towards Trajectories

MOC uncertainty analysis

Maximum MOC uncertainty analysis


Collapse of the thermohaline

Emulators

Some Experiment

Towards Trajectories

MOC uncertainty analysis

Maximum MOC uncertainty analysis

Collapse of the thermohaline

Emulators

Some Experiment

Towards Trajectories

MOC uncertainty analysis

Collapse of the thermohalin

Emulators

Some Experiments

- So far we have not included any data in our analysis
- Only 5 estimates of the strength of the MOC available (1957, 1981, 1989, 1998, 2004)
- 'Through the window'

Collapse of the thermohaline

Emulators

Some Experiments

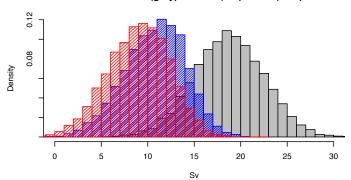
- So far we have not included any data in our analysis
- Only 5 estimates of the strength of the MOC available (1957, 1981, 1989, 1998, 2004)
- 'Through the window'

Collapse of the thermohaline

Emulators

Some Experiments

- So far we have not included any data in our analysis
- Only 5 estimates of the strength of the MOC available (1957, 1981, 1989, 1998, 2004)
- 'Through the window'


Collapse of the thermohaline circulation

Emulators

Some Experiments

Towards Trajectories

MOC at 2000 (grey) Vs A1FI (red) Vs B2 (blue)

- Collapse of the thermohaline
- Emulators

Some Experiments

Towards Trajectories

- So far we have not included any data in our analysis
- Only 5 estimates of the strength of the MOC available (1957, 1981, 1989, 1998, 2004)
- 'Through the window'
- Kennedy and O'Hagan

$$d = \eta + \delta + \epsilon$$

d= data $\eta=$ climate model $\delta=$ model discrepancy $\epsilon=$ error

- Collapse of the thermohaline
- Emulators

Some Experiments

- So far we have not included any data in our analysis
- Only 5 estimates of the strength of the MOC available (1957, 1981, 1989, 1998, 2004)
- 'Through the window'
- Kennedy and O'Hagan

$$\mathbf{d} = \eta + \delta + \epsilon$$

$$d=$$
 data $\eta=$ climate model $\delta=$ model discrepancy $\epsilon=$ error

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have developed a basic methodology to estimate probabilities of low probability/ high impact events such as the collapse of the THC.
- We are extending these methods e.g. climate trajectories, calibration.
- So far these are partial solutions as we are only working with single models
- We now need to apply these to a variety of models; especially to GCM's
- Need to relate our models to reality we are interested in the real world not the model world

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have developed a basic methodology to estimate probabilities of low probability/ high impact events such as the collapse of the THC.
- We are extending these methods e.g. climate trajectories, calibration.
- So far these are partial solutions as we are only working with single models
- We now need to apply these to a variety of models; especially to GCM's
- Need to relate our models to reality we are interested in the real world not the model world

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have developed a basic methodology to estimate probabilities of low probability/ high impact events such as the collapse of the THC.
- We are extending these methods e.g. climate trajectories, calibration.
- So far these are partial solutions as we are only working with single models
- We now need to apply these to a variety of models; especially to GCM's
- Need to relate our models to reality we are interested in the real world not the model world

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have developed a basic methodology to estimate probabilities of low probability/ high impact events such as the collapse of the THC.
- We are extending these methods e.g. climate trajectories, calibration.
- So far these are partial solutions as we are only working with single models
- We now need to apply these to a variety of models; especially to GCM's
- Need to relate our models to reality we are interested in the real world not the model world

Collapse of the thermohaline circulation

Emulators

Some Experiments

- We have developed a basic methodology to estimate probabilities of low probability/ high impact events such as the collapse of the THC.
- We are extending these methods e.g. climate trajectories, calibration.
- So far these are partial solutions as we are only working with single models
- We now need to apply these to a variety of models; especially to GCM's
- Need to relate our models to reality we are interested in the real world not the model world