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MAUP

= Study areas can be divided in many ways in
non-overlapping units

= Per class accuracies are considerably affected
by changing scale and aggregation level

= No unique spatial resolution is appropriate for
the detection and discrimination of all
geographical entities

= MAUP has an effect on ML image classification

= In remote sensing: pixels correspond to units
of information, but different sensors have
different pixel sizes > different results

A first approach: remote s

= Essential to overlay different grids

- data from different images with the same
sensor may lead to a different grid

- data from different sensors may have
different resolutions

= Coal fires

= Locusts

= Paddy field area

= Sub-pixel land cover resolution

ITc

Spatial resolution enhancement -

= Some measurements and models act at
points - statements for areas of land are
required

= Other observations (remote sensing)
concern average values - how to obtain
more detailed information

= MAUP: the modifiable area unit problem

Discrepancies between da
and availability

= |n spatial studies we consider the support size
d of the data, i.e. the spatial extent for
which data are representative.

= We define the scale as the spatial resolution
r.

= Resolution enhancement applies to data at a
coarse scale (level I, r,) towards a fine scale
of interest (level Il, r,) wherer, >r,
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Resampling methods

= Methods:

Nearest neighbor: only the closest
observation

Bilinear interpolation: a plane through
the four neighborhood points

Bicubic interpolation: fit a pair of 3™
degree polynomials through 16 nb points

= Pixel unmixing

A statistical model

= We consider two scale levels

= The true spatial ﬁattern x is modeled in a way that is
independent of the two scale levels.

= In the simplest situation, we take x to be a Gaussian
random field.

= This random field is determined by the parameters n
#trend), A as variance parameter in the covariance

unction and K (discretization).

= The second characteristic is the ?atial variable y(s),
governed by random function x, data support H and

prior variance x'. Further, x results into the scaled

field Ax.

Distinction into a continuous and a discrete model.

e

The observed data y=y(s;),i=1,2,..., n are modeled as
Gaussian and independent, given x, with constant a
priori variance ¥’ and expectation linear in x:

y =NH x, «).
For i =1,...,n the point spread functions H,(s) encode
the support of the data.

. Hj(s) is constant on [s;-3,s;+3] x [s;-3,s;+ 8] and 0
elsewhere.
. H,(s) will be close to a delta function at s; if y; is

measured at s; and represents an extremely localized quantity at
that position,

. H,(s) will be non-zero over some neighborhood
surrounding s; if y; represents a quantity that is naturally spatially
aggregated
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The continuous model

Data y(s) are considered with s referring to a point
or a contiguous area
A field x=(x(s),se S) is defined over a region S c R

y(s) = jH(s) x(s) ds

where H(s) determines the relation between y(s)
and the Gaussian random field.
The continuous model is then defined as

(Hx), = [H,(5)x(s)ds

ses
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To make inferences about x on a possible{ different
resolution, we consider linear functionals A on X, so
that Ax is the vector

J
Ax =[ J.A](s)x(s)ds]
ses j=1
Typically, interest concerns inference about (an
aggregated version of) x over the whole region S
Therefore, the A;(s) will have supports forming a
partition of S.
For example, in R%, A;;(s) = m? on [(i-1)/m,i/m] x
[(j-1)/m,j/m] and 0 otherwise.




The discrete model

Lattice data are defined at the nodes of a fine-mazed
grid, T={1,...,m}x{1,....mJ}.

At n grid nodes or small contiguous sets of nodes a
positive value occurs.

The discrete model has for x a finite-dimensional
Gaussian random vector, with x, corresponding to the
value at location ty, k=1,2,..,.K=m, - m,.

The linear functionals H and A become matrices H;, and
Ay, of dimensions n x K and J x K, where J is the
number of data after scaling.

Correlation function mod

Let the covariance function as a function of s and t be
defined as covy(s,t) = E(Y(s)-Y(t)) - py(s) -py(t) =
covy(|s-t|). Then the correlation function equals

Ky (s,1)
Vo, ()0, (1)
where 6,(s) = o,(t) = K,(0) equals the variance at
locations s and t, respectively.

Several functional models are permissible as a
correlation function.

K(s,t)=

A model for scaling then becomes

Vi= L H;x(s)) + &

The matrix H thus transforms the data lattice T, towards
lattice T,.

The x(s;) represent the random function at the nodes of
T,, the index j takes these values in some predefined
order, and the index i runs over T, also in some
predefined order.

Matern correlation function for t1 = 5,12 = 5,1and 5
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Matérn correlation functi

The Mateérn correlation function is defined as

U (=) (s
Ko = 55T | 2| Ko E o
1 1

The Bessel K-function of order 6,, depends on scale
parameter 6, and smoothness parameter 6,, whereas
0, = 0,/(2V8,).

v If 8, = 0.5, then Ky(s,t) equals the exponential
correlation function K, ,(s,t)= exp{-|s-t|/6,3;

v For 8, — oo, Ky(s,t) equals the Gaussian correlation
function K_(s,t) = exp{-(s-t)2/6,23.

Maximum likelihood esti

Maximum likelihood estimators of 3 for fixed 6
and A are given by

B=(X'G'X)'X'GY
with the matrix G given by A-K,(s,t), X by
possible covariates and Y containing the data.
The profile likelihood for 6 and A, apart from
an additive constant equals

["=—1log|Gl-Lnlog(Y - XB)G™'(Y - X3)
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In the discrete model, the probability distribution for
the observations equals y ~ N(0,(x HT H+A G)').
This allows us to write down the likelihood function as

1 1

10) =——————exp(—$(y—p) "B} (y -
p(y!9) 0™ B exp(=3(y—p) By (y—w)
where 6 = (6,, 6,, &, A), the vector of four parameters
describing the covariances and B, = k¥ HTH+A G'.
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= The profile likelihood is solved for any set of
covariables.

= Find the optimum - we used the ve08ad
routine, as implemented, which to our
experience is extremely sensitive to good
prior estimates and to a similar range of
changes in parameters.

= Apply the results in a scaling routine,
allowing for any discretisation, either
coarser or finer than the grid of the data.

« Prior information for the various parameters
may result from hierarchical assumptions,
i.e.from any particular distribution assumed
to be valid.

« As an alternative, such information may be
obtained from source scale levels.

« In this case, prior data for u, A and K are
derived at level |, and at level Il for the
matrix K and the function H.

Algorithm

From the n data and the problem definition
the resolution § and the scale size and number
of discretization steps m follow.

The matrix B is filled, using the (Matéern)
correlation function.

For the numerical integration we let the step
size h depend upon n and the scale mas m = 1
+d/hand n=1+¢/h, depending on the
support size of the data.

The correlation is computed for the step sizes
provided by these values of m and n.
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As an alternative to likelihood estimation, the
variogram is estimated using squared pair
differences of observations group in a range of
succeeding distance classes with bin width x;:

N h 1 Ny h )
b )—m§(><s,)—;(s,+ )}

Here, y(s;) and y(s;+h) is a pair of points separated
by a distance between h-¢ and h+¢, the total
number of pairs being equal to N(h).




Distributions

In both continuous and discrete space versions,
inference about Ax given y follows from the
standard results about conditional distributions in
multivariate normal distributions:

E(Ax|y) = E(Ax)+cov(Ax, y) var(y) " (y— E(y))
var(Ax| y) = var(Ax) — cov(Ax, y) var(y) "' cov(y, Ax)

In the continuous case, suppose that u(s)=E(x(s))
and X(s,s') = cov(x(s),x(s")) = A - K(s,s') are
known; then

A, =] g A(s) u(s)ds

AZHT)J.i = ISeSIS.eSAj(s) X (s,s') Hi(s") ds ds'

(HEHT); = [ loesHi(8) T (s,8) H(s') ds ds’

and

(AZAT); _ JocsleesAl(s) Z(s,8") A(s') ds ds'

Example with n = 100,

3
e
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In the discrete case, suppose that E(x)=p and
var(x)=X are known; then E(y)=H u,
var(y) = ¥'I+HZHT and cov(A x,y)= AZHT, so that

E(A x]y) = Au+ AZHT (i 'I+HZHT) " (y-Hu)
var(A x|y) = AZAT -AXHT(x 'I+HZHT)-"H X AT.

With B =vary e M,, D = cov (AX,AX) e M, and C =
cov (AX,y) € M, , and assuming an isotropic covariance
model, i.e. K(s,t) = K(|s-t]) this yields the following matrix
version for scaling:

E(AXly) =Ay+C-B'(y-Hp)
var(Ax|y) =D-CB'CT

To evaluate matrices B, C and D, the double integrals
have to be evaluated. In most practical studies numerical
integration procedures have to be applied.

Example withn =5, m =
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First application

Prior estimates were obtained on the basis of
collected data at the rice field level. Values for
u=4.3-10% and k = 1.908 equal the mean and the
reciprocal of the variance at the data level, the
value of A is obtained from the estimated
covariance function. Values for H and K are
given by the target level requirements.

Covariance function esti

= Likelihood functions for the parameters A and 6 of
the exponential covariance function using the
profile likelihoods are obtained.

= For the east-west strata, or the soil strata, a low
value of 6 indicates that the data are almost
independent, with a parameter A = 30.

= Spatial structure occurs, though, after inclusion of
[Fe] and [OC] into the profile.

= In a combination with the EW-strata, the optimum
(6, A) = (0.0025,6), and in a combination with the
soil strata (0, A) = (0.018,13.5).

Estimated correlation fu

coefficients

Gaussian |Exponential |Matérn
0, 0.0186 0.0125 0.0182
0, - - 56.2
A 0.400 0.547 0.403
1/x 0.530 0.385 0.524
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Application 2:

= Data on heavy metals (Zn, Cd) are
collected at the provincial level at
coordinate precision of 1 km

= Data are required at the city level (Oss),
resolution of 1 m

= Test data are available

Data and aim

= In the province of Noord-Brabant (appr. 5000
km?) in the southern Netherlands data on
several metals have been collected from
groundwater monitoring wells.

= The aim: to investigate the distribution of
these metals under agricultural and urban use
of the land at the provincial level.
Coordinates were recorded at a 1 km
precision (3 = 1 km); n = 161 locations with
average concentrations in 1 km? grid cells.

Prior information was obtained from the data at
the 1 km interval: p = 250 ppm for Zn and 1 ppm
for Cd, A = 0.48 for Zn and 8736 for Cd equals
sill - nugget parameter of the covariance
function; K equals the number of 10 x 10 m cells
in the discretized target space, x equals the
reciprocal of the variances; H equals the
function with support at the 10 x 10 cells at
level II.

Province ot Noord-Brabant

L
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Data and aim

= Within the city of Oss, sampling is relatively
intense (62 monitoring wells), covering
approximately 56 % of the city. Coordinates
are available at 1 m precision scale (5 = 1 m).

= For these data, we consider downscaling of
the 1 km? data towards the 1 m? resolution,
and use the data available at that resolution
for validation.
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Parameters

Zinc and Cadmium data were downscaled in the
Oss area using the Matern correlation function
with parameter vector 6 = (k,2,6,,6,)T = (10, 10,
1, 0.5)T for Zinc and (10, 0.56, 1, 0.5)T for
Cadmium. Notice that the data points are
confined to a limited part of that area only, as
the extent in the y-direction is somewhat
smaller than that in the x-direction. Data are
downscaled towards raster cells of 0.05 x 0.05,
corresponding to an actual resolution of 500 m x
500 m$ grid cells.

7y
Effects of choices for values of k = 1, K
and k = 100 on downscaling of Zinc da
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Sensitivity analysis

*We tested the sensitivity of the Matern
correlation function with parameter vector 6 =
(x,7,0,,8,)T = (10, 10, 1, 0.5)T.

=The upper two figures display the expected
values and the standard deviations.

=The high peak in the center that we could
observe as well on the original data is well
represented, whereas lower values occur closer
to the edges.

=The log-likelihood for the choices of 6, and 6,
was equal to -20.5.

Effects of choices for values of 0, = 1, 6
and 0, = 100 on downscaling of Zinc da

=10

P
P e
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Effects of choices for values of A =1, A
and A = 50 on downscaling of Zinc data.
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Effects of choices for values of 0, = 1, 6.
and 0, = 100 on downscaling of Zinc da

A= e
N
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Application from re

= Classification of a RS image

= Additional field data have been collected

= Suitability of Markov Random Field-based
method for Super-Resolution Land Cover
Mapping

= A simulated annealing approach has been used

= How does the scale factor S affect the quality
of the SRM?

SRM from remote sensi-

[ water body
[ vixec forest
[ JHeatn

[ I meadow

Prior information

= Prior information and information on related
variables may increase the quality of the
scaled variables.

= For downscaling, information at level | A
collected in X; yields a regression model f(Xs,f)

= With data at level Il collected in X),
predictions can be made. An interpolation
routine gives estimates at any required level
of detail.

= For upscaling, also data at the demand level
on related variables can be included.
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Neighborhood size dete
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Scale factor

We found that for this s

» Neighborhood size growing with the scale
factor performs better than 2" order
neighborhood size.

> Large objects are favored with MRF-based SRM
due to the rich contextual information

» The quality of SRM is decreasing with
increasing scale factor

» The MRF-based method is suitable for super-
reolution land cover mapping however care
should be taken on the parameters setting

More examples

= ~tmtnt memssibes e tinn
Spatial uncertaint,
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Conclusions

A difference between continuous and discrete scaling
models is relevant, the continuous one to be analyzed
using random fields, the discrete one by a lattice type
of an approach.

Only minor differences exist between scaling up and
scaling down - a similar statistical model applies.
Selection of the correct correlation structure in terms
of the use of co-variates is essential.

A sensitivity analysis showed that correlation
parameters that describe the shape and the range of
dependence are crucial. Those that describe the
variance or distinguish between spatial and non-
spatial variation appear to be somehow less relevant
for scaling.
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