Everything must go

predator-prey dynamics and biological control

Outline

- Background
 - Biological control
 - The importance of plant structure
- Modelling plant structure
- Linking plant structure & predator-prey models
- Characterising plant canopies
- Summary

Biological control

A multitrophic system

Pests

Mites

Aphids

Whitefly

Thrips

Natural Enemies

A. colemani

E. formosa

P. persimilis

Specialist

I. degenerans

O. laevigatus

N. cucumeris

Generalist

Crops

Cut flowers

Nursery Stock

Pot plants

Biological Control

- Spectrum of complexity
- Multiple approaches
 - Conservation
 - Augmentation
 - Preventative
- Multiple natural enemies used

Modelling for biological control

Key processes

Spatial distribution of pest and natural enemies

Key processes

- Spatial distribution of pest and natural enemies
- predatory capability of natural enemies

New Guinea impatiens flowers

Chrysanthemum flowers

Key processes

- spatial distribution of pest and natural enemies
- predatory capability of natural enemies
- movement of natural enemies

Importance of plant architecture

- leaf and flower morphology impacts on:
 - prey spatial distribution
 - natural enemy movement and predation
 - environmental conditions (boundary layer)

- canopy structure (plant touching):
 - prey spatial distribution
 - natural enemy movement

- L-systems approach
 - requires only info on changes

Can be stochastic or conditional

Link easily to other models

L-systems

- ☐ General format is:Left context < predecessor > right context: condition → successor
- $\ \ \, \mathbb{I} \$ predecessor can contain information about structure being described $\ \ \, \mathbb{I} \$ L(4,1.4) = Leaf (age, length)
- I Allows flow of information in any direction

Axiom: A

Production: $A \rightarrow I[IA]IA$ {predecessor → successor} I [IA] IA

Where A = apex, I = internode, [] indicates a branch

- Digitise real plant structures
- Model and quantify canopy structure

QuickTime™ and a Microsoft Video 1 decompressor are needed to see this picture.

Linking canopies and insects

- Combine with models of natural enemy movement
- Use models to derive biological control strategies

QuickTime[™] and a Microsoft Video 1 decompressor are needed to see this picture.

Linking canopies and insects

- Where and when to release predators?
- Canopy structure is crucially important

A plant as a network

Linking canopies and searching

- 3 types of searching
 - Random
 - Directed
 - Semi-directed
- Detection distance important
- Simulations in progress

Linking canopies and insect movement

- ∀ Effect of grid size
- > Effect of canopy connectedness

Regular grid

Offset grid

Linking canopies and insect movement

- Y Effect of grid size
- > Effect of canopy connectedness
- Effect of canopy complexity

Time to prey location

_____1 node

How different are the canopies?

Network matrices

- Comparison of:
 - Connectivity
 - Distance

Network Connectivity

- Regular Grid
 - **1** node = 1840
 - 2 nodes = 1840
 - 4 nodes = 1840

- Offset Grid
 - 1 node = 3266
 - 2 nodes = 3266
 - **4** nodes = 3266

Network Distance

- Regular Grid
 - **1** node = 243
 - 2 nodes = 302
 - **4** nodes = 352

- Offset Grid
 - **1** node = 196
 - 2 nodes = 207
 - 4 nodes = 280

Network Distance

4 nodes
2 nodes
1 node

Changing connectivity but not distance

X Examine individual distances

Comparing canopies

Can we quantify real canopies?

Relationship between connections and prey location?

How do canopies differ in connectedness?

How do differences/similarities affect predators and biological control?

Canopy Structure Level 1 Level 3 Overall Level 2 Level 4

Gliding box algorithm

Lacunarity

Create L-system model of canopy

Voxelise canopy

Analyse lacunarity

Progress to date

Summary

- Plant structure crucial to predator-prey dynamics
- Effects on both predators & prey
- L-systems model plant architecture
- Networks useful for modelling predator searching
- Need methods to characterise plant canopies

Acknowledgements

- Defra and BBSRC for funding the work
- Andrew Mead for helpful discussions
- The FSPM community for advice on L-systems
- Irene Roberts for her PhD work on lacunarity

