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Motivation
Estimation of the annual survival 
probabilities of wild animals.
Collect data on previously marked 
animals.
These are either found dead or alive.
Form probability models.
Fit to data using maximum likelihood.



Models for survival: Marking

We obtain information 
on survival from 
studying previously 
marked animals

These may be observed 
again alive or dead.

It is assumed that 
marking does not affect 
behaviour



Complexity
Models may be complicated, incorporating 
age, cohort and time components.
Models may be simplified by the use of 
covariates.
Modern focus on multi-site data can 
produce models with many parameters.
It is often unclear how many parameters 
can be estimated.



The British heron census, Ardea cinerea



Climatic covariates: number of frost-
days in Central England.



An example of a multi-site system

Multisite Systems

AAS
BBS

CCS

A B

C

ABS

BCSCAS

BAS
CBSACS

The parameter S 
represents the “transition”, 
i.e. it  represents both 
survival and movement



The Cormack-Jolly-Seber (CJS) model (1965)

Consider a simple case in which all 
animals are adults, sharing a common 
probability of annual survival, φ. If p
denotes the probability of recapture then 
the multinomial probabilities 
corresponding to any cohort, of known 
size, of marked birds have the form:
φ p,   φ2 p(1-p),   φ3 p (1-p)2 , …



CJS model continued
If we allow each parameter to be time-
varying, then there is a pair of 
parameters, φt-1pt, which only occur 
together. They are confounded, and so 
can only be estimated as a product when 
the likelihood, in this case a product of 
multinomials, one from each cohort, is 
maximised. All of the other parameters in 
the model can be estimated.



Illustration of CJS recapture 
probabilities: a 3-year study

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4

φ3 p4



CJS recapture probabilities: what we can 
estimate

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4

φ3 p4



Parameter redundancy

This model has parameter redundancy of 
one: we can only estimate the product, 
φ3p4. All the other parameters can be 
estimated. 

What if we only have two years of ringing?



Illustration of CJS recapture 
probabilities: a 3-year study + 2 cohorts

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4



Parameter redundancy and identifiability
A model is identifiable if no two values of the 
parameters give the same probability distribution 
for the data.
A model is locally identifiable if there is a distance 
δ > 0, such that any two parameter values that 
give the same distribution must be separated by 
at least δ.
A parameter redundant model is not locally 
identifiable.
An essentially full rank model is locally 
identifiable.
Are essentially full rank models identifiable?



How to test for parameter redundancy
Form an appropriate derivative matrix, D.
Use Maple to determine the symbolic row 
rank of D.
We can also determine which parameter 
combinations can be estimated.
We use expansion theorems to 
demonstrate that results hold for model 
structures of different sizes.



The method

The approach is for exponential family models. It is 
performed using a symbolic algebra package such as Maple.

1. Calculate D = (μ is the mean, θ are parameters).

2. The number of  estimable parameters = rank(D).

3. Solve αTD = 0. The location of the zeros in α indicates 
which are the estimable parameters. 

4. Solve                     to find the full set of estimable

parameters; (j is the index for >1 solution to αTD = 0).

5. Perform a modified PLUR decomposition of D.
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Example 1: Cormack-Jolly-Seber Model
Little Penguins, Eudyptula minor, capture recapture data (1994 to 1997)

φi – probability a penguin survives from occasion i to i+1
pi – probability a penguin is recaptured on occasion i
The set of parameters is: θ = [φ1, φ2, φ3, p2, p3, p4 ]
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Forming the derivative matrix

rank(D) = 5 < 6, so the model is parameter redundant.
In order to see which of the original parameters we can estimate:
Set αTD = 0 ⇒ αT = [ 0, 0, -φ3 / p4, 0, 0, 1]
Solving PDE, we find that the estimable parameters are: φ1, φ2, p2, p3, φ3p4 
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Use of the PLUR decomposition
If parameter redundant:

Solve αTD = 0. Zeros in α indicate estimable parameters. 

Solve                    to find full set of estimable parameters.

If full rank:

Determine whether essential (∀θ) or conditionally (∃θ) full 
rank using the  PLUR  decomposition.

D = PLUR. If det(U) = 0, model is parameter redundant.
If det(U) is close to 0 model is near parameter redundant. 
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Example – Cormack-Jolly-Seber Model

with covariates

We now set

φi = 1/{1+exp( a + bxi )}

For example,  xi could be the mean annual banding weight, 
or the SOI.

θ = [a, b, p2, p3, p4],

and we find that the model is now full rank.



Use of the PLUR decomposition

We have D=PLUR. 

We find that

Hence the model is full rank only if x1 ≠ x2
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Example 2: Near-singular model
Consider the model with parameter set,

θ= [φ1,1, φ1,2, φ1,3, φa, λ1, λa]

This model is full rank, but from the PLUR
decomposition, we find



Example 3 – Tag Returns Fisheries Model
Jiang et al (2007): Striped Bass, 
Morone saxatilis.

θ = [ F, M1, M2, M3, C1, C2, C3, λ],  
F – instantaneous fishing mortality rate
Ma – instantaneous natural mortality rate, at age a
Ca – selectivity coefficient for age a (a > 3 Ca = 1)
λ – reporting probability
Pijk – probability fish tagged at age k, released year i

harvested and returned year j
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Exhaustive summaries
In this example Maple lacks memory.
Exhaustive summaries are particular 
reparameterisations.
We seek exhaustive summaries that give cell 
probabilities that are structurally simpler.
This can result in greater parameter redundancy.
In this example we move from 16 to 24 
parameters.
We find a deficiency of 8 in the new parameter 
space.
Note that Jiang et al., used numerical analysis 
and found a deficiency of 9.



General rules
In some cases it is possible to establish 
general rules for models of particular 
stuctures.

This avoids having to use Maple.

A particular illustration of this occurs with 
age-dependent recovery models



Model notation for recovery models
Ring-recovery models are described as, for 
example:

C/A/C, T/A/C, T/A/T, C/C/T.

In this notation, each model is specified by 3 
letters, which designate, in order,

1. The way we model first-year survival: C or T;
2. The way we model adult survival: C, A or T;
3. The way we model the recovery probability: C, 

A or T.



Steps: age-dependence also in λ.
Consider, for example, the model denoted 
by C/A(2,2,3)/A(2,1,1,4). What can we 
estimate here?

Here we have the parameters:
φ

1
, φ2, φ2, φ3, φ3, φ4, φ4, φ4

λ1, λ1, λ2, λ3, λ4, λ4, λ4, λ4



Steps: age-dependence also in λ.
Consider, for example, the model denoted 
by C/A(2,2,3)/A(2,1,1,4). What can we 
estimate here?

Here we have a single step, as shown:
φ

1
, φ2, φ2 | φ3, φ3, φ4, φ4, φ4

λ1, λ1, λ2 | λ3, λ4, λ4, λ4, λ4



Theorem 1
Suppose the first step occurs at age n, 
and let m be the number of parameters 
used in the first n years.
If m = n+1, the model is parameter 
redundant.
If 1 < m < n+1, then the step does not 
cause parameter redundancy. 
Furthermore, to test for parameter 
redundancy, the parameters occurring in 
the first n years can be discarded, and the 
count started anew in year n+1.



Theorem 2
In the age-dependent model T/A/A
The step at age 1 year does not cause 
parameter-redundancy
To determine any possible redundancy 
caused by a subsequent step, the age and 
parameter counts begin again after age 1 
year, as in Theorem 1.



A Bayesian perspective: the CJS model
In population ecology we 
may devise models with 
parameters that cannot be 
estimated from the data.

Symbolic algebra can be 
used to examine whether a 
model is parameter-
redundant.

In a Bayesian context, it is 
interesting to consider the 
overlap between priors, 
p(θ) and posteriors π(θ|x).
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Male mallard, Anas platyrhyncos

Model: φ1,i, φa, λ1, λa
here only two 
parameters, φa and 
λa are strongly 
identified.
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New work
Use of PLUR decomposition
Use of covariates
Use of exhaustive summaries
Overlap of priors and posteriors



Other areas
Econometrics (Rothenburg)
Compartment modelling (Walter)
Contingency tables (Goodman)
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