
Introduction

Aim:

To simulate sub-daily rainfall sequences under scenarios of

climate change, using the random parameter Bartlett-Lewis

Rectangular Pulse Model (BLRPM).

Approach:

Estimate future BLRPM parameters using future daily and

sub-daily rainfall properties.

Estimate these future rainfall properties by using:

Numerical climate model output

Statistical models
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Overview

Monthly, coarse scale

Deterministic climate models produce monthly atmosphericsequences.

Monthly, coarse scale → daily, single location

Generalised Linear Models (GLMs) simulate non-stationarydaily rainfall

sequences conditional on coarse scale monthly atmosphericsequences.

Daily, single location → sub-daily, single location

Scaling relationships estimate sub-daily rainfall properties conditional on

simulated daily rainfall properties.

Sub-daily, single location

BLRPM simulates sub-daily rainfall.
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Simulating rainfall via statistical downscaling

Assumptions:

Distribution of local-scale rainfall is conditional on atmospheric

structure.

The observed relationships remain valid under altered climatic

conditions.

The relevant aspects of atmospheric structure, and its change in

response to greenhouse gas forcing, are realistically represented

by the climate models at the temporal and spatial scales used.
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Data used in DEFRA project

Hourly rain-gauge data from several sites across the UK

(1961-2000).

Concentrate on Heathrow airport here.

Monthly mean temperature, sea-level pressure and relative

humidity from:

‘Observed’ atmospheric data (NCEP reanalysis) at a resolution

of 2.5◦ latitude by 3.75◦ longitude (1961-2000).

Four General Circulation Models (GCMs) and three Regional

Climate Models (RCMs) for 1961-1990 and 2071-2100.

Future climate model runs forced using the A2 emissions

scenario.
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Generalised Linear Models for daily rainfall (1)

Daily rainfall modelled in two stages:

1. Rainfall occurrence modelled using logistic

regression. Letpt denote the probability of rain on day

t and letxt denote a corresponding predictor vector.

Then ln(pt/(1− pt)) = x′tβ.

2. Wet day rainfall amounts modelled using a gamma

distribution with common shape parameter.

Conditional on predictor vectorzt , if day t is wet the

mean rainfall ismt , with ln(mt) = z′tα.
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Generalised Linear Models for daily rainfall (2)

Fit GLMs using standardised monthly NCEP atmospheric data,1961-1990.

Simulate GLMs conditional on standardised monthly GCM and RCM

outputs, 2071-2100.

Predictors:

Seasonality.

Previous days’ rainfall information.

Atmospheric variables (weighted average of local grid squares).

Interactions, for example:

The dependence on previous days varies over the year.

Expect seasonality to alter under climate change.
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GLMs: Model performance 1961-1990, Heathrow
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GLM simulated distributions of seasonal rainfall at Heathrow. The bands correspond to the 5th, 10th, 25th,

50th, 75th, 90th, and 95th percentiles and the thick line shows the observed values.
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GLMs: Model performance 1961-1990, Heathrow
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GLM simulated properties of rainfall at Heathrow by month. The bands correspond to the 5th, 10th, 25th,

50th, 75th, 90th, and 95th percentiles and the thick line shows the observed values.
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GLMs: Model simulations 2071-2100, Heathrow
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rainfall when wet simulated for the 1961-1990 period, conditional on NCEP atmospherics.
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GLMs: Model simulations 2071-2100, Heathrow
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days simulated for the 1961-1990 period, conditional on NCEP atmospherics.
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GLMs: Model simulations 2071-2100, Heathrow
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Simulated mean daily rainfall at Heathrow. The black line corresponds to seasonal mean daily rainfall

simulated for the 1961-1990 period, conditional on NCEP atmospherics.
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GLMs: Summary

Results:

Future mean daily rainfall when wet will increase in summer and winter,

with respect to 1961-1990.

Future mean daily rainfall and proportion of wet days will decrease in

summer and increase in winter, with respect to 1961-1990 (aswill daily

rainfall variance).

There are significant differences between rainfall properties obtained by

downscaling different GCMs/RCMs.

Implications:

GLMs should be applied to multiple realisations of atmospheric

predictors.

Realisations must accommodate differences between climate models.
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Story so far...

Require daily and sub-daily rainfall properties under scenarios of

climate change in order to estimate BLRPM parameters.

Daily properties can be simulated from the GLMs. Therefore a

methodology to estimate the sub-daily properties conditional on

the daily properties is required.

Any relationship between daily and sub-daily properties inthe

historical record must still hold under changed climatic conditions.

Must therefore be valid under a range of present day conditions.
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Scaling relationships (1)
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Properties at Heathrow (1961-2000, green lines) and Malham(1996-2000, blue lines)

in January and July.
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Scaling relationships (2)

Let Thmys be either

observed proportion of weth-hour intervals (T (p)
hmys)

observed variance ofh-hour intervals (T (v)
hmys)

for sites, monthm and yeary. Let τhms = E[Thms].

Model:

ln(Thmys) = αmys + ln(h){x(1)
mysβ1}+(ln(h))2{x(2)

mysβ2}+ εhmys

=⇒

ln(τhmys) = ln(τ24,mys)+(ln(h)− ln(24)){x(1)
mysβ(1)}+

((ln(h))2− (ln(24))2){x(2)
mysβ(2)}
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Scaling relationships: Variance

ln(T (v)
hmys) = αmys +β1 ln(h)+β2 ln(h)Temperaturemys +β3 ln(h)Altitudes +

β4 ln(h)Northings +β5(ln(h))2 +β6(ln(h))2Temperaturemys + εhmys

Parameter Estimate 95% Confidence Interval

β1 1.591 (1.577,1.606)

β2 -0.079 (-0.066,-0.092)

β3 0.261 (0.216,0.307)

β4 0.009 (0.005,0.012)

β5 -0.069 (-0.066,-0.073)

β6 0.012 (0.008,0.016)

β3 is effect per 1km altitude.β4 is effect per 100km north.
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Implied autocorrelation from variance scaling relationship
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Point Process Model

The Barlett-Lewis Rectangular Pulse Model:

Storms arrive according to a Poisson process.

After each storm arrival, there follows a Poisson

process of cell arrivals. Each cell duration is

independent and exponentially distributed.

Storms last for a time that is exponentially distributed.
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BLRPM: Parameter estimates
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BLRPM: Mean hourly rainfall when wet
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Hourly mean rainfall when wet at Heathrow for 1961-1990 and 2071-2100.
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BLRPM: Proportion wet hours
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Sub-daily modelling: Summary

Scaling relationships allow reconstruction of sub-daily

rainfall properties.

Stochastic models provide interpretation of changes in

properties (e.g. storm arrival rates).

Simulations from fitted BLRPMs can be used to drive

hydrological rainfall-runoff models.
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Summary

Methodology to simulate daily or sub-daily sequences.

Ability to successfully reproduce rainfall properties

(beyond those presented here).

Future rainfall mean, variance and proportion of wet

intervals to increase in winter and decrease in summer,

at both the daily and hourly level.

Future daily mean when wet and hourly mean when

wet to increase all year round.
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