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Uncertainty in Reservoir Description

?

How do we map between wells?



Uncertainty in Reservoir Description



Mathematics of Flow in Porous Media

• Conservation of Mass
• Conservation of Momentum

– replaced by Darcy’s law

• Conservation of Energy
– most processes isothermal

• Equation of State
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Equations governing flow

• Parabolic equation for pressure

• Hyperbolic equation for saturation
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Data Collection
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CT Scanned Rock Slab Experiment

Image from Davies, Muggeridge, Jones, “Miscible Displacements in a Heterogeneous Rock: Detailed 
Measurements and Accurate Predictive Simulation” SPE 22615 (1991)



Reservoir Model Inverse Problem

computer simulation

(discretisation, timestep)

observed data
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Framework for History Matching
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How to Determine Likelihood

• Difference between observation and model

• Likelihood is the probability that the observed 
error and the model/simulation error add 
(subtract) to give discrepancy = 0
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Likelihood Formula

• Likelihood given by convolution:

– plus sign because errors are subtracted

• If errors are Gaussian 
– add covariance matrices
– Note model error not necessarily zero mean
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Cell Size and Model Error

Fine Coarse

- Reduced information

- Increased cell size

From fine to coarse:



Solution Error Modelling
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• Coarse model – fast, inaccurate
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Statistical Sub-Grid Processes

Fine grid

Coarse grid cell, single ϕ,k

For a single 
coarse cell 
ϕ,k, many 
possible fine 
grid ϕ,k fields



Determining Discrepancy

• Overall idea
– Calculate discrepancy due to known ignored 

effects at limited set of points in parameter 
space

– Compute mean discrepancy & covariance 
matrix

– Interpolate/build emulator to estimate in rest 
of parameter space



• Mean discrepancy/mean error

• Covariance Matrix

Components of Discrepancy Model
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Example: Determination of Oil Viscosity

Available data:

Fluid concentration with time



Choice 1 – Fine grid Simulation

• Time consuming

• Variability in results

• Accurate



Choice 2 – Todd & Longstaff
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Calculate Time Varying Solution Errors
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Determine Covariance Structure
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Interpolate for Mean Error and Covariance

Example:

Linear interpolation 
for mean error and 
covariance

More sophisticated 
scheme yields minor 
improvements 



Results

Effect of bias 
significantly 
reduced

True oil viscosity, μ = 13

Maximum likelihood, σ=12.5



How Accurate is the Error Model?

Likelihood curves



How Accurate is the Error Model?

Convert pdfs to 
cumulative 
probabilities 
and plot
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History 
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Issues

• Estimating discrepancy model
– Smoothing mean error/covariance data

• Emulation
– Currently using RBF network to emulate in 

higher dimensional space
– Design of locations to estimate discrepancies

• Cost
– No point if you just effectively run fine model



Errors for Varying Grid Sizes

• 128x96=12288 cells (fine)
64x48  = 3072 cells
32x24  = 768 cells
16x12  = 192 cells

Perm: 

- Mean 1

- Var in log 0. 5

- Cx 0.2  Cy 0.05



Saturation Plots: Grid 128x96



Saturation Plots: Grid 32x24



Homogeneous System



Separate the Effects

• We can separate the effects by using 
coarse grid data on a fine grid. 

4x3 128x9632x24



Statistically Equivalent c.f. Overlaying grids

Comparing statistically 
equivalent data for a 
range of resolutions 
(solid) with coarse grid 
data on finer resolution 
grids (dotted)

Perm:

- Mean: 1

- Var in log 0.5

- Cx 0.2  Cy 0.05



Model Errors

• Kennedy & O’Hagan (2001) approach
– Determine model errors as part of inference
– Important to account for model errors
– Assume model errors independent of 

parameters



Kennedy and O’Hagan
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• Kennedy & O’Hagan approach

• Our approach
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Solution as a function of grid size



Error as a function of grid size



Error as a function of Solution
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Error as a function of Solution
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Gas Dynamics Example

• Additional description in Los Alamos 
Science 
– Volume 29
– www.lanl.gov/science
– And references therein

• Similar approach to porous media example
– Addresses uncertainties in shock 

strength/timing
– Builds complex shock-interaction model from 

single shock-contact study 



Geometry of Shock Tube



Dynamics of Flow

• Reverberating shock



Computed Errors

• Composition law for errors
– All from original study of single shock-contact

Glimm, J., J. W. Grove, Y. Kang, T. W. Lee, X. Li, D. H. Sharp, et al. 2003. “Statistical Riemann Problems and a Composition 
Law for Errors in Numerical Solutions of Shock Physics Problems,” Los Alamos National Laboratory document LA-UR-03-2921. 
SIAM J. Sci. Comput. (in press).



Summary

• Solution Error Model
– Compute discrepancy for known additional phenomena
– Interpolate over parameter space
– Mean error non-zero and function of parameters

• Kennedy & O’Hagan
– Similar in spirit
– Model inadequacy determined from data

• Applications
– Gas injection problem
– Gas dynamics
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