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Talk Summary

• Background.
• Wytham woods great tit dataset.
• Partitioning variability in responses.
• Partitioning correlation between 

responses.
• Prior sensitivity.
• Including individual nestling responses.



Statistical Analysis of Bird Ecology 
Datasets

• Much recent work done on estimating population 
parameters, for example estimating population size, 
survival rates.

• Much statistical work carried out at Kent, Cambridge and 
St Andrews.

• Data from census data and ring-recovery data.
• Less statistical work on estimating relationships at the 

individual bird level, for example: Why do birds laying 
earlier lay larger clutches? 

• Difficulties in taking measurements in observational 
studies, in particular getting measurements over time 
due to short lifespan of birds.



Wytham woods great tit dataset
• A longitudinal study of great tits 

nesting in Wytham Woods, 
Oxfordshire.

• 6 responses : 3 continuous & 3 binary. 
• Clutch size, lay date and mean 

nestling mass.
• Nest success, male and female 

survival.
• Data: 4165 nesting attempts over a 

period of 34 years. 
• There are 4 higher-level classifications 

of the data: female parent, male 
parent, nestbox and year.



Data background

Source Number
of IDs

Median
#obs

Mean
#obs

Year 34 104 122.5

Nestbox 968 4 4.30

Male parent 2986 1 1.39

Female parent 2944 1 1.41

Note there is very little information on each 
individual male and female bird but we can get 
some estimates of variability via a random effects 
model.

The data structure can be summarised as follows:



Univariate cross-classified 
random effect modelling

• For each of the 6 responses we will firstly fit a univariate
model, normal responses for the continuous variables 
and probit regression for the binary variables. For 
example using notation of Browne et al. (2001) and 
letting response y be clutch size:
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Estimation
• We use MCMC estimation in MLwiN and choose 

‘diffuse’ priors for all parameters. 
• We run 3 chains from different starting points for 

250k iterations each (500k for binary responses) 
and use Gelman-Rubin diagnostic to decide 
burn-in length.

• We compared results with the equivalent 
classical models in Genstat and got broadly the 
same results. in Genstat. 

• We fit all four higher classifications and do not 
consider model comparison.



Clutch Size
Parameter Estimate (S.E.) Percentage 

variance 
β 8.808 (0.109) - 

2
)5(uσ  (Year) 0.365 (0.101) 14.3%

2
)4(uσ  (Nest box) 0.107 (0.026) 4.2%

2
)3(uσ  (Male) 0.046 (0.043) 1.8%

2
)2(uσ  (Female) 0.974 (0.062) 38.1%

2
eσ  (Observation) 1.064 (0.055) 41.6%

 

Here we see that the average clutch size is just 
below 9 eggs with large variability between female 
birds and some variability between years. Male birds 
and nest boxes have less impact.



Lay Date (days after April 1st)
Parameter Estimate (S.E.) Percentage 

variance 
β 29.38 (1.07) - 

2
)5(uσ  (Year) 37.74 (10.08) 50.3%

2
)4(uσ  (Nest box) 3.38 (0.56) 4.5%

2
)3(uσ  (Male) 0.22 (0.39) 0.3%

2
)2(uσ  (Female) 8.55 (1.03) 11.4%

2
eσ  (Observation) 25.10 (1.04) 33.5%

 

Here we see that the mean lay date is around the 
end of April/beginning of May. The biggest driver of 
lay date is the year which is probably indicating 
weather differences. There is some variability due to 
female birds but little impact of nest box and male 
bird.



Nestling Mass
Parameter Estimate (S.E.) Percentage 

variance 
β 18.829 (0.060) - 

2
)5(uσ  (Year) 0.105 (0.032) 9.0%

2
)4(uσ  (Nest box) 0.026 (0.013) 2.2%

2
)3(uσ  (Male) 0.153 (0.030) 13.1%

2
)2(uσ  (Female) 0.163 (0.031) 14.0%

2
eσ  (Observation) 0.720 (0.035) 61.7%

 

Here the response is the average mass of the chicks 
in a brood. Note here lots of the variability is 
unexplained and both parents are equally important.



Nest Success
Parameter Estimate (S.E.) Percentage 

overdispersion
β 0.010 (0.080) - 

2
)5(uσ  (Year) 0.191 (0.058) 56.0%

2
)4(uσ  (Nest box) 0.025 (0.020) 7.3%

2
)3(uσ  (Male) 0.065 (0.054) 19.1%

2
)2(uσ  (Female) 0.060 (0.052) 17.6%

 

Here we define nest success as one of the ringed 
nestlings captured in later years. The value 0.01 for β
corresponds to around a 50% success rate. Most of 
the variability is explained by the Binomial 
assumption with the bulk of the over-dispersion 
mainly due to yearly differences.



Male Survival
Parameter Estimate (S.E.) Percentage 

overdispersion
β -0.428 (0.041) - 

2
)5(uσ  (Year) 0.032 (0.013) 41.6%

2
)4(uσ  (Nest box) 0.006 (0.006) 7.8%

2
)3(uσ  (Male) 0.025 (0.023) 32.5%

2
)2(uσ  (Female) 0.014 (0.017) 18.2%

 

Here male survival is defined as being observed 
breeding in later years. The average probability is 
0.334 and there is very little over-dispersion with 
differences between years being the main factor. 
Note the actual response is being observed breeding 
in later years and so the real probability is higher!



Female survival
Parameter Estimate (S.E.) Percentage 

overdispersion
β -0.302 (0.048) - 

2
)5(uσ  (Year) 0.053 (0.018) 36.6%

2
)4(uσ  (Nest box) 0.065 (0.024) 44.8%

2
)3(uσ  (Male) 0.014 (0.017) 9.7%

2
)2(uσ  (Female) 0.013 (0.014) 9.0%

 

Here female survival is defined as being observed 
breeding in later years. The average probability is 
0.381 and again there isn’t much over-dispersion with 
differences between nestboxes and years being the 
main factors.



Multivariate modelling of the 
great tit dataset

• We now wish to combine the six univariate models into 
one big model that will also account for the correlations 
between the responses. 

• We choose a MV Normal model and use latent variables 
(Chib and Greenburg, 1998) for the 3 binary responses 
that take positive values if the response is 1 and 
negative values if the response is 0. 

• We are then left with a 6-vector for each observation 
consisting of the 3 continuous responses and 3 latent 
variables. The latent variables are estimated as an 
additional step in the MCMC algorithm and for 
identifiability the elements of the level 1 variance matrix 
that correspond to their variances are constrained to 
equal 1.



Multivariate Model
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Here the vector valued 
response is decomposed into 
a mean vector plus random 
effects for each classification.

Inverse Wishart priors are used 
for each of the classification 
variance matrices. The values 
are based on considering overall 
variability in each response and 
assuming an equal split for the 5 
classifications.



Use of the multivariate model
• The multivariate model was fitted using an 

MCMC algorithm programmed into the MLwiN
package which consists of Gibbs sampling steps 
for all parameters apart from the level 1 variance 
matrix which requires Metropolis sampling (see 
Browne 2006).

• The multivariate model will give variance 
estimates in line with the 6 univariate models.

• In addition the covariances/correlations at each 
level can be assessed to look at how 
correlations are partitioned.



Partitioning of covariances
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Correlations in full model
CS LD NM NS MS

LD N, F, O
-0.30

X X X X

NM F, O
-0.09

F, O
-0.06

X X X

NS Y, F
0.20

N, F, O
-0.22

O
0.16

X X

MS -
0.02

-
-0.02

-
0.04

Y
0.07

X

FS F, O
-0.02

F, O
-0.02

-
0.06

Y, F
0.11

Y, O
0.21

Note numbers give correlations in a 1 level model.

Key: Blue +ve, Red –ve: Y – year, N – nestbox, F – female, O - observation



Pairs of antagonistic covariances at 
different classifications

There are 3 pairs of antagonistic correlations i.e. 
correlations with different signs at different 
classifications:

CS & FS : Female 0.48 Observation -0.20
Interpretation: Birds that lay larger clutches are more likely 

to survive but a particular bird has less chance of 
surviving if it lays more eggs.

LD & FS : Female -0.67 Observation 0.11
Interpretation: Birds that lay early are more likely to survive 

but for a particular bird the later they lay the better! 
LD & NM : Female 0.20 Observation -0.19
Interpretation: Females who generally lay late, lay heavier 

chicks but the later a particular bird lays the lighter its 
chicks.



Prior Sensitivity
Our choice of variance prior assumes a priori 
• No correlation between the 6 traits. 
• Variance for each trait is split equally between the 5 

classifications.
We compared this approach with a more Bayesian 

approach by splitting the data into 2 halves:
In the first 17 years (1964-1980) there were 1,116 

observations whilst in the second 17 years (1981-1997) 
there were 3,049 observations 

We therefore used estimates from the first 17 years of the 
data to give a prior for the second 17 years and 
compared this prior with our earlier prior. 

Both approaches give similar results.



MCMC efficiency for clutch size 
response

• The MCMC algorithm used in the univariate analysis 
of clutch size was a simple 10-step Gibbs sampling 
algorithm.

• The same Gibbs sampling algorithm can be used in 
both the MLwiN and WinBUGS software packages 
and we ran both for 50,000 iterations.

• To compare methods for each parameter we can look 
at the effective sample sizes (ESS) which give an 
estimate of how many ‘independent samples we have’
for each parameter as opposed to 50,000 dependent 
samples.

• ESS = # of iterations/κ, ∑
∞

=

+=
1

)(21
k

kρκ



Effective Sample sizes

Parameter MLwiN WinBUGS

Fixed Effect 671 602

Year 30632 29604

Nestbox 833 788

Male 36 33

Female 3098 3685

Observation 110 135

Time 519s 2601s

The effective sample sizes are similar for both packages. 
Note that MLwiN is 5 times quicker!! 

We will now consider methods that will improve the
ESS values for particular parameters. We will firstly
consider the fixed effect parameter.



Trace and autocorrelation plots for fixed effect 
using standard Gibbs sampling algorithm



Hierarchical Centering
This method was devised by Gelfand et al. (1995) for 
use in nested models. Basically (where feasible) 
parameters are moved up the hierarchy in a model 
reformulation. For example:

),0(~),,0(~, 22
0 eijujijjij NeNueuy σσβ ++=

is equivalent to
),0(~),,(~, 22

0 eijujijjij NeNey σσβββ +=

The motivation here is we remove the strong negative 
correlation between the fixed and random effects by 
reformulation.



Hierarchical Centering
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In our cross-classified model we have 4 possible hierarchies 
up which we can move parameters. We have chosen to move 
the fixed effect up the year hierarchy as it’s variance had 
biggest ESS although this choice is rather arbitrary. 

The ESS for the fixed effect increases 50-fold from 602 to 
35,063 while for the year level variance we have a smaller 
improvement from 29,604 to 34,626. Note this formulation 
also runs faster 1864s vs 2601s (in WinBUGS).



Trace and autocorrelation plots for fixed effect 
using hierarchical centering formulation



Parameter Expansion

• We next consider the variances and in particular 
the between-male bird variance. 
• When the posterior distribution of a variance 
parameter has some mass near zero this can hamper 
the mixing of the chains for both the variance 
parameter and the associated random effects. 
• The pictures over the page illustrate such poor 
mixing.
• One solution is parameter expansion (Liu et al. 
1998). 
• In this method we add an extra parameter to the 
model to improve mixing.



Trace plots for between males variance and a 
sample male effect using standard Gibbs sampling 

algorithm



Autocorrelation plot for male variance and a 
sample male effect using standard Gibbs sampling 

algorithm



Parameter Expansion
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In our example we use parameter expansion for all 4 
hierarchies. Note the α parameters have an impact on 
both the random effects and their variance.   

The original parameters can be found by:
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Note the models are not identical as we now have 
different prior distributions for the variances.



Parameter Expansion
• For the between males variance we have a 20-fold 
increase in ESS from 33 to 600. 
• The parameter expanded model has different prior 
distributions for the variances although these priors 
are still ‘diffuse’.
• It should be noted that the point and interval estimate 
of the level 2 variance has changed from 
0.034 (0.002,0.126) to 0.064 (0.000,0.172).
• Parameter expansion is computationally slower 
3662s vs 2601s for our example. 



Trace plots for between males variance and a 
sample male effect using parameter expansion.



Autocorrelation plot for male variance and a 
sample male effect using parameter expansion.



Combining the two methods

Hierarchical centering and parameter expansion can 
easily be combined in the same model. We 
performed centering on the year classification and 
parameter expansion on the other 3 hierarchies and 
got the following. 

Parameter WinBUGS
originally

WinBUGS
combined

Fixed Effect 602 34296

Year 29604 34817

Nestbox 788 5170

Male 33 557

Female 3685 8580

Observation 135 1431

Time 2601s 2526s



Including responses on individual 
chick survival

• In our earlier modelling we consider a response 
‘nest success’ that indicates that one (or more) 
chicks survive to breed. This fitted nicely into the 
normal/probit binomial modelling framework.

• We would prefer to distinguish between nesting 
attempts where just one bird survives and those 
where lots survive. 

• We can easily fit separate models for each 
response and include higher level correlations. 
To capture the lower level correlations we can 
instead fit responses as predictors.



Including responses on individual 
chick survival

• Here we consider a different subset of the Wytham
Woods dataset (4864 attempts over 28 years (1976-
2003) and 3,338 female birds). Note nestboxes replaced 
in mid 1970s with concrete boxes.

• For illustration we consider the 2 classifications: year 
and female, and three responses: clutch size, female 
survival and nestling survival. Note these are minimal 
sets for usage in an interesting population model.

• We will use WinBUGS to fit this model as currently 
MLwiN cannot fit general models with responses of 
different types. 

• We also use the logit link instead of the probit (due to 
problems in WinBUGS with the probit).



Model for three responses
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The following model was fitted (with the addition of non-informative 
priors as previously). Note that the two fixed effects, β3 and β4
capture the level 1 correlations (but we do not model correlation 
between FS & NS at level 1). 



Results – fixed effects

μi
CS = 8.733+ u female(i),1

(2) + uyear(i),1
(3)

logit(pi
FS ) = 1.524 − 0.231CSi + u female(i),2

(2) + uyear(i),2
(3)

logit(pi
NS ) = −1.929 − 0.051CSi + u female(i), 3

(2) + uyear(i), 3
(3)

Below we fill in the fixed effects estimates for the three responses. 
We see clearly the ‘penalty’ terms for increasing clutch size, in 
particular on female survival.

CS 2 7.733 8.733 9.733 15
FS 0.743 0.434 0.379 0.326 0.125
NS 0.116 0.089 0.085 0.081 0.063

We can express the survival terms as probabilities as follows:



Results - Covariances
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We can see that clutch size and female survival is more 
influenced by female birds whilst nestling survival is more 
influenced by year. We see that all correlations are positive 
suggesting birds in better condition lay larger clutches and are
more likely to survive. There are particularly strong correlations 
between clutch size and female survival between females and 
the two survival variables between years.

180.12 =eσ

Below we give the between female and between year covariance 
matrices with responses in the order CS, FS & NS:



Results – year effects
Here we see the random effects for the three responses for the 28 
years. There is positive correlation between the three responses in 
particular between the two survivals (0.83). 



Further work with Dylan Childs: Using 
year effects in a population model

• Population model aims to look at dynamic 
behaviour of population over time and look for 
‘optimal’ strategies. 

• The values of the year random effects can be 
used as known constants in the population 
model to focus the model on the time period 
studied or alternatively year random effects can 
be drawn from the variance-covariance matrix to 
simulate ‘typical’ years. 

• The model can be expanded to incorporate 
dispersal of birds from Wytham, egg survival in 
the nest, fledgling survival and adult survival. 



Using the estimates: 
Estimation of an optimal strategy

• The adult cost of reproduction (*) is very hard to 
detect using population level analyses

• It appears to be an important component of 
fitness.

*



Conclusions
• In this talk we have considered analysing observational 

bird ecology data using complex random effect models.
• We have seen how these models can be used to 

partition both variability and correlation between various 
classifications to identify interesting relationships. 

• We then investigated hierarchical centering and 
parameter expansion for a model for one of our 
responses. These are both useful methods for improving 
mixing when using MCMC.

• We finally looked at how to incorporate individual 
fledgling survival in our models. This will be useful for 
fitting population models in the future.
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