Development System for Auditory Modelling

Flexible auditory computer simulation development

Dr. Lowel P O'Mard <lowel@essex.ac.uk>

Development System for Auditory Modelling: Flexible auditory computer simulation development

by Dr. Lowel P O'Mard

Published 8th August 2005 Copyright © 1993-2005 CNBH, University of Essex

This manual has been edited to the best of our ability. We do not accept any responsibility regarding problems caused by any errors in this document. However, we are always happy to receive communications regarding corrections or suggested revisions.

Dedication

I dedicate this work to God. I believe that without Him, nothing is that is, and without His support, nothing I have done would have been possible.

Acknowledgements

I would like to thank all those who have contributed to the making of this document. In particular Prof. R. Meddis, Dr. S. D. Holmes.

Table of Contents

Preface	xix
I. General Concepts for the Core Routines Library	1
1. Basic Concepts	. 3
Units	3
Module Naming	3
2. Process Modules	4
Setting Process Parameters	4
Getting Results From Process Modules	4
Accumulating Data with Process Modules	4
Using simulation scripts	4
Introduction to Simulation Scripts	. 4
Overview	4
Process lines	
Looping using 'Repeat'	5
Besating processes and Labels	5
Nested Simulation Soriate	0
Complex Connections in Simulation Scripts	0
Using the Desiler Membrane Eiter Medules	/
Using the Basilar Membrane Filter Modules	8
	8
Centre Frequency modes	9
Bandwidth modes	. 12
Using Parameter Arrays	. 12
Using the Segment-processing Mode	. 12
Using the Display Module	13
II. Process Modules Reference	14
3. Analysis	. 22
Ana_ACF: Auto-correlation Function	. 22
Description	. 22
Module Parameters	. 22
Examples Using the 'Ana_ACF' Process Module	. 23
Ana_ALSR: Averaged Localised Synchronised Rate	. 24
Description	. 24
Module Parameters	. 25
Examples Using the 'Ana ALSR' Process Module	. 25
Ana Averages : Channel Averaging	. 27
Description	. 27
Module Parameters	. 27
Examples Using the 'Ana Averages' Process Module	27
Ana Convolution :	. 28
Description	28
Module Parameters	28
Examples Using the 'Ana Convolution' Process Module	28
Ana CCF : Cross-correlation Function	20
Description	20
Modula Decomptors	30
Examples Using the 'Ana CCE' Process Module	20
And FindDing Din soorching Analysis	. 50
Ana_FindBin: Bin searching Analysis	. 31
Med to Description	. 51
Wiodule Parameters	. 32
Examples Using the Ana_FindBin' Process Module	. 32
Ana_FindNextIndex: Sample index Analysis	. 32
Description	. 32
Module Parameters	. 33
Examples Using the 'Ana_ACF' Process Module	. 33
Ana_Fourier1: Fourier Analysis Function	. 34
Description	. 34

Development	
System for Audi-	
tory Modelling	

	24
	34
Examples Using the 'Ana_Fourier'I' Process Module	35
Ana_Histogram: Histogram analysis function	36
Description	36
Module Parameters	37
Examples Using the 'Ana_Histogram' Process Module	37
Ana_Intensity: RMS Intensity Analysis Function	39
Description	40
Module Parameters	40
Examples Using the 'Ana_Intensity' Process Module	40
Ana ISIH: Inter-spike Interval Histogram	41
Description	41
Module Parameters	41
Examples Using the 'Ana ISIH' Process Module	41
Ana SAI: Stabilised Auditory Image function	42
Description	42
Module Parameters	43
Examples Using the 'Ana ACE' Process Module	11
Ana SnikaDagularity: Snika Dagularity Analysis Function	52
Ana_SpikeRegularity. Spike Regularity Analysis Function	52
Madula Devenantare	55
From the Using the 'Are Chile Developite' Decrease Madule	54
Examples Using the Ana_SpikeRegularity Process Module	54
Ana_Synchindex: Synchronisation index	55
Description	55
Module Parameters	56
Examples Using the 'Ana_SynchIndex' Process Module	56
4. AN	57
AN_SG_Binomial: Auditory Nerve Binomial Approximation	57
Description	57
Module Parameters	57
Examples Using the 'AN_SG_Binomial' Process Module	57
AN_SG_Carney: Auditory Nerve Spike Generation (1993)	58
Description	58
Module Parameters	59
Examples Using the 'AN_SG_Carney' Process Module	59
AN_SG_Simple: Auditory Nerve Simple Spike Generation	60
Description	60
Module Parameters	60
Examples Using the 'AN_SG_Simple' Process Module	61
5. BM	64
BM_Carney: Non-linear BM (1993)	64
Description	64
Module Parameters	64
Examples Using the 'BM Carney' Process Module	64
BM Cooke: Linear BM (1991)	76
Description	76
Module Parameters	76
Examples Using the 'BM Cooke' Process Module	77
BM DRNL: Non-linear BM (1995)	83
Description	84
Module Parameters	84
Examples Using the 'BM DRNI' Process Module	85
BM DRNI Test: Test version of DRNI model	05
Description	95 05
Modula Parametars	90 06
Examples Using the 'RM DDNI' process Module	90 06
DAMPES USINg the DIVI_DRIVL FIDEESS WOuld	70 100
Divi_Ualillia 1. Lilical Divi	100
Description	100

Module Parameters	101
BM_Zhang: Non-linear BM (1993)	107
Description	108
Module Parameters	108
Examples Using the 'BM_Zhang' Process Module	108
6. Displays	119
Display_Signal: Standard Signal Display	119
Description	119
Module Parameters	119
Examples Using the 'Display_Signal' Process Module	119
7. Filters	122
Filt_BandPass: Band pass filter process	122
Description	122
Module Parameters	122
Examples Using the 'Filt_Bandpass' Process Module	122
Filt_FIR: Finite Impulse Response filter.	123
Description	123
Module Parameters	123
Examples Using the 'Filt_FIR' Process Module	124
Filt_MultiBPass: Multiple band pass filter.	125
Description	125
Module Parameters	126
Examples Using the 'Filt_MultiBPass' Process Module	126
Filt_LowPass: Low pass filter process	127
Description	127
Module Parameters	128
Examples Using the 'Filt_LowPass' Process Module	128
8. IO	131
DataFile_In/DataFile_Out: Sound File Format Support	131
Description	131
Module Parameters	131
Examples Using the 'DataFilt_In/Out' Process Module	132
9. Transduction	136
IHC_Carney: Inner Hair Cell Synapse (1993)	136
Description	136
Module Parameters	136
Examples Using the 'IHC_Carney' Process Module	136
IHC_Cooke91: Inner Hair Cell (1991)	145
Description	145
Module Parameters	145
Examples Using the 'IHC_Cooke91' Process Module	145
IHC_Meddis86: Inner Hair Cell (1986)	150
Description	150
Module Parameters	150
Examples Using the 'IHC_Meddis86' Process Module	151
IHC_Meddis86a: Inner Hair Cell Synapse	156
Description	156
Module Parameters	157
Examples Using the 'IHC_Meddis86a' Process Module	157
IHC_Meddis2000: Inner Hair Cell Synapse	164
Description	164
Module Parameters	166
Examples Using the 'IHC_Meddis2000' Process Module	166
IHC_Zhang: Inner Hair Cell Synapse (2001)	173
Description	173
Module Parameters	174
Examples Using the 'IHC_Zhang' Process Module	174
IHCRP_Carney: Inner Hair Cell Receptor Potential (1993)	181

Description	181
Module Parameters	181
Examples Using the 'IHCRP_Carney' Process Module	182
IHCRP_Meddis: Inner Hair Cell Receptor Potential	186
Description	186
Module Parameters	186
Examples Using the 'IHCRP_Meddis' Process Module	187
IHCRP_Shamma: Inner Hair Cell Receptor Potential (1986)	190
Description	190
Module Parameters	190
Examples Using the 'IHCRP_Shamma' Process Module	191
IHCRP_Shamma3StateVelIn: Inner Hair Cell Receptor Potential (2002)	194
Description	194
Module Parameters	195
Examples Using the 'IHCRP_Shamma3StateVelIn' Process Module	195
IHCRP Zhang: Inner Hair Cell Receptor Potential (2001)	198
Description	198
Module Parameters	198
Examples Using the 'IHCRP Shamma' Process Module	198
10. Neurons	202
Neur ArleKim: Neural Cell Model	202
Description	202
Module Parameters	202
Examples Using the 'Neur ArleKim' Process Module	202
Neur HHuxley: Hodkin Huxley Neural Cell Model	208
Description	208
Module Parameters	209
Examples Using the 'Neur ArleKim' Process Module	211
Neur McGregor McGregor Neural Cell Model	211
Description	211
Module Parameters	211
Examples Using the 'Neur' McGregor' Process Module	212
11 Mise	212
Null: Used to Skin Process stage in Program	214
Description	214
Module Parameters	214
12 Stimuli	214
Stim Click: Click Stimulus Module	215
Description	215
Modula Parametars	215
Examples Using the 'Stim Click' Process Module	215
Stim ExpGatedTone: Exponentially Gated Pure Tone Stimulus Module	213
Description	217 217
Modula Parametars	217
Examples Using the 'Stim ExaGatedTone' Process Module	217
Stim Harmonia: Harmonia Stimulus Modula	210
Description	220
Medule Peremeters	220
Fxamples Using the 'Stim Harmonic' Process Module	221
Stim Dulse Train: Dulse Train Stimulus Module	221 222
Description	223
Modula Parametars	223 222
Fyamples Using the 'Stim Harmonia' Process Module	223 222
Stim DuraTone: Dura Tone Stimulus Modula	223 225
Description	223 225
Modula Parametars	223 226
Fyramples Using the 'Stim DuraTana' Drogass Module	220
Stim DuraTana 2: Dura Tana Stimulus with Starting and Ending Dariada Madula	220
Sum_1 utc10hc_2. 1 utc 10hc Sumulus with Statting and Ending renous Module	220

	Description	228
	Module Parameters	228
	Examples Using the 'Stim_PureTone_2' Process Module	229
Stim	_PureTone_AM: Amplitude Modulated Pure Tone Stimulus Module	231
	Description	231
	Module Parameters	231
	Examples Using the 'Stim PureTone AM' Process Module	232
Stim	PureTone Binaural: Binaural Pure Tone Stimulus Module	233
-	Description	233
	Module Parameters	234
	Examples Using the 'Stim PureTone AM' Process Module	234
Stim	Pure Tone FM: Frequency Modulated Pure Tone Stimulus Module	235
-	Description	235
	Module Parameters	235
	Examples Using the 'Stim PureTone AM' Process Module	236
Stim	PureTone Multi: Multiple Pure Tone Stimulus Module	237
	Description	237
	Module Parameters	237
	Examples Using the 'Stim PureTone Multi' Process Module	238
Stim	PureTone MultiPulse: Multiple Pure Tone Pulse Stimulus Module	239
5till	Description	239
	Module Parameters	239
	Examples Using the 'Stim PureTone MultiPulse' Process Module	240
Stim	StenFun: Sten function Stimulus Module	241
5till	Description	241
	Module Parameters	241
	Examples Using the 'Stim StepFun' Process Module	241
Stim	WhiteNoise: White Noise Stimulus Module	243
5tilli	Description	243
	Module Parameters	243
	Examples Using the 'Stim WhiteNoise' Process Module	211
13 Transfe	Trans	244
Intro	duction	240
Trans	CollectSignals: Channel collection Transform Module	240
11411	Description	240
	Modula Parameters	240
	Examples Using the 'Trans CollectSignals' Process Module	240
Tron	Examples Using the Trans_Conectorgnals Process Module	240
Train	Description	247
	Medule Decomptons	247
	Examples Using the 'Trans Damp' Process Module	247
Trans	Cote: Coting Transform Module	240
Train	Description	249
	Medule Decemptors	249
	Examples Using the 'Trans Gate' Process Medule	249
	Examples Using the Trans_Gate Process Module	251
Trans	S_Kamp: Kamping Transform Module	200
	Medula Description	233
	Energy les Using the 'Trange Denne' Deserve Medule	230
Tron	Examples Using the Trans_Kamp Process Module	250
Trans		231 257
	Medule Decomptons	231
14 114:14		237
14. Utilitie	Slata Alata Tkilita Ma Jula	239
Util_	Accumulate: Accumulate Utility Module	239
		239
	Would Parameters	239
TT-11	Examples Using the 'Ana_ACF' Process Module	259
Util_	Ampivioa: Amplitude Modulation Utility Module	260

	200
Description	260
Module Parameters	260
Examples Using the 'Util_AmpMod' Process Module	261
Util_BinSignal: Bin Collection Utility Module	261
Description	261
Module Parameters	262
Examples Using the 'Util_AmpMod' Process Module	262
Util_Compression: Compression Utility Module	265
Description	265
Module Parameters	265
Examples Using the 'Util_Compression' Process Module	266
Util_ConvMonaural: Monaural Conversion Utility Module	268
Description	268
Module Parameters	268
Examples Using the 'Util ConvMonauration' Process Module	268
Util CreateBinaural: Binaural Output Creation Utility Module	269
Description	270
Modula Paramatere	270
Examples Using the 'Util CreateDingural' Process Module	270
Line de Sing de Constante de Sing de Laire Heiler Markele	270
Durgenter Signal Join Utility Module	271
Description	2/1
Module Parameters	271
Examples Using the 'Util_CreateJoined' Process Module	271
Util_Delay: Signal Delay Utility Module	272
Description	272
Module Parameters	273
Examples Using the 'Util_Delay' Process Module	273
Util_HalfWaveRectify: Half-wave Rectification Utility Module	275
Description	275
Module Parameters	275
Examples Using the 'Util_HalfWaveRectify' Process Module	275
Util IteratedRipple: Iterated Ripple Utility Module	276
Description	276
Module Parameters	277
Examples Using the 'Util IteratedRipple' Process Module	277
Util MathOn: Mathematical Operation Utility Module	278
Description	278
Module Parameters	278
Examples Using the 'Util MathOn' Process Module	270
Litil DedSignal: Signal Dedding Utility Module	217
Description	201
Madula Description	201
$\mathbf{F}_{\text{rescaled}} = \mathbf{M}_{\text{rescaled}} + \mathbf{M}_{\text$	201
Examples Using the Util_PadSignal Process Module	281
Util_Pause: Process Pause Utility Module	282
Description	282
Module Parameters	283
Examples Using the 'Util_Pause' Process Module	283
Util_ReduceChannels: Channel Reduction Utility Module	283
Description	283
Module Parameters	284
Examples Using the 'Util_ReduceChannels' Process Module	284
Util_ReduceDT: Sampling Interval/Rate Conversion Utility Module	286
Description	286
Module Parameters	286
Examples Using the 'Util_ReduceDT' Process Module	286
Util RefractoryAdjust: Refractory Adjustment Utility Module	287
Description	287
Module Parameters	287
	-07

Development
System for Audi-
tory Modelling

Examples Using the 'Util_RefractoryAdjust' Process Module	288
Util_Sample: Signal Sampling Utility Module	289
Description	289
Module Parameters	289
Examples Using the 'Util_Sample' Process Module	289
Util_SelectChannels: Channel Selection Utility Module	290
Description	290
Module Parameters	291
Examples Using the 'Util_SelectChannels' Process Module	291
Util_ShapePulse: Pulse Shaping Utility Module	292
Description	293
Module Parameters	293
Examples Using the 'Util_ShapePulse' Process Module	293
Util_SimScript: Simulation Script Interface	294
Description	294
Examples Using the 'Util_ReduceChannels' Process Module	294
Util_Standardise: Signal Standardisation Utility Module	295
Description	296
Module Parameters	296
Examples Using the 'Util_Standardise' Process Module	296
Util_Strobe: Signal Strobe Utility Module	297
Description	297
Module Parameters	298
Examples Using the 'Util_Strobe' Process Module	299
Util_SwapLR: Channel Swap Utility Module	305
Description	305
Module Parameters	305
Examples Using the 'Util_SwapLR' Process Module	305
Bibliography	307
Index	309

List of Figures

2.1 Simple Example 5
2.1. Simple Example 5
2.2. Repeat Example
2.5. Simple 'pipeline' simulation schematic
2.6. Schematic of directed connections in a simulation using 'Util_CreateBinaural'
2.7. Simulation script showing directed connections using 'Util_CreateBinaural'
3.1. ACF simulation output The stimulus is a harmonic series with alternating phases for the components.
23
3.2. ALSR function for the /a/ vowel
3.3. Output for convolution test. A signal cycle of a pure tone is convolved with a click train, creating a
train of repeated pure tone pulses
3.4. CCF test output/Output for CCF test. Cross correlation of dichotic 1000-Hz pure tones 180 degrees out
of phase at the two ears
3.5 Fourier Transform process output The frequency data for this figure has been truncated for display
purposes
2.6 Histogram output for HistDSTU1 sim The figure shows the puretone response from a linear auditory
s.o. Thistogram output for thist STITLSmithe figure shows the purclone response from a finear authory
2.7 DL Outant from History from the sting
3.7. PH Output from Histogram function
3.8. ISIH process output line results shown are for two auditory nerve fibres
3.9. Stimulus input for the stabilised auditory image (SAI) analysis module tests
3.10. SAI module output using 'user' strobe modeThe strobe input is a train of pulses. The image frame is
negative
3.11. SAI module output 2 using 'user' strobe modeThe strobe input is a train of pulses. The image frame
is from -1.0 to 5.0 ms
3.12. SAI module output using 'threshold' strobe modeIn this mode strobes are triggered when the process
input rises over a specified threshold 47
3.13. SAI module output using 'peak' strobe modeIn this mode strobes are triggered when a peak over a
specified threshold occurs in the process input
3.14. SAI module output using the 'peak_Shadow-' strobe modeIn this mode strobes are triggered on peaks
which are not followed by a larger peak
3.15. SAI module output using the 'peak_shadow+' strobe modeIn this mode peaks that are not followed by
a larger peak trigger strobe events
3.16. SAI module output using the 'peak_shadow+' strobe mode with the timeout parameter set.In this
mode peaks that are not followed by a larger peak trigger strobe events, but when the timeout period expires,
a strobe event is triggered anyway
3.17. SAI module output using the autocorrelation, 'ac' integration mode with the 'threshold' strobe
mode With the autocorrelation integration mode, at each strobe event the input signal added to the stabilised
auditory image is multiplied by the input signal value at the strobe instant 52
4.1 Binomial Approximation Spike Generation Output
4.2 Carney AN Snike Generation Output
4.2. Camby AN Spike Generation Output (1) 61
4.4. Simple AN Spike Concration Output (2)
4.4. Simple AN Spike Oelefation Output (2) $\dots \dots \dots$
5.1. The impulse response of the Carney DM model response to a two tone stimulus $CE = 1$ kHz.
5.2. Fourier analysis of the Carney DM model response to a single tene $CE = 1$ hJz
5.5. Fourier analysis of the Carney BM model response to a single tone $CF = 1 \text{ kHz}$
5.4. Carney BM model filter function $CF = 1$ kHz.
5.5. Carney BM model running curve. $CF = 1$ kHz. This particular Carney model is unstable above ~ 4 kHz
5.6. The input-output response of all the BM models. The 'GammaT' and 'Cooke' functions show the linear
response
5./. The input-output functions for the Carney BM model.Both on and off CF functions are shown 70
5.8. Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against
changing frequency
5.9. Latency of response for the BM models. 72
5.10. The Q10 tuning characteristics for the BM models

5.13. The impulse response of the Cooke BM modelCF = 1 kHz	7
5.14. Fourier analysis of the Cooke BM model response to a single tone $CF = 1 \text{ kHz}$	8
5.15. Cooke BM model filter function. $CF = 1 \text{ kHz}$.	9
5.16. Cooke BM model Tuning curve.CF = 1 kHz	0
5.17. The input-output functions for the Cooke BM model. Both on and off CF functions are shown 8	2
5.18. The impulse response of the DRNL BM model $CF = 1 \text{ kHz}$ This model's 'ringing' response is shorted	r
than that for the linear gammatone filter 8	6
5 19 Fourier analysis of the DRNL BM model response to a two-tone stimulus $CF = 1 \text{ kHz}$	7
5.17.1 Fourier analysis of the DRNL BM model response to a single tone $CF = 1 \text{ kHz}$.	, 8
5.20. Fourier analysis of the DRTE DRT model response to a single toneer $= 1 \text{ kHz}$.	9 0
5.21. DRNL BM model function. Cf = 1 kHz. (5.27) DRNL BM model function curve CF = 1 kHz. (5.27)	ń
5.22. DRIVE DRIVE DRIVE DRIVE THING CONVERT A TRADE OF THE TRADE OF TH	ر د
5.25. The input-output respinse of the DRIVE Divi modules Divi_DRIVE and Divi_DRIVE_rest proce	5 1
5.24. The input output functions for the DDNL DM model Both on and off CE functions are shown. Not	1
5.24. The input-output functions for the DRNL BW model. Both on and on CF functions are snown. Not	2 1
that the off-CF input-output functions snow compression at higher intensities	I
5.25. Distortion products investigation for the DRNL BM model. A similar analysis paradigm as used i	n
was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs show	n
are the respective frequency component intensities as determined from a fourier analysis. The response i	s
similar to that of the Carney filter, and both compare well with experimental data (see)	4
5.26. Two-tone suppression response for the DRNL BM model. Two stimuli are used. There is a single pur	е
tone, and the other consisting of two pure tones: a probe tone, T1 and a suppresser tone, T2. The relativ	е
suppression is then calculated by dividing the unsuppressed model FFT modulus by the suppressed output	lt
modulus and multiplying by 100. This is calculated from the Fourier component at the probe frequency.	
95	
5.27. Filter function for the test version of the DRNL BM model.CF = 300 Hz	7
5.28. Tuning Curve for the test version of the DRNL BM model.CF = 300 Hz	8
5.29. The input-output functions for the test version of the DRNL BM model.Both on and off CF function	S
are shown. Note that the off-CF input-output functions show compression at higher intensities 9	9
5.30. The impulse response of the GammaT BM modelCF = 1 kHz 10	1
5.31. Fourier analysis of the GammaT BM model response to a single toneCF = 1 kHz 10	2
5.32. GammaT BM model filter function.CF = 1 kHz 10	3
5.33. GammaT BM model Tuning curve.CF = 1 kHz 10	4
5.34. The input-output functions for the GammaT BM model.Both on and off CF functions are shown. 10	б
5.35. The impulse response of the Zhang BM modelCF = 1 kHz 10	9
5.36. Fourier analysis of the Zhang BM model response to a two-tone stimulus.CF = 1 kHz 11	0
5.37. Fourier analysis of the Zhang BM model response to a single tone $CF = 1$ kHz	1
5.38. Zhang BM model filter function.CF = 1 kHz 11	2
5.39. Zhang BM model Tuning curve.CF = 1 kHz 11	3
5.40. The input-output functions for the Zhang BM model. Both on and off CF functions are shown. 11	4
5.41. Distortion products investigation for the Zhang BM model. A similar analysis paradigm as used i	n
was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs show	n
are the respective frequency component intensities as determined from a fourier analysis. The response i	s
similar to that of the DRNL filter, and both compare well with experimental data (see).	6
5.42. Two-tone suppression response for the Zhang BM model. Two stimuli are used. There is a single pur	e
tone, and the other consisting of two pure tones: a probe tone T1 and a suppresser tone T2. The relative	é
suppression is then calculated by dividing the unsuppressed model FFT modulus by the suppressed output	it
modulus and multiplying by 100. This is calculated from the Fourier component at the probe frequency	
117	
$(1, 0) \rightarrow (1, 0) \rightarrow ($	^

6.1. Signal Display WindowOutput from the Hair Cell process in the Simulation is shown. 120

7.1. Filter shape for the Bandpass FilterOften used as outer-/middle-ear pre-emphasis model.	122
7.2. Filter shape for the FIR process module.	124
7.3. Multi-Bandpass filter	125
7.4. Filter shape for the multi-bandpass filterOften used as outer-/middle-ear pre-emphasis model	127
7.5. Filter shape for the low-pass filter This process module is often used as a dendritic filtering model.	128
7.6. Response of the low pass filter process click stimulusThis process module is often used as a dend	ritic
filtering model.	129
8.1. AIFF stimulus read by the DataFile module	132
8.2. Microsoft WAVE stimulus read by the DataFile module	133
8.3. Raw binary stimulus read by the DataFile module	134
9.1. Post stimulus time histogram (PSTH) for the Carney AN model	137
9.2. Phase-locking vs frequency Firing characteristics for the DSAM AN models	138
9.3. Carney AN Model: Firing characteristics vs intensity	139
9.4. Phase-locking vs Intensity vs intensity. Firing characteristics for the DSAM AN models	139
9.5. Carney AN model: Rate-intensity functions	140
9.6. Carney AN model: Rate-intensity functions Rate-intensity functions for the Carney AN model. N	Note
that the main parameter file was changed to produce this diagram: the AN_SG_Carney module was pu	it in
(using the 'Carney ISG.par' module parameter file, the 'Histogm2.par' module parameter file was repla	iced
by Histogm4.par and the number of model runs was set to 200.	142
9.7. Steady-state firing rate vs intensity comparison firing characteristics for the DSAM AN models .	142
9.8. Carney AN Model: Two-component adaptation characteristics	143
9.9. Carney AN Model: Two-tone suppression characteristics.	144
9.10. Fost sumulus time instogram (FSTH) for the Cooke AN model	140
9.11. Cooke AN model: Filling characteristics vs intensity	14/
0.12. Cooke AN Model: Two component adaptation characteristics	140
9.14 Post stimulus time histogram (PSTH) for the Carney AN model	149
9.15 Meddis86 AN Model: Firing characteristics vs intensity	151
9.16 Meddis86 AN model: Rate-intensity functions	154
9 17 Meddis86 AN model: Rate-intensity functions Rate-intensity functions for the Meddis86 AN model:	del
Note that the main parameter file was changed to produce this diagram: the AN SG Meddis86 mod	dule
was put in (using the 'Meddis86 1SG.par' module parameter file, the 'Histogm2.par' module parameter	file
was replaced by 'Histograd.par' and the number of model runs was set to 200.	155
9.18. Meddis86 AN Model: Two-component adaptation characteristics	156
9.19. Post stimulus time histogram (PSTH) for the Meddis 86a AN model	157
9.20. Meddis 86a AN Model: Firing characteristics vs intensity	159
9.21. Meddis86a AN model: Rate-intensity functions	160
9.22. Meddis 86a AN model: Rate-intensity functions Rate-intensity functions for the Meddis 86a	AN
model. Note that the main parameter file was changed to produce this diagram: the AN_SG_Meddis	86a
module was put in (using the 'Meddis86a1SG.par' module parameter file, the 'Histogm2.par' mod	dule
parameter file was replaced by'Histogm4.par' and the number of model runs was set to 200	161
9.23. Meddis 86a AN Model: Two-component adaptation characteristics	162
9.24. Meddis 86a AN Model: Two-tone suppression characteristics.	164
9.25. Post stimulus time histogram (PSTH) for the Meddis 2000 AN model	167
9.26. Meddis 2000 AN Model: Firing characteristics vs intensity	168
9.27. Meddis 2000 AN model: Rate-intensity functions	170
9.28. Meddis 2000 AN model: Rate-intensity functions Rate-intensity functions for the Meddis 2000_	AN
model. Note that the main parameter file was changed to produce this diagram: the AN_SG_Meddis20	00_
module was put in (using the 'Meddis2000_1SG.par' module parameter file, the 'Histogm2.par' mod	dule
parameter file was replaced by Histogm4.par' and the number of model runs was set to 200.	171
9.29. Meddis 2000 AN Model: Two-component adaptation characteristics	172
9.30. Meddis 2000 AN Model: Two-tone suppression characteristics.	173
9.31. Post stimulus time histogram (PSTH) for the Zhang AN model	174
9.32. Zhang AN Model: Firing characteristics vs intensity	176
9.33. Zhang AN model: Rate-intensity functions	177
9.34. Zhang AN model: Rate-intensity functions Rate-intensity functions for the Zhang AN model. N	vote
that the main parameter file was changed to produce this diagram: the AN_SG_Zhang module was pu	it in

(using the 'Zhang1SG.par' module parameter file, the 'Histogm2.par' module parameter file was replaced
by Histogm4.par' and the number of model runs was set to 200.
9.35. Zhang AN Model: Two-component adaptation characteristics
9.36. Zhang AN Model: Two-tone suppression characteristics
9.37. Pure tone response of the Carney hair cell receptor process module
9.38. AC/DC frequency dependent characteristics for the DSAM IHCRP models
9.39. Peak-Trough characteristics for the Carney IHCRP model
9.40. AC/DC intensity dependent characteristics for the DSAM IHCRP models
9.41. Pure tone response of the Meddis hair cell receptor process module
9.42. Peak-Trough characteristics for the Meddis IHCRP model
9.43. AC/DC intensity dependent characteristics for the DSAM IHCRP models
9.44. Pure tone response of the Shamma hair cell receptor process module
9.45. Peak-Trough characteristics for the Shamma IHCRP model
9.46. Pure tone response of the Shamma 3 State Velocity In hair cell receptor process module 196
9.47. Peak-Trough characteristics for the Shamma 3 State Velocity In IHCRP model
9.48. Pure tone response of the Zhang hair cell receptor process module
9.49. Peak-Trough characteristics for the Zhang IHCRP model
10.1. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised
bushy cell responses were produced using the 'AKBushyP.sim' and 'AKBushyN.sim' Simulation scripts
respectively. 203
10.2. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised
Fusiform cell responses were produced using the 'AKFusiformP.sim' and 'AKFusiformN.sim' Simulation
scripts respectively. 204
10.3. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised
Stellate cell responses were produced using the 'AKStellateP.sim' and 'AKStellateN.sim' Simulation scripts
respectively.
10.4. Input-output current characteristics for the Arle-Kim neural cell model The functions for the respective
cell characteristics were produced using the 'AKStellate1.sim', 'AKFusiform1.sim' and 'AKBush1.sim'
simulation script files. 207
10.5. Current step response of the Hodgkin-Huxley neural cell model
10.6. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised
Stellate cell responses were produced using the 'MGStellateP.sim' and 'MGStellateN.sim' Simulation
scripts respectively
12.1. A stimulus generated by the Stim_Click module. 215
12.2. Click stimulus behaviour in segmented rocessing mode. The full stimulus is generated once in normal
mode, then the stimulus is generated in segments in segment-processing mode. Note that in segmented-
processing mode the stimulus is repeated. 216
12.3. A stimulus generated by the exponentially gated pure tone module
12.4. Exponentially gated pure tone stimulus behaviour in segmented rocessing mode. The full stimulus is
generated once in normal mode, then the stimulus is generated in segments in segment-processing mode.
219
12.5. A stimulus generated by the Stim_Harmonic module
12.6. Harmonic stimulus behaviour in segmented rocessing mode. The full stimulus is generated once
in normal mode, then the stimulus is generated in segments in segment-processing mode. Note that in
segmented-processing mode the stimulus is repeated. 222
12.7. A stimulus generated by the Stim_PulseTrain module
12.8. PulseTrain stimulus behaviour in segmented rocessing mode. The full stimulus is generated once in
normal mode, then the stimulus is generated in segments in segment-processing mode
12.9. A stimulus generated by the Stim_PureTone module
12.10. PureTone stimulus behaviour in segmented rocessing mode. The full stimulus is generated once in
normal mode, then the stimulus is generated in segments in segment-processing mode
12.11. A stimulus generated by the Stim_PureTone_2 module
12.12. PureTone 2 stimulus behaviour in segmented rocessing mode. The full stimulus is generated once
in normal mode, then the stimulus is generated in segments in segment-processing mode. Note that in
segmented-processing mode the stimulus is repeated. 230
12.13. A stimulus generated by the Stim_PureTone_AM module

12.14. Amplitude modulated pure tone stimulus behaviour in segmented rocessing mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in segment-processing mode. 233

223 A stimulus generated by the Stim DureTone Ringural module 22	1
12.15. A stimulus generated by the Stim_Full Tone_Dinautal module.	4
12.10. A sumulus generated by the Sum_PureTone_FW module.	1
12.17. A stimulus generated by the Pure Ione_Multi module. This stimulus consists of individually specified	d
pure tones which are added together to form a composite signal	8
12.18. A stimulus generated by the PureTone_MultiPulse module. The stimulus consists of a series of)f
pulses, indivudually specified, which are repeated. The figure illustrates a stimulus which has a series o	٥f
two pulses of different frequency	0
12.19. A stimulus generated by the Stim_StepFun module. This stimulus has been used where a current	ıt
pulse is required, though it can be applied to other cases	2
12.20. StepFun stimulus behaviour in segmented rocessing mode. The full stimulus is generated once	e
in normal mode, then the stimulus is generated in segments in segment-processing mode. Note that in	n
segmented-processing mode the stimulus is repeated	3
12.21. A stimulus generated by the Stim WhiteNoise module	4
13.1. Damped Sinusoid	8
13.2. Absolute Sine Ramp	2
13.3 Absolute Sine Damp 25'	2
13.4 Relative Sine Ramp	3
13.5. Relative Sine Damp	3
13.6. Gating module results using raised cos function	<i>л</i>
13.7. Relative Exponential Ramp	5
13.9 Palativa Exponential Damp	5
12.0. Demped Sinuseid	5 6
15.9. Kamped Sinusoid	0
14.1. Two pure tones added together using the accumulator module.	9
14.2. An amplitude modulated pure tone using the Amplitude modulation utility	I
14.3. Output from the BinSignal utility module using thesum binning mode. The bin width is set to the	e
stimulus sampling interval	2
14.4. Output from the BinSignal utility module using thesum binning mode. The bin width is set to hal	f
the stimulus sampling interval	3
14.5. Output from the BinSignal utility module using theaverage binning mode. The bin width is set to hal	f
the stimulus sampling interval	4
14.6. Output from the Compression utility module, showing power compression (see Patterson et al.). The	e
stimulus input is also shown	6
14.7. Output from the Compression utility module, showing log compression (see Patterson et al.). The	e
stimulus input is also shown	7
14.8. A binaural signal with the left and right waveforms (top two panels respectively) 180 degress out o	f
phase converted to a monaural signal. The result should be a zero signal (subject to rounding errors). 269	9
14.9. Two pure tones of different frequency and amplitude are combined to create a binaural signal using	g
theUtil_CreateBinaural	0
14.10. Three pure tones with two of different frequency have been joined using the Util_CreateJoined utility	y.
272	
14.11. The "Result" panels show a binaural signal that has had an ITD introduced using	3
14.12. The response of a gamma tone filter after it has been processed using Util Delay in the linear mode	<u>.</u>
The legend shows the delay value for each channel.	4
14.13 A pure tone processed using the Util HalfWaveRectify utility 27	6
14.14 The autocorrelation of the above IRN stimulus showing a pitch percent 200 Hz (5 ms lag) With	h
IP. The autocorrelation of the above first summary, showing a price percept 200 fiz (5 ms hag). (7)	Q
14.15. Two pure tones with different frequencies have been added using the Util MathOn process 270	0
14.16. A pure tone has been squared using the Util MethOp process.	ر ۱
14.10. A pure tone hadded using the Util DedSignal process.	0 2
14.12. ACE input to the Util Deduce Channels process module	∠ ∧
14.10. Act input to the Out_ReduceChannels process module	+ 5
14.19. Keduce channels output for above ACF input	3
14.20. Output from a Meddis 80 IHC, adjusted for refractory effects using the Util_RefractoryAdjust utility	y
280 module	ð
14.21. This is a pure tone after processing by the 'Util_Sample' utility module. Note the uneven curve o	nt .
the sinusoid due to missing intermediary points	0

14.22. This shows the output from a 10 channel gammatone filter bank with alternate channels removed
using Util_SelectChannels
14.23. This routine shows a pulse train stimulus processed using Util_ShapePulse. The process is repeated
twice: once with the module accumulating the results, then once with the module process being reset just
before each time it is called. The two runs are output to the files 'output1.dat' and 'output2.dat' respectively.
293
14.24. Output using the Util_SimScript utility module
14.25. A step function stimulus, transformed using Util_Standardise
14.26. The stimulus and the strobe process response in user mode
14.27. The stimulus and the strobe process response in threshold mode (Strobe criteria 1 under the old AIM
system)
14.28. The stimulus and the strobe process response in peak mode (Strobe criteria 2 under the old AIM
system)
14.29. The stimulus and the strobe process response in peak_shadow- mode (Strobe criteria 3 under the old
AIM system)
14.30. The stimulus and the strobe process response in peak_shadow+ mode (Strobe criteria 4 under the old
AIM system)
14.31. The stimulus and the strobe process response in peak_shadow+ mode, with the time-out set to a
non-zero value (Strobe criteria 5 under the old AIM system)
14.32. A binaural signal before (top panel) and after (bottom panel) applying the Util_SwapLR process.
306

List of Tables

1.1. Standard units in DSAM
1.2. Module naming conventions
2.1. Centre Frequency (CF) Modes for the basilar membrane filter modules (part 1) 10
2.2. Centre Frequency (CF) Modes for the basilar membrane filter modules (part 2) 10
2.3. Bandwidth Modes for the BM Filter Modules 12
3.1. Ana_ACF 'mode' options
3.2. Ana_ACF 't_const_mode' options 23
3.3. Ana_Averages 'Mode' options 27
3.4. Ana_FindBin 'mode' options
3.5. Ana_FindNextIndex 'mode' options 33
3.6. Ana_FourierT 'output' mode options 34
3.7. Ana_Histogram Detection Mode Option 37
3.8. Ana_Histogram Output Mode Options 37
3.9. Ana_Histogram Histogram Type Options
3.10. Ana_SAI Diagnostics Mode Options 43
3.11. Ana_SAI Integration Mode Options 44
4.1. AN_SG_Carney 'input_mode' options 59
5.1. BM_Cooke 'output_mode' options
5.2. BM_DRNL_Test compression modes
7.1. Filt_FIR: Diagnostic mode options 124
7.2. Filt_FIR: Type mode options 124
8.1. Supported File Formats
12.1. Stim_ExpGatedTone: 't_mode' options 218
12.2. Stim_ExpGatedTone: 'floor_mode' options 218
12.3. Stim_Harmonic: 'Phase_mode' options 221
13.1. Trans_Gate: Position mode options
13.2. Trans_Gate: Op_Mode options
13.3. Trans_Gate: Type_mode options 250
14.1. Util_BinSignal: Mode options
14.2. Util_Compression: Mode options
14.3. Util_Delay: Mode options
14.4. Util_IteratedRipple: Mode options
14.5. Util_MathOp: Operator options
14.6. Util_ReduceChannels: Mode options
14.7. Util_SelectChans: Mode options
14.8. Util_SelectChans: Selection Mode options 291
14.9. Util_Strobe: Strobe modes
14.10. Util_Strobe: Diagnostics mode options

List of Examples

2.1. BM_GammaT Single Channel A parameter file for a single filter at 1 kHz.	9
2.2. BM_GammaT Mulitple ChannelsA parameter file for a filter-bank with 20 filters ranging from 80-	4500
Hz, equally spaced on a logarithmic scale.	9
3.1. Ana_ACF Parameter File	. 22
3.2. Ana_ALSR parameter file	. 25
3.3. Ana_Averages parameter file	27
3.4. Ana_Convolution parameter file	28
3.5. Ana_CCF parameter file	30
3.6. Ana_FindBin parameter file	32
3.7. Ana_FindNextIndex parameter file	33
3.8. Ana_FourierT parameter file	. 34
3.9. Ana_Histogram parameter file	37
3.10. Ana_Intensity parameter file	. 40
3.11. Ana_ISIH parameter file	41
3.12. Ana SAI parameter file	. 43
3.13. Ana SpikeRegularity parameter file	. 54
4.1. AN SG Binomial Parameter File	57
4.2. AN SG Carney Parameter File	. 59
4.3. AN SG Simple Parameter File	60
5.1. BM Carney Parameter File	. 64
5.2. BM Cooke Parameter File	. 77
5.3. BM DRNL Parameter File	84
5.4. BM DRNL Parameter File	
5.5 BM GammaT Parameter File	101
5.6 BM Zhang Parameter File	108
61 Display Signal Parameter File	119
7.1 Filt Bandnass Parameter File	122
7.2 Filt FIR Parameter File	124
7.3. Filt_MultiBPass Parameter File	126
7.4. Filt LowPass Parameter File	128
8.1. DataFile In/Out Parameter File	131
91 IHC Carney Parameter File	136
9.2 IHC Cooke91 Parameter File	145
9.3 IHC_eookey11 addited 1 he	150
9.4 IHC Meddis86a Parameter File	157
9.5 IHC Meddis2000 Parameter File	166
9.6 IHC Zhang Parameter File	174
9.7 HCRP Carney Parameter File	181
9.8 HCRP Meddis Parameter File	186
9.0 HCRP Shamma Parameter File	190
0.10 IHCRP Shamma State ValIn Parameter File	190
0.11 HCRD Shamma Darameter File	108
10.1 Naur ArlaKim Daramatar File	202
10.1. Netti_Affektini Falantetei File	202
10.2. AutoTest/NC/AKBushyN.sim: Super-polarizing Injected current	202
10.5. AutoTest/NC/AKBusilyN.sini. Tryper-polarizing Injected current	203
10.4. AutoTest/NC/AKFusiformN sim: Huner polarizing Injected current	203
10.5. AutoTest/NC/AKFushonnin.shin. Hyper-polarizing Injected current	204
10.0. AutoTest/NC/AKStellateN sim: Hyper polarizing Injected current	203 205
10.7. AutoTest/NC/AKStenatein.sini. ryper-polariZing injected current	203 204
10.0 AutoTest/NC/AKDUSIIy1.SIII	200
10.9. AutoTest/NC/AKFusilorm1.sim	207
10.11. Nour IULuvlav Deremeter Eile	207
10.11. Neur_HHUXley Parameter File	209
10.12. Ineur_INICGregor Parameter File	212
10.13. Autorest/NC/MGStellateP.sim: Super-polarizing Injected current	212
10.14. Auto1est/NC/MGStellateN.sim: Hyper-polarizing Injected current	. 212

Preface

The purpose of this document is to provide the information necessary for writing auditory simulations using the Development System for Auditory Modelling (DSAM). An overview of the units used in DSAM is first described. Users who are wishing to learn how to use the simulation script interface used by DSAM Applications such as AMS can initially go directly to the section on using simulations. This will provide a basic understanding of what is possible using DSAM. The following chapters provide the finer details of auditory simulation using DSAM.

Part I. General Concepts for the Core Routines Library Introduction

The routines in DSAM are grouped in the respective process module types and the modules are listed in alphabetical order - with respect to the module file names (?? change this to module names). The units and naming conventions used in DSAM are described below.

Table of Contents

1. Basic Concepts	3
Units	3
Module Naming	3
2. Process Modules	4
Setting Process Parameters	4
Getting Results From Process Modules	4
Accumulating Data with Process Modules	4
Using simulation scripts	4
Introduction to Simulation Scripts	4
Overview	4
Process lines	5
Looping using 'Repeat'	5
Reseting processes and Labels	6
Nested Simulation Scripts	6
Complex Connections in Simulation Scripts	7
Using the Basilar Membrane Filter Modules	8
Introduction	8
Centre Frequency modes	9
Bandwidth modes 1	12
Using Parameter Arrays 1	12
Using the Segment-processing Mode 1	12
Using the Display Module 1	13

Chapter 1. Basic Concepts Units

The following standard units are used in DSAM:

Table 1.1. Standard units in DSAM

Quantity	Unit	Abbreviation
Amplitude	micro-Pascals	uPa
Frequency:	hertz	Hz.
Intensity:	decibels SPL	dB SPL ^a
Time:	seconds	s. ^b

^aSound pressure level reference standard.

^b The time units printed to the screen by the test programs have been converted from the internal, seconds units to milli-seconds (ms) to make the numbers more readable.

Module Naming

Each process module has a name by which it is accessed using simulation scripts or generic programming. Table 2 shows *process module prefix* that classifies the process modules. A list of all the process module names, and a brief description, is given below. Users who are not programming using DSAM may ignore the file-name prefix column in the table.

Group Name	Module Prefix	File name
		Prefix
Analysis	Ana_	An
Filing Utilities	-	Fi
Filters	Filt_	Fl
General	-	Ge
Models: Auditory nerve spike generation	AN_SG_	MoANSG
Models: Basilar membrane	BM_	MoBM
Models: Inner hair cell	IHC_	MoHCRP
Models: Inner hair cell receptor potential	IHCRP_	MoIHC
Models: Neuron	Neur_	MoNC
Transform	Trans_	Tr
Stimuli	Stim_	St
Utilities	Util_	Ut

Table 1.2. Module naming conventions

Chapter 2. Process Modules

Setting Process Parameters

There are a variety of methods for setting the parameters of process modules in DSAM. These methods are described in detail in the section called "Using simulation scripts", and only a brief overview is given here.

Using DSAM applications parameters can be set from parameter files, from dialog windows or from the command line. All of the process modules have default parameter values (with the exception of Filt_FIR and Util_SimScript). This means that only the parameters to be changed from the default values need to be explicitly set by the user.

Each process module parameter has a name/abbreviation by which it is referred. The parameters available for each process module are detailed in the section. Here each process module is described, and an example parameter file is given listing each parameter and giving the default values. Tables are also provided for process parameters that have different options.

Getting Results From Process Modules

Most modules transform input signals into output signals ready for further processing. However, some modules, such as the Ana_Intensity module, generate a result that is put into their *EarObject* output signal. When this happens the result (computed separately for each channel) is placed in the first sample of the channel although, rarely, more samples may be used. The advantage of this approach is that common memory allocation routines are used for all modules.

Accumulating Data with Process Modules

Some of the process modules, such as the ?? link Ana_Histogram module, are designed to accumulate data. When used within a loop, the results of their operation are added to the results of previous passes through the loop and accumulated in the process-*EarObjects* output signal. It is therefore necessary to ensure that the process *EarObject's* output signal is set to zero, or *reset* before the beginning of the loop: using the ResetProcess_EarObject routine, or the *reset* command within simulation scripts. Process modules that accumulate data are automatically set to zero at the beginning of runs. This means that if such a module is used outside of a loop, then it need not be explicitly reset.

Using simulation scripts

Introduction to Simulation Scripts

Presently, the *simulation script* is the easiest method of producing a simulation. A single line defines each process in the simulation. It is also possible to use loops. Different simulations, describing different models, can be run using the same main driving program code. For example, program code for calculating frequency threshold tuning curves - see the filter shape test routine in the 'AutoTest.c' test program is used for any model simply by changing the *simulation script*. It doesn't matter whether it is the Carney ([5]) or the Meddis and Hewitt ([22]) auditory nerve models, a linear or non-linear basilar membrane model, and so on. This allows a great deal of flexibility, and the opportunity to re-use code.

Overview

Simulation scripts are used with the 'Util_SimScript' utility module (see the section called "Util_SimScript: Simulation Script Interface"). The simulation script is one of the parameters for the module, and is defined by a series of process lines surrounded by 'begin {...}', e.g.

begin {

```
}
```

Any text after the last curly bracket, '{' is ignored. Blank lines in a simulation script are ignored, and can thus be inserted to ensure the specification is as readable as possible.

The indentation scheme employed in the examples given is purely cosmetic. However, the use of indentation enhances the clarity of the script.

The simulation script can contain comment lines. Any text after a hash, '#' character is ignored (until the end of the line is reached). Comments cannot follow onto the next line, so the only way to have comments on successive lines is to begin each comment line with a hash, '#' character. See the simulation script below for examples of comments.

A simple simulation may be described as a process *pipeline*. The process pipeline is first set up, then each of the process modules is initialised by it respective parameter file. With repeated runs, the initialisation of the process module parameters is only carried out once, on the first run.

Process lines

A single line describes each process in the simulation script, e.g.

Figure 2.1. Simple Example

```
# A simple simulation script
begin {
   Stim_PureTone < PTonel.par # Stimulus module
   Ana_ModulusFT
}</pre>
```

The example simulation script above generates a pure tone, which is then Fourier transformed. Each process line contains the module name, followed by the respective file name from which the module's parameters are to be read. These two elements of the process line are separated by the less-than, '<' character-indicating the direction of parameter 'flow' (from the .par file into the module). Modules, which do not have any parameters, need not have the less-than, '<' character or the parameter file name, as shown by the second line in the simulation script example.

Looping using 'Repeat'

There are occasions when it is necessary to repeat a particular section of a simulation. This can be done using the *repeat* loop instruction, enclosing everything to be repeated in curly brackets.

Figure 2.2. Repeat Example

```
# A simple simulation script
begin {
  Stim_PureTone
                    < PTonel.par
                                    # Stimulus module
  Filt BandPass
                    < PreEmph1.par
  BM GammaT
                   < GammaTlk.par
  IHC Meddis86
                    < Meddis96.par
  repeat 60 {
     AN_SG_Simple
                    < SpikeGen1.par
     Ana_Histogram < PSTHHist1.par
   }
}
```

Note that the number of required repeats is inserted after the word, 'repeat', but before the opening curly bracket, '{'.

Reseting processes and Labels

The simulation script example shown in Figure 2.2, "Repeat Example" will work, as long as it is only run once. However, the 'Ana_Histogram' module continues to accumulate data on successive runs, because it is not being reset at any point. The histogram process can be reset, (outside of the loop) using the 'reset' command and by assigning the process line a label. An example of this is given in Figure 2.3, "Reset Example".

Figure 2.3. Reset Example

```
# A simple simulation script
begin {
                                     # Stimulus module
  Stim_PureTone
                      < PTonel.par
  Filt_BandPass
                      < PreEmph1.par
  BM_GammaT
                     < GammaTlk.par
   IHC_Meddis86
                     < Meddis96.par
  reset hi
  repeat 60 {
     AN_SG_Simple
                      < SpikeGen1.par
  hi% Ana_Histogram < PSTHHist1.par
   }
}
```

Nested Simulation Scripts

Simulation scripts can be nested-you can use the 'Util_SimScript' module within a simulation script. An example of this is given in Figure 2.4, "Nested Simulation Script".

Figure 2.4. Nested Simulation Script

```
# A simple simulation script
begin {
    Util_SimSpec < ANModel.sim
    repeat 60 {
        Util_SimSpec < BushyCell.sim
    }
}</pre>
```

Complex Connections in Simulation Scripts

It is possible to create simulation scripts in which the connectivity between the process modules is more complicated than a simple pipeline. In the pipeline form described above the output of a process is used as the input of the next process in the line. The diagram in Figure 2.5, "Simple 'pipeline' simulation schematic" represents the simple 'pipeline' simulation in the simulation script shown in Figure 2.2, "Repeat Example". The processes within the dotted line box are those within the 'repeat' loop, as described above in section the section called "Looping using 'Repeat'"

Figure 2.5. Simple 'pipeline' simulation schematic

Some process modules, such as the 'Util_CreatreBinaural' utility, 'Neur_HHuxley' neural cell or 'Ana_SAI' stabilised auditory image can accept inputs from more than one input process. For instance, the 'Neur_HHuxley' process module can accept excitatory, inhibitory and shunt-inhibitory process inputs. It can therefore be connected to three different inputs. A simpler example to consider is the 'Util_CreateBinaural' process module, which requires two inputs from which it creates a binaural output. A schematic showing its use is given below in Figure 2.6, "Schematic of directed connections in a simulation using 'Util_CreateBinaural'".

Figure 2.6. Schematic of directed connections in a simulation using 'Util_CreateBinaural'

Creating a script for such a simulation cannot use the simple pipeline assumption of a process accepting inputs from the previous process because the 'Util_CreateBinaural' process module requires two inputs. In this case the inputs to the 'Util_CreateBinaural' process must be specified explicitly. To direct the outputs for a process the following convention must be used:

label% <process_name> ([<input label list>]->[<output label list>]) ...

The *label* is case insensitive and must be present whenever the inputs or outputs for a process are specified. The *process name* is also case insensitive and should correspond to one of the library (or user) process modules. The *input and output label lists* are comma-separated label lists of other processes supplying input to or expecting output from the process. If either the input or output lists are omitted, then the default pipeline connection will be made, if possible.

The simulation script that corresponds to the schematic shown in Figure 2.6, "Schematic of directed connections in a simulation using 'Util_CreateBinaural'" is given below in Figure 2.7, "Simulation script showing directed connections using 'Util_CreateBinaural'"

Figure 2.7. Simulation script showing directed connections using 'Util_CreateBinaural'

```
# A simple simulation script
begin {
   sl% Stim_PureTone (->cb) < PTone2.par
   s2% Stim_WhiteNoise (->cb) < WNoise1.par
   cb% Util_CreateBinaural (s1,s2->)
        Display_Signal
}
```

Please note that the formalism provided above for making connections between processes can be very unwieldy. However, it is general and allows complex and useful interconnection patterns.

In the future it is expected that such simulations will be designed using a graphical user interface simulation design feature that has yet to be implemented. The connection formalism provides a method by which graphically designed complex simulations can be described using simulation scripts.

Using the Basilar Membrane Filter Modules Introduction

The decomposition of stimuli into different frequency channels is an important stage in auditory processing. It is generally visualised as occurring at the basilar membrane. Accordingly the modules that simulate this processing stage are called the basilar membrane filter modules . Within the DSAM library, these modules are distinctive because it is at this point that the number of channels representing a signal can be increased.

There are several different basilar membrane filter models implemented in the DSAM library, ranging from the simple gamma-tone filterbank to the more complex composite models, made up of multiple-filter components. There are two important requirements that are common to all of the basilar membrane filter modules, even though each particular model has its own specific parameters. The first of these is the centre frequency for each filter of the model producing an output channel. The second is the respective bandwidth at each centre frequency. The DSAM library provides a simple interface that is used by all of the basilar membrane modules to control these two

requirements. This interface can be accessed from the basilar membrane module parameter files. This mode of use is described below, and example parameter files are given below.

Example 2.1. BM_GammaT Single Channel A parameter file for a single filter at 1 kHz.

CASCADE	4	Filter cascade.
#CF List Param	eters:-	
DIAG_MODE	LIST	Diagnostic mode ('list' or 'parameters').
CF_MODE	SINGLE	Centre frequency mode ('single', 'ERB', 'ERB_n', 'log', 'linear',
		'focal_log', 'user', 'human', 'cat', 'chinchilla', 'guinea-pig' or
		'macaque').
SINGLE_CF	1000	Centre Frequency (Hz).
B_MODE	ERB	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig', 'user' or
		'Nonlinear').

Example 2.2. BM_GammaT Mulitple ChannelsA parameter file for a filter-bank with 20 filters ranging from 80-4500 Hz, equally spaced on a logarithmic scale.

CASCADE	4	Filter cascade.	
#CF List Param	eters:-		
DIAG_MODE	LIST	Diagnostic mode ('list' or 'parameters').	
CF_MODE	LOG	Centre frequency mode ('single', 'ERB', 'ERB_n', 'log', 'linear',	
		'focal_log', 'user', 'human', 'cat', 'chinchilla', 'guinea-pig' or	
		'macaque').	
MIN_CF	80	Minimum centre frequency (Hz).	
MAX_CF	4500	Maximum centre frequency (Hz).	
CHANNELS	20	No. of centre frequencies.	
B_MODE	ERB	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig', 'user' or	
		'Nonlinear').	

Both parameter files specify the equivalent rectangular bandwidth (ERB) bandwidth mode.

Centre Frequency modes

There are several centre frequency modes available, and the mode chosen defines how many parameters can be set in the parameter file. The centre frequency mode is specified by the 'CF_MODE' parameter, as shown in Example 2.1, "BM_GammaT Single Channel A parameter file for a single filter at 1 kHz." and Example 2.2, "BM_GammaT Mulitple ChannelsA parameter file for a filter-bank with 20 filters ranging from 80-4500 Hz, equally spaced on a logarithmic scale.". In the case of Example 2.1, "BM_GammaT Single Channel A parameter file for a single filter at 1 kHz." where the 'SINGLE' mode is used, only one parameter is required, i.e. the centre frequency (CF). In Example 2.2, "BM_GammaT Mulitple ChannelsA parameter file for a filter-bank with 20 filters ranging from 80-4500 Hz, equally spaced on a logarithmic scale." the 'LOG' centre frequency mode is used, which will produce a filter-bank with a range of centre frequencies equally spaced on a logarithmic scale. It requires three parameters i.e. the initial and final centre frequencies and the number of filter channels required for the filter-bank. These values are specified by the 'MIN_CF', 'MAX_CF' and 'CHANNELS' parameters respectively.

The centre frequency mode can be specified in upper or lower case, thus 'Single', 'single' and 'SINGLE' are equivalent. The order of the parameters after the mode parameters ('CF_MODE' or 'BW_MODE') is not important, however the mode should be specified first. As with all parameter files, only the parameter name and value is significant. The remaining text on a line is ignored, and can be used to supply descriptive comments. White space must separate the parameter name, value and any additional text.

The available frequency modes are given in Table 2.1, "Centre Frequency (CF) Modes for the basilar membrane filter modules (part 1)." and Table 2.1, "Centre Frequency (CF) Modes for the basilar membrane filter modules (part 1).". Programmers should note that the 'UtCFList' utility module controls the centre frequencies.

Table 2.1. Centre Frequency (CF) Modes for the basilar membrane filter modules (part 1).

Mode	Description	Required Parameters
Cat	Filter-bank with centre frequencies equally spaced using the Greenwood function (see the section called "The Greenwood CF Spacing Function").	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i>, Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
Chinchilla	Filter-bank with centre frequencies equally spaced using the Greenwood function (see the section called "The Greenwood CF Spacing Function").	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i>, Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
ERB	Filter-bank with centre frequencies equally spaced on an equivalent rectangular bandwidth (ERB) scale (Glasberg & Moore, 1990).	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>ERB_DENSITY</i>, ERB rate (Hz).
ERBN	Filter-bank with centre frequencies equally spaced on an equivalent rectangular bandwidth (ERB) scale (Glasberg & Moore, 1990). This mode allows the user to specify the number of channels directly.	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
Guinea_Pig	Filter-bank with centre frequencies set using the Greenwood function (see the section called "The Greenwood CF Spacing Function").	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
Human	Filter-bank with centre frequencies equally spaced using the Greenwood function (see the section called "The Greenwood CF Spacing Function").	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).

Table 2.2. Centre Frequency (CF) Modes for the basilar membrane filter modules (part2).

Linear	Filter-bank with centre frequencies equally spaced on a linear scale.	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
LOG	Filter-bank with centre frequencies equally spaced on a logarithmic scale.	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
Macaque	(Monkey) Filter-bank with centre frequencies set using the Greenwood function (see the section called "The Greenwood CF Spacing Function").	 <i>MIN_CF</i>, Initial filter-bank CF (Hz). <i>MAX_CF</i> Final filter-bank CF (Hz). <i>CHANNELS</i>, Number of filter-bank output channels (integer).
Single	Single filter mode	SINGLE_CF, Centre frequency (Hz).
User	Filter-bank with a custom centre frequency list, as specified by the user.	 <i>CHANNELS</i>, Number of filter-bank output channels (integer). <i>CENTRE_FREQ</i>, 0:<cf1 hz=""></cf1> <i>CENTRE_FREQ</i>, 1:<cf1 hz=""></cf1> <i>CENTRE_FREQ</i>, 2:<cf1 hz=""></cf1> <i>CENTRE_FREQ</i>, n:<cf1 hz=""></cf1> -where 'n' is the number of channels specified by 'CHANNELS' less one.

The routines in the UtCFList utility module can also be used to produce frequency lists that can be used for purposes other than creating a filter-bank. For example, the routines are used for specifying the frequencies at which the output characteristics of a single filter are investigated in the filter tests in the AutoTest.c test program.

The Greenwood CF Spacing Function

The Greenwood function [9] allows the definition of filter centre frequencies that match data collected across a variety of species:

$$CF = A(10^{ax}-k)$$

Where A scales the value to give frequency in Hz. This value is varied between species to give the upper frequency limit of each species. Parameter, a is constant across all species tested. The parameter x is measured as a proportion of total basilar membrane length. It is measured in mm from the apical end, the value of a must be scaled by the total length of the species' basilar membrane). Parameter k determines the size of the divergence from log-linear, and also the lower frequency limit. The table below shows the parameters used for the respective modes in DSAM.

Species	Α	k	<i>a</i>	
Human	165.4	0.88	2.1	
Cat	456	0.8	2.1	
Chinchilla	163.5	0.85	2.1	
Guinea Pig	350	0.85	2.1	
Macaque Monkey	360	0.85	2.1	

Bandwidth modes

The bandwidth mode defines the bandwidth of each filter. It is implemented in the same way as the centre frequency mode, so any readers who require more detail concerning the implementation should familiarise themselves with the description given above for the centre frequency modes.

The available bandwidth modes are given below in Table 2.3, "Bandwidth Modes for the BM Filter Modules.". The 'UtBandwidth' utility module controls the bandwidths.

Mode	Description	Required Parameters
ERB	Equivalent rectangular bandwidth	s None.
	(Glasberg & Moore, 1990).	
CUSTOM_ERB	Equivalent rectangular bandwidth	s 'BW_MIN', the minimum bandwidth (Hz).
	(Glasberg & Moore, 1990).	
	-	'QUALITY', the absolute quality factor for the
	ERB = BwMin + 1/Quality * CF	filters.
CAT	Bandwidth formula fitted from	None.
	experimental data (Kiang et al.,	
	1965).	
GUINEA_PIG	Bandwidth formula fitted from	None.
	unpublished data from Alan	
	Palmer (Nottingham).	
USER	Custom bandwidths specified by	Bandwidth list - one line for each bandwidth (Hz).
	the user.	The number of lines must correspond with the
		number of filter-bank output channels specified for
		the CF mode.
INTERNAL	The respective basilar membrane	None.
	module defines bandwidths.	

Table 2.3. Bandwidth Modes for the BM Filter Modules.

The bandwidths, except for 'USER' mode, are produce by a formula that relates the bandwidth to the filter centre frequency. It is therefore possible to add other bandwidth modes as required.

Using Parameter Arrays

It is sometimes necessary within a process module to define a series of values based upon a parametric function. This is done using the *Parameter Array* parameter input facility.

An example of this facility in use is in the 'BM_DRNL' process module, where some of the parameters are defined as a function of the centre frequency. In each case, the parameter is defined by providing a function name, followed by a number of additional parameters as required by the function. This information is then used within the 'BM_DRNL' process module, for example, to calculate the value of the non-linear bandwidth for each centre frequency.

Using the Segment-processing Mode

The *segment-processing* mode was introduced primarily by the request of users who need to process long signals. For example, people in the speech recognition field need to work with signal duration measured in seconds rather than milli-seconds. For this reason the segment-processing mode allows the processing of small or continuous signals in smaller segments. For instance:

- a two second signal can be processed in ten segments, two hundred milli-seconds long, avoiding the need for the use of virtual memory because of memory restrictions;
- Signals from a peripheral device running continuously can be processed in batches or *segments*.

All DSAM modules are configured so that they can operate continuously in segment-processing mode, with repeated calls. Any tables or *process variables* that the module requires will be created for the first run, thereafter these are kept up to date on subsequent calls to the routine. The nature of some of the stimulus routines governs how they interpret the segmented mode of processing:

- In segmented mode the click, step function and puretone_2 stimulus generation modules will produce a signal which repeats, i.e. the puretone_2 stimulus (a pure tone burst surrounded by silence) will repeat with 'silence' intervals defined by the pre- and post stimulus 'silence' periods. (Examples of the segmented mode processing behaviour are displayed in the respective module sections below). The other stimuli have a continuous response.
- Reading from files will be done in segments until the end of the file is reached.
- In segmented mode output will be added to the end of current files
- Module behaviour, as previously mentioned, is continuous under segmented mode. This means that the modules do not reset after each segment is processed, unless they are re-initialised or there is a change in the parameters in segment-processing mode module processes need to be reset explicitly (see section the section called "Reseting processes and Labels").

. Some interesting animation effects can be achieved when the segment-processing mode is used in conjunction with the display module.

Using the Display Module

There is a simple graphical display interface available for use with the DSAM library. It was written using the public domain *wxWidgets* cross-platform GUI library. Once the library has been compiled with GUI support the *Display_Signal* module can be accessed when using *simulation scripts* with DSAM applications, or when using *generic* or *hard programming*.

The GUI support must be compiled using C++ and the wxWidgets library. The wxWidgets library can be used under X-windows (GTK, MOTIF or native X11), PC Windows (95, 98, NT, 2000 and XP) and there is also a Mac OS X version. See the URL www.wxWidgets.org [http://www.wxwidgets.org] for further information about wxWidgets. See the INSTALL file for information on installing DSAM with graphical support. Programs that use the display module can also be compiled using a DSAM library that does not have the graphics support included. In such a case the display module will be ignored.

See the section called "Display_Signal: Standard Signal Display" for further information on the use of the display module, and pointers to the test programs

Part II. Process Modules Reference Introduction

Each module, file and each file's routines are listed in this reference chapter. The ordering is alphabetic: by module name. The module routine names describe the routines' function though additional explanations are provided where necessary.

Each process module has an illustrated example of its use, where appropriate. A simulation script is provided. The outputs shown for many of the illustrations can be produced using the AMS application. All the simulation scripts can be find in the 'AutoTest' package available from the DSAM download page [http://www.essex.ac.uk/psychology/hearinglab/dsam/dloads_main.htm]. Some of the more complex figures, such as the tuning curves require repeated runs of the simulation script, and were produced using the 'AutoTest' program. The simulation scripts for all of the process module tests can be found in the 'AutoTest' package. The AutoTest package is an application designed to run tests on each process module. In general the test paradigms check the correct operation of the module, but in the case of the Models group tests have been designed to reproduce known results, most of which have been published. Thus investigations by users can begin from a known position.

Table of Contents

3. Analysis		22
	Ana ACF: Auto-correlation Function	22
	Description	22
	Module Parameters	$\frac{-}{22}$
	Examples Using the 'Ana ACF' Process Module	23
	Ana ALSR: Averaged Localised Synchronised Rate	24
	Description	24
	Module Parameters	25
	Examples Using the 'Ana ALSR' Process Module	25
	Ana Averages Channel Averaging	27
	Description	27
	Module Parameters	27
	Examples Using the 'Ana Averages' Process Module	27
	Ana Convolution :	21
		20
	Medula Description	20
	For the Heiner de Marco Constant de la Presente Martine	28
	Examples Using the Ana_Convolution Process Module	28
	Ana_CCF : Cross-correlation Function	29
	Description	29
	Module Parameters	30
	Examples Using the 'Ana_CCF' Process Module	30
	Ana_FindBin: Bin searching Analysis	31
	Description	31
	Module Parameters	32
	Examples Using the 'Ana_FindBin' Process Module	32
	Ana_FindNextIndex: Sample index Analysis	32
	Description	32
	Module Parameters	33
	Examples Using the 'Ana_ACF' Process Module	33
	Ana_FourierT: Fourier Analysis Function	34
	Description	34
	Module Parameters	34
	Examples Using the 'Ana_FourierT' Process Module	35
	Ana_Histogram: Histogram analysis function	36
	Description	36
	Module Parameters	37
	Examples Using the 'Ana Histogram' Process Module	37
	Ana Intensity: RMS Intensity Analysis Function	39
	Description	40
	Module Parameters	40
	Examples Using the 'Ana Intensity' Process Module	40
	Ana ISIH: Inter-spike Interval Histogram	41
	Description	41
	Module Parameters	41
	Examples Using the 'Ana ISIH' Process Module	41
	Ana SAI: Stabilised Auditory Image function	42
	Description	42
	Module Parameters	$\frac{12}{43}$
	Examples Using the 'Ana ACE' Process Module	44
	Ana SnikaPagularity: Snika Pagularity Analysis Function	53
	Description	55
	Madula Daramatara	55
	Examples Using the 'Ang SpikeDeculerity' Drosess Medule	54 51
	Ana SynchIndoy: Synchronisation Indoy	54 55
	Ana_synchinatex. Synchionisation matex	55 55
	Madula Daramatara	55
	Module rarallelets	20
	Examples Using the 'Ana_SynchIndex' Process Module	56
--------------	---	----
4. AN		57
	AN_SG_Binomial: Auditory Nerve Binomial Approximation	57
	Description	57
	Module Parameters	57
	Examples Using the 'AN SG Binomial' Process Module	57
	AN SG Carney: Auditory Nerve Spike Generation (1993)	58
	Description	58
	Module Parameters	50
	Examples Using the 'AN SC Corney' Process Module	50
	AN SC Simple Auditory Nerve Simple Spike Constant	59
	AN_SG_Simple: Auditory Nerve Simple Spike Generation	60
		60
	Module Parameters	60
	Examples Using the 'AN_SG_Simple' Process Module	61
5. BM		64
	BM_Carney: Non-linear BM (1993)	64
	Description	64
	Module Parameters	64
	Examples Using the 'BM Carney' Process Module	64
	BM Cooke: Linear BM (1991)	76
	Description	76
	Module Parameters	76
	Examples Using the 'BM Cooke' Process Module	77
	RM DDNI · Non linear RM (1005)	83
	DIVI_DRIVL. NOII-IIIIeal DIVI (1993)	03
	Med 1 Description	04
	Module Parameters	84
	Examples Using the 'BM_DRNL' Process Module	85
	BM_DRNL_Test: Test version of DRNL model	95
	Description	95
	Module Parameters	96
	Examples Using the 'BM_DRNL' Process Module	96
	BM_GammaT: Linear BM 1	00
	Description 1	00
	Module Parameters 1	01
	BM Zhang: Non-linear BM (1993) 1	07
	Description 1	08
	Module Parameters 1	08
	Examples Using the 'BM Zhang' Process Module	08
6 Displays	Examples Using the DM_Zhang Trocess Module	10
0. Displays	Dienley, Genel Standard Signal Dienley, 1	10
	Display_Signal. Standard Signal Display	10
		19
	Module Parameters	19
	Examples Using the 'Display_Signal' Process Module	19
7. Filters .		22
	Filt_BandPass: Band pass filter process 1	22
	Description 1	22
	Module Parameters 1	22
	Examples Using the 'Filt_Bandpass' Process Module 1	22
	Filt_FIR: Finite Impulse Response filter. 1	23
	Description 1	23
	Module Parameters 1	23
	Examples Using the 'Filt_FIR' Process Module 1	24
	Filt MultiBPass: Multiple hand pass filter	25
	Description 1	25
	Modula Daramatara	25
	IVIOUUIE FAIAIIIEEIS	20
	Examples Using the FIL_WITHBPASS Process Wodule	20
	riit_LowPass: Low pass filter process	21
	Description 1	27

Module Parameters	128
Examples Using the 'Filt_LowPass' Process Module	128
8. IO	131
DataFile In/DataFile Out: Sound File Format Support	. 131
Description	131
Module Parameters	131
Examples Using the 'DataFilt In/Out' Process Module	132
0 Transduction	132
J. Italisuucuoli	126
Inc_Carney: Inner Han Cen Synapse (1995)	130
Description	130
Module Parameters	136
Examples Using the 'IHC_Carney' Process Module	136
IHC_Cooke91: Inner Hair Cell (1991)	. 145
Description	145
Module Parameters	145
Examples Using the 'IHC_Cooke91' Process Module	145
IHC_Meddis86: Inner Hair Cell (1986)	. 150
Description	150
Module Parameters	150
Examples Using the 'IHC Meddis86' Process Module	151
IHC Meddis86a: Inner Hair Cell Synanse	156
Description	156
Modula Deremeters	150
Examples Using the PHIC Model: 966? Process Module	157
Examples Using the IHC_Meddis86a Process Module	. 15/
IHC_Meddis2000: Inner Hair Cell Synapse	164
Description	164
Module Parameters	166
Examples Using the 'IHC_Meddis2000' Process Module	166
IHC_Zhang: Inner Hair Cell Synapse (2001)	. 173
Description	173
Module Parameters	174
Examples Using the 'IHC Zhang' Process Module	. 174
IHCRP Carney: Inner Hair Cell Receptor Potential (1993)	181
Description	181
Module Parameters	181
Examples Using the 'IHCRP Carney' Process Module	182
IUCPD Moddis: Inner Hoir Call Pagenter Detential	186
Description	100
Me 1 h Desenveter	100
Module Parameters	186
Examples Using the 'IHCRP_Meddis' Process Module	187
IHCRP_Shamma: Inner Hair Cell Receptor Potential (1986)	. 190
Description	190
Module Parameters	190
Examples Using the 'IHCRP_Shamma' Process Module	191
IHCRP_Shamma3StateVelIn: Inner Hair Cell Receptor Potential (2002)	194
Description	194
Module Parameters	195
Examples Using the 'IHCRP_Shamma3StateVelIn' Process Module	195
IHCRP Zhang: Inner Hair Cell Recentor Potential (2001)	198
Description	198
Module Parameters	108
Examples Using the 'IHCDD Shamme' Drocess Module	100
Examples Using the InCKP_Shamma Process Module	198
10. Incurons	. 202
Neur_ArleKim: Neural Cell Model	202
Description	202
Module Parameters	202
Examples Using the 'Neur_ArleKim' Process Module	202
Neur_HHuxley: Hodkin Huxley Neural Cell Model	. 208

	Description	208
	Module Parameters	209
	Examples Using the 'Neur_ArleKim' Process Module	211
	Neur_McGregor: McGregor Neural Cell Model	211
	Description	211
	Module Parameters	212
	Examples Using the 'Neur McGregor' Process Module	212
11. Misc.		214
	Null: Used to Skip Process stage in Program	214
	Description	214
	Module Parameters	214
12 Stimuli		215
12. Stillion	Stim Click: Click Stimulus Module	215
	Description	215
	Modula Paramatars	215
	Examples Using the 'Stim Click' Process Module	215
	Stim Executed Tenes Executed Tenes Executed Date Tenes Stimulus Module	213
	Sum_Exposited fone: Exponentially Galed Pure fone Sumulus Module	217
	Description	217
	Module Parameters	217
	Examples Using the Stim_ExpGated Ione' Process Module	218
	Stim_Harmonic: Harmonic Stimulus Module	220
	Description	220
	Module Parameters	221
	Examples Using the 'Stim_Harmonic' Process Module	221
	Stim_PulseTrain: Pulse Train Stimulus Module	223
	Description	223
	Module Parameters	223
	Examples Using the 'Stim_Harmonic' Process Module	223
	Stim_PureTone: Pure Tone Stimulus Module	225
	Description	225
	Module Parameters	226
	Examples Using the 'Stim_PureTone' Process Module	226
	Stim PureTone 2: Pure Tone Stimulus with Starting and Ending Periods Module	228
	Description	228
	Module Parameters	228
	Examples Using the 'Stim PureTone 2' Process Module	229
	Stim PureTone AM ¹ Amplitude Modulated Pure Tone Stimulus Module	231
	Description	231
	Module Parameters	231
	Examples Using the 'Stim PureTone AM' Process Module	231
	Stim Pure Tone, Ringural: Ringural Pure Tone Stimulus Module	232
	Description	222
	Module Desemptors	233
	Examples Using the Stim Durations AM? Decases Madula	234 224
	Examples Using the Sum_PureTone_AM Process Module	234
	Stim_Pure Ione_FM: Frequency Modulated Pure Ione Stimulus Module	235
	Description	235
	Module Parameters	235
	Examples Using the 'Stim_PureTone_AM' Process Module	236
	Stim_PureTone_Multi: Multiple Pure Tone Stimulus Module	237
	Description	237
	Module Parameters	237
	Examples Using the 'Stim_PureTone_Multi' Process Module	238
	Stim_PureTone_MultiPulse: Multiple Pure Tone Pulse Stimulus Module	239
	Description	239
	Module Parameters	239
	Examples Using the 'Stim_PureTone_MultiPulse' Process Module	240
	Stim_StepFun: Step function Stimulus Module	241
	Description	241

	Module Parameters	241
	Examples Using the 'Stim_StepFun' Process Module	241
	Stim_WhiteNoise: White Noise Stimulus Module	243
	Description	243
	Module Parameters	244
	Examples Using the 'Stim_WhiteNoise' Process Module	244
13. Transfor	ms	246
	Introduction	246
	Trans CollectSignals: Channel collection Transform Module	246
	Description	246
	Module Parameters	246
	Examples Using the 'Trans CollectSignals' Process Module	246
	Trans Damping Transform Module	247
	Description	247
	Module Parameters	247
	Examples Using the 'Trans Damp' Process Module	247
	Trans Cota: Coting Transform Module	240
	Trans_Gale: Galing Transform Module	249
	Description	249
	Module Parameters	249
	Examples Using the 'Irans_Gate' Process Module	251
	Trans_Ramp: Ramping Transform Module	255
	Description	255
	Module Parameters	256
	Examples Using the 'Trans_Ramp' Process Module	256
	Trans_SetDBSPL: Level transform module	257
	Description	257
	Module Parameters	257
14. Utilities		259
	Util_Accumulate: Accumulate Utility Module	259
	Description	259
	Module Parameters	259
	Examples Using the 'Ana ACF' Process Module	259
	Util AmpMod: Amplitude Modulation Utility Module	260
	Description	260
	Module Parameters	260
	Examples Using the 'Util AmpMod' Process Module	261
	Util BinSignal: Bin Collection Utility Module	261
	Description	261
	Medule Decomptors	201
	Examples Using the 'Uki' Arry Mad' Dragons Madula	202
	Examples Using the Uti_AmpMod Process Module	202
		205
		200
	Module Parameters	265
	Examples Using the 'Util_Compression' Process Module	266
	Util_ConvMonaural: Monaural Conversion Utility Module	268
	Description	268
	Module Parameters	268
	Examples Using the 'Util_ConvMonauralion' Process Module	268
	Util_CreateBinaural: Binaural Output Creation Utility Module	269
	Description	270
	Module Parameters	270
	Examples Using the 'Util_CreateBinaural' Process Module	270
	Util_CreateJoined: Signal Join Utility Module	271
	Description	271
	Module Parameters	271
	Examples Using the 'Util CreateJoined' Process Module	271
	Util Delay: Signal Delay Utility Module	272
	Description	272

Module Parameters	273
Examples Using the 'Util_Delay' Process Module	273
Util_HalfWaveRectify: Half-wave Rectification Utility Module	275
Description	275
Module Parameters	275
Examples Using the 'Util_HalfWaveRectify' Process Module	275
Util IteratedRipple: Iterated Ripple Utility Module	276
Description	276
Module Parameters	277
Examples Using the 'Util IteratedRipple' Process Module	277
Util MathOn: Mathematical Operation Utility Module	278
Description	278
Module Peremeters	278
Examples Using the 'Util MethOn' Process Medule	270
Examples Using the Uti_MathOp Process Module	219
	281
Description	281
Module Parameters	281
Examples Using the 'Util_PadSignal' Process Module	281
Util_Pause: Process Pause Utility Module	282
Description	282
Module Parameters	283
Examples Using the 'Util_Pause' Process Module	283
Util_ReduceChannels: Channel Reduction Utility Module	283
Description	283
Module Parameters	284
Examples Using the 'Util ReduceChannels' Process Module	284
Util ReduceDT: Sampling Interval/Rate Conversion Utility Module	286
Description	286
Module Parameters	286
Examples Using the 'IItil ReduceDT' Process Module	286
Util Refrectory Adjust: Refrectory Adjustment Utility Module	287
Description	207
Madula Deremeters	201
From the Using the 21141 Define term A direct? Decrease Medule	207
Examples Using the Uti_KerractoryAdjust Process Module	200
	289
Description	289
Module Parameters	289
Examples Using the 'Util_Sample' Process Module	289
Util_SelectChannels: Channel Selection Utility Module	290
Description	290
Module Parameters	291
Examples Using the 'Util_SelectChannels' Process Module	291
Util_ShapePulse: Pulse Shaping Utility Module	292
Description	293
Module Parameters	293
Examples Using the 'Util_ShapePulse' Process Module	293
Util SimScript: Simulation Script Interface	294
Description	294
Examples Using the 'Util ReduceChannels' Process Module	294
Util Standardise: Signal Standardisation Utility Module	295
Description	296
Module Parameters	296
Examples Using the 'Iltil Standardisa' Process Module	206
Util Strobe: Signal Strobe Utility Module	290
	271 207
Madula Deremetere	271 200
Examples Using the 'Htil Starks' Despee Madel	298 200
Examples Using the Util_Strobe Process Module	299
Util_SwapLR: Channel Swap Utility Module	305

Description	305
Module Parameters	305
Examples Using the 'Util_SwapLR' Process Module	305

Chapter 3. Analysis Modules

Ana_ACF: Auto-correlation Function

File name: AnACF.[ch]

Description

This module generates an auto-correlation function from the connected input signal. It puts the result in the output signal, overwriting any previous data if the signal has already been initialised. The function is calculated backwards from the time, **OFFSET** (s) up to a lag of **MAX_LAG** (s). An exponential decay function is included with the time constant, **TIME_CONST** (s). The same binning as for the input signal is used.

Calculated by:

$$h(t,l) = \sum_{i=1}^{N} p(t-T) p(t-T-l) \exp(-T/\Omega)$$

$$T = idt$$

$$l = 0 \Rightarrow MAX_{LAG} - dt$$

where t is the time the ACF is sampled

- *l* is the autocorrelation lag
- *dt* is the sampling period
- Ω is the time constant of integration (TIME_CONST)
- p(x) is the spike probability at time x
- N is the sample length of the integration window (equal to $3\Omega/dt$).

Inputs	Arbitrary single input as a function of time. E.g. membrane voltage or action potential
	stream.
Outputs	Same number of channels as the input, but the length is defined by the maximum lag. The
	first point has a lag of 0, the last point has a lag of MAX_LAG - dt.
References	Licklider J. C. R. (1959) 'Three auditory theories' in Psychology: A Study of a Science, edited by S. Koch, MacGraw-Hill, New York.
	Meddis R. and Hewitt M. J. (1991) "Virtual pitch and phase sensitivity of a model of the auditory periphery. I Pitch identification" J. Acoust. Soc. Am., 89, 2866-2882

Module Parameters

Example 3.1. Ana_ACF Parameter File

MODE	STANDARD	Normalisation mode ('none', 'standard' or 'unity').
T_CONST_MODE	LICKLIDER	Time constant mode ('Licklider' or 'Wiegrebe'.)
OFFSET	-1	Time offset, t0 (if -ve the end of the signal is assumed) (s).
TIME_CONST	0.0025	Time constant (or minimum time constant in 'Wiegrebe' mode) (s).
T_CONST_SCALE	2	Time constant scale (only used in 'Wiegrebe' mode).
MAX_LAG	0.0075	Maximum autocorrelation lag (s).

Table 3.1. Ana_ACF 'mode' options

Mode	Description
Standard	This mode normalises the autocorrelation by dividing by the maximum lag index (the number of
	points along the lag axis). This is the standard method for autocorrelation.
Unity	This mode normalises the autocorrelation by dividing by the TIME_CONST parameter (i.e. the
	area under the integration window function), then taking the square root.

Table 3.2. Ana_ACF 't_const_mode' options

Mode	Description
Licklider	In this mode the time constant, tau has a constant value as defined by the time_const parameter.
Wiegrebe	The in this mode the time constant varies proportionally to the autocorrelation lag. The time
	constant is defined by the autocorrelation lag multiplied by the time_const_scale , subject to a
	minimum defined by the time_const parameter.

Examples Using the 'Ana_ACF' Process Module

Example: AutoTest/A_Di/ACF1.sim

This example simulation script with the associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
#ACF1.sim
begin {
    Stim_Harmonic < Harmonic1.par
    Ana_ACF < AutoCor1.par
    Display_Signal
    #DataFile_Out
}</pre>
```

Figure 3.1. ACF simulation output The stimulus is a harmonic series with alternating phases for the components.

Comments

The auto-correlation function is used to investigate periodicity in signal processing. A pure tone stimulus is generated in this test, and the section of the signal up to the 'offset' is auto-correlated. The output of the module is the value of the autocorrelation at the time of the offset. The data is output to file with each line in the format:-

Time (s), ACF

Averaged Localised Ana_ALSR: Synchronised Rate File name: AnALSR.[ch]

Description

This analysis module produces as its output the averaged localized synchronized rate (ALSR) function. It was designed to provide a representation of population responses of the auditory nerve to vowel sounds. The function combines rate, place and temporal information to provide a good representation of the vowel's spectra. The function is stable with changes in sound level at least up to 80 dB SPL in animal recordings. This is in sharp contrast to the representation of vowels' spectra in terms of auditory nerve discharge rate that degenerates at such high levels.

NOTE: This is a complex statistic. Please read Young and Sachs, 1979 (see References below) before proceeding.

The ALSR for the kth harmonic of the vowel is defined as:

$$ALSR(k) = \frac{1}{M_k} \sum_{l \in C_k} R_{kl}$$

ALSR function

- Where Rkl is the Fourier magnitude of the kth component of the response of the lth channel,
 - Ck is the set of channels with CFs close to kf0, (how close is determined by UPPER_LIMIT and LOWER_LIMIT)
 - Mk is the number of channels in Ck,
 - f0 is the fundamental frequency of the vowel.

Input to the module must be in the form of a period histogram for each channel. The PH must be fixed to the period of the stimulus (or integer multiples of this period).

The frequencies sampled by the ALSR are determined by the period of the PH. The inverse of the period (in seconds) gives the frequency spacing. E.g. 0.01 s gives 100 Hz spacing.

In addition, the number of bins in the preceding histogram should be a power of 2 in order to get this spacing. The bin width should be chosen such that the number of bins across the PH is a power of 2. For example, a PH period of 10 ms, bin width of 0.078125 ms gives 128 bins (2⁷).

The channel CFs should be chosen to cover the range of ALSR frequencies. If ALSR sampling begins at X Hz, channel CFs should be included down to X * (2^UPPER_LIMIT), or no value for X is calculated. The highest frequency at which the ALSR is calculated is determined by the highest channel CF. The maximum is $Y = Max_CF * (2^LOWER_LIMIT)$.

Inputs	Multi-channel Period Histogram		
Outputs	Single channel ALSR function vs Frequency (Hz).		
Reference Young E.D. and Sachs M.B (1979) "Representation of steady-state vowels in th			
	aspects of the discharge patterns of populations of auditory-nerve fibers", J Acoust Soc Am,		
	66:1381-1403		

Module Parameters

Example 3.2. Ana_ALSR parameter file

LOWER_LIMIT	-0.25	Averaging window limit below CF (octaves)
UPPER_LIMIT	0.25	Averaging window limit above CF (octaves)
NORMALISE	1	Normalisation factor (units.)

Examples Using the 'Ana_ALSR' Process Module

Example: AutoTest/A_Di/ALSR1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A_Di/ALSR1.sim
begin {
 DataFile_In
                  < DFIn1.par
 Util_ReduceDT
                  < UpSample.par
 Trans_gate
                 < RampOn.par
 Filt_MultiBPass < MBPass_GP4a.par</pre>
 Filt_MultiBPass < MBPass_GP4b.par</pre>
 BM_DRNL
                < DRNL_GP4.par
 Display_Signal
 IHCRP_Shamma3StateVelIn < IHCRP_GP3.par</pre>
 IHC_Meddis2000
                  < Med2000MSRp1.par
 reset hi
 repeat 50 {
 AN_SG_Carney
                  < ANCarney_GP4.par
 hi% Ana_Histogram
                      < ALSR_PH2.par
 }
 Display_Signal
 Ana_ALSR
                 < ALSR1.par
}
```

Figure 3.2. ALSR function for the /a/ vowel

Comments:

Please note that the above simulation takes some time to run.

Ana_Averages : Channel Averaging

File name: AnAverages.[ch]

Description

This routine calculates the average signal value over a specified time range and time offset, for each channel of the input signal. The result for each channel is returned in the first sample output signal channels.

Three different types of averages are calculated, according to the *mode* required: full, half wave rare averages, '-wave' and half-wave complement averages, '+wave'. (The -/+ wave options were revised from code from Trevor Shackleton, MRC, Nottingham).

Inputs	Arbitrary single input			
Outputs	The output signal has the same number of channels as the input, but with only one result sample per channel.			
Reference				
See also	Util_BinSignal			

Module Parameters

Example 3.3. Ana_Averages parameter file

MODE	FULL	Averaging mode ('full', '-wave' or '+wave').
OFFSET	0	Time offset for start of averaging period (s).
DURATION	-1	Averaging period duration: -ve assumes to end of signal (s).

Table 3.3. Ana_Averages 'Mode' options

ModeDescriptionfullA full average for each channel of the signal.-waveAn average of only the negative components of the channels.+waveAn average of only the positive components of the channels.

Examples Using the 'Ana_Averages' Process Module

Example: AutoTest/A/Averages.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/Averages1.sim
begin {
   Stim_PureTone < PTo:
</pre>
```

Stim_PureTone < PTonel.par Ana_Averages < Averagel.par

}

Comments

This particular simulation script produces no display. If the "DataFile_Out" module is uncommented, then the result will be output to the file "output.dat". The output value should be approximately zero as the pure tone is averaged over the positive and negative cycles.

Ana_Convolution :

File name: AnConvolute.[ch]

Description

This routine creates convoluted signal using the output signals from two input processes. It is useful for creating complex stimuli as well as other convolution purposes. The processed output signal will be monaural or binaural (with interleaved channels: LRLRLR) depending upon the format of the two input signals, which must both have the same sampling interval and number of channels. The duration of the two signals need not be the same.

The convolution of R and S (R*S)j is calculated for each point j, by:

$$(R*S)_j = \sum_{k=1}^N R_j \cdot S_k$$

where N is the number of samples in S.

Inputs	Expects input from two similarly dimensioned processes as described above.
Outputs	The output signal with the same dimensions as the input.
Reference	
See also	Filt_FIR

Module Parameters

Example 3.4. Ana_Convolution parameter file

This module has no parameters

Examples Using the 'Ana_Convolution' Process Module

Example: AutoTest/A/Convolution.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./A/Convolution.sim
begin {

```
click% Stim_PulseTrain (->conv) < PulseTr5.par
ptone% Stim_PureTone (->conv) < PTone7.par
conv% Ana_Convolution (click, ptone->)
Trans_Gate < Ramp1.par
Display_Signal
}</pre>
```

Figure 3.3. Output for convolution test. A signal cycle of a pure tone is convolved with a click train, creating a train of repeated pure tone pulses.

Comments:

The output should contain a pure tone, which begins at the click position. The output is given in the form: time (s), convolution.

Ana_CCF : Cross-correlation Function

File name: AnCrossCorr.[ch]

Description

This module generates a cross-correlation function between the left and right ear components of the connected input signal. The input signal must be binaural. It puts the result in the output signal, overwriting any previous data if the signal has already been initialised. The function is calculated backwards from the time, **OFFSET** (s) for a period of **MAX_LAG** (s). The time offset must be more than MAX_LAG seconds from the start or end of the signal. An exponential decay function is included with the time constant, **TIME_CONST** (s). The same binning as for the input signal is used.

The cross correlation function c is:

$$c(t, l) = \sum_{i=-L}^{L} pl(t-T) p2(t-T-l) \exp(-T/\Omega)$$

- where T = idt, t is the offset at which the CCF is calculated, 1 is the cross-correlation lag, dt is the sampling period, W is the time constant of integration (TIME_CONST), p1(x) and p2(x) are the sample values in the two channels at time x and L is the number of points within the integration window (equal to MAX_LAG / dt).

Inputs	Binaural Signal			
Outputs	Signal with the same number of channels, but with a length defined by twice the			
-	MAX_LAG parameter. The first point has a value of -MAX_LAG, the last point has a value			
	of +MAX_LAG			
Reference	Shackleton T. M., Meddis R. and Hewitt M. J. (1991) 'Across frequency integration in a			
	model of lateralization', J. Acoust. Soc Am. 91, 2276-2279.			

Module Parameters

Example 3.5. Ana_CCF parameter file

OFFSET	0	Time offset, t0 (s).
TIME_CONST	0.0025	Time constant, tw (s).
MAX_LAG	0.005	Maximum lag period, t (s).

Examples Using the 'Ana_CCF' Process Module

Example: AutoTest/A/CCF.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/CCF.sim
begin {
   Stim_PureTone_Binaural < BPTonel.par
   Ana_CCF < CrossCol.par
   Display_Signal
}</pre>
```

}

Comments:

The output file is in the form:

delay period (s), CCF.

Ana_FindBin: Bin searching Analysis File name: AnFindBin.[ch]

Description

This module bins adjacent values of a signal and finds the bin with the maximum or minimum bin value and The search is implemented using a bin 'window' of returns either the value or the sample index of the bin. BIN_WIDTH. . The signal is searched forward from the OFFSET for a time set by the WIDTH parameter. In the case of the sample index being returned, it corresponds to the centre of the bin window with respect to the input signal.

The units of BIN_WIDTH, OFFSET, and WIDTH will usually be time (s). However, if the input comes, for instance, from Ana_FourierT, the units will be frequency (Hz), e.g. an OFFSET of 1000 Hz might be set.

InputsArbitrary single inputOutputsA signal with 1 sample result for each channel.Reference

Module Parameters

Example 3.6. Ana_FindBin parameter file

MODE	MIN_VALUE	Search mode ('max_value', 'max_index', 'min_value' or 'min_index').
BIN_WIDTH	-1	Bin width (time window) for search bin: -ve assumes dt for previous
		signal (s).
OFFSET	0	Offset from which to start search (s?).
WIDTH	-1	Analysis window width for search: -ve assume to end of signal (s?).

	Table 3	3.4. Ana	FindBin	'mode'	options
--	---------	----------	---------	--------	---------

Mode	Description
Max_value	Return the maximum value found.
Max_index	Return the sample index at which the maximum value was found.
Min_value	Return the minimum value found.
Min_index	Return the sample index at which the minimum value was found.

Examples Using the 'Ana_FindBin' Process Module

Example: AutoTest/A/FindBin.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/FindBin.sim
begin {
   Stim_Click < Click1.par
   Ana_FindBin < FindBin1.par</pre>
```

}

Comments

This simulation script produces no display. If the 'DataFile_Out' module is uncommented, then the result will be output to the file 'output.dat'. The output value should be 119 for this test.

Ana_FindNextIndex: Sample index Analysis

File name: AnFindNextIndex.[ch]

Description

32

This routine looks for a peak or a trough in the input signal. It finds the index position of the next minimum or maximum after a specified time, **OFFSET** (s) for each channel of its process input signal. The result for each channel is returned in the output signal. Note that the returned value is the index, not the value. The algorithm looks for the first minimum after a negative gradient. A negative gradient is where cPtr(i + 1) - cPtr(i) < 0.

This module has many uses but could be used, for example, to find the peak value in a histogram after a specified time.

Inputs	Arbitrary single input
Outputs	A signal with 1 sample result for each channel.
Reference	
See also	the section called "Ana_FindBin: Bin searching Analysis"

Module Parameters

Example 3.7. Ana_FindNextIndex parameter file

MODEMAXIMUM Index search mode ('minimum' or 'maximum').OFFSET0Time offset for start of search (s).

Table 3.5. Ana_FindNextIndex 'mode' options

Mode	Description
minimum	Return the sample index of the mnimum value found.
maximum	Return the sample index of the maximum value found.

Examples Using the 'Ana_ACF' Process Module

Example: AutoTest/A_Di/FindInd1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A_Di/FindInd1.sim
begin {
```

```
Stim_Harmonic < Harmonicl.par
Trans_Gate < Rampl.par
Filt_BandPass < PreEmphl.par
BM_GammaT < GammaTLogl.par
IHC_Meddis86 < Meddis86.par
AN_SG_Simple < SimpleSGl.par
Display_Signal
Ana_FindNextIndex < FindIndl.par
```

}

Comments

This simulation script produces no display. If the 'DataFile_Out' module is uncommented, then the result will be output to the file 'output.dat'. The file should contain the following:

Time (s)	100	215.443	464.159	1000	2154.43	4641.59	1000
2.50000e-05	198	21	73	44	116	12	83

Ana_FourierT: Fourier Analysis Function

File name: AnFourierT.[ch]

Description

This function calculates the modulus or phase of the Fourier transformation of a real data set. A Fast Fourier Transform algorithm is used. The routine generates the modulus and other FFT properties of the process *EarObject's* input signal. It puts the result in the output. It also changes the sampling interval, dt field, of the output signal to the appropriate frequency interval. This frequency interval (DeltaF) is calculated from the duration of the input signal.

 $\Delta F = 1/Duration$

This only holds if the number of samples in the signal (duration / dt) is a power of 2 (necessary for an FFT). If this is not so,

 $\Delta F = (1/Duration) * (no. of samples/next largest power of 2)$

For example, 200-ms signal, sample rate 100 kHz. No. of samples = 20 000, therefore next power of 2 is 32,768. Therefore $\Delta F = (1/0.2) * (20\ 000/32\ 768) = 3.05177$ Hz.

Inputs	Arbitrary single input
Outputs	Produces the FFT output with the same channel and length dimensions as the input, however
	the time dimension is now the replaced by the frequency interval. In 'complex' output
	mode, each channel if input produces two channels of output for both the 'real' and
	'imaginary' complex components.
Reference	Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
	Recipes in C, 2nd Ed. pp 504-508.

Module Parameters

Example 3.8. Ana_FourierT parameter file

OUTPUT_MODE MODULUS Output mode: 'modulus', 'phase', 'complex' or 'dB_SPL' (approximation).

Table 3.6. Ana_FourierT 'output' mode options

Description		
This mode approximates the dB SPL output for each frequency component of the FFT. If the input		
is a pure tone at one of the frequency values for which the FFT is defined, then the output will be		
the intensity of the pure tone in dB SPL.		
This mode outputs two channels for each input channel. The two channels contain the 'real' and		
'imaginary' components of the FFT for each sample respectively.		
In this mode the output is the FFT modulus		
This mode outputs the FFT raw phase - no phase unwrapping is done.		
_		

Examples Using the 'Ana_FourierT' Process Module

Example: AutoTest/A/FourierT1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/FourierT1.sim
begin {
   Stim_PureTone_Multi < MPTonel.par
   Ana_FourierT < FourierT1.par
   Display_Signal
   #DataFile_Out
}</pre>
```

Figure 3.5. Fourier Transform process output The frequency data for this figure has been truncated for display purposes.

Comments

This analysis process module is used for the analysis of the frequency components in a waveform.

Ana_Histogram: Histogram analysis function

File name: AnHistogram.[ch]

Description

This routine generates a period histogram (PH) or a post stimulus time histogram (PSTH) from the process' input. It supplies the result as its output signal, adding to previous data if the process has already been run. Accurate binning must be achieved, so real values must be used in determining the **BIN_WIDTH** (s), bin widths. In 'spike detection' mode the histogram events are calculated from the first minimum after the specified **OFFSET** (s) of the input signal. There are several operating mode options. Not all of the parameters are used for all modes, i.e. In the 'continuous' detection mode, the **THRESHOLD** parameter is not used.

This module accumulates data cross loops until the process is reset - see the section called "Accumulating Data with Process Modules".

Please note that in PH mode accurate binning must be achieved; **PERIOD** / **BIN_WIDTH** (s) must be equal to an integer number of bins. If this is not so, the period will no longer match that desired and accumulation of data will not be accurate. The histogram is calculated from the first minimum after the specified **OFFSET** (s) of the input signal.

Inputs	Arbitrary single input
Outputs	A histogram for each input channel, with the length defined by the BIN_WIDTH and
	PERIOD parameters (depending upon the TYPE_MODE option selected. The first
	point has a time of BIN_WIDTH and the last point has a time of PERIOD or
	stimulus duration.
Reference	

Module Parameters

Example 3.9. Ana_Histogram parameter file

DETECT_MODE	SPIKE	Detection mode: 'spike' (detection) or 'continuous' (signal).
OUTPUT_MODE	BIN_COUNTS	Output mode: 'bin_counts' or 'spike_rate'.
TYPE_MODE	PSTH	Histogram type: 'PSTH', or 'PH'.
THRESHOLD	0	Event threshold for bin counts (units as appropriate).
BIN_WIDTH	-1	Histogram Bin width (-ve: previous signal dt, zero: one bin = input
		signal length) (s).
PERIOD	-1	Period for period histogram: used in 'PH' mode only (s).
OFFSET	0	Time offset for histogram (s).

Table 3.7. Ana_Histogram Detection Mode Option

Detection Mode	Description
spike	This detection mode counts positive-going THRESHOLD crossing events in the
	signal.
continuous	This detection mode bins the input without further processing (i.e. sums all adjacent values within the bin range).

Table 3.8. Ana_Histogram Output Mode Options

Output Mode	Description	
bin_counts		
spike_rate	With this mode the output is given as a spike rate (spikes/s).	This option can only be
	used with the 'spike' detection mode.	

Table 3.9. Ana_Histogram Histogram Type Options

Histogram Type	Description
psth	The post-stimulus time histogram option. The output signal length will depend upon
	the BIN_WIDTH , the OFFSET and the length of the input signal.
ph	The period histogram option. The output signal length will depend upon the
	BIN_WIDTH and the PERIOD parameters.

Examples Using the 'Ana_Histogram' Process Module Example: AutoTest/A_Di/HistPSTH1.sim

This example simulation script with its associated parameter files is in the

AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A_Di/HistPSTH1.sim
begin {
 Stim_Puretone_2 < P2Tone1.par</pre>
 Trans_Gate
                < Rampl.par
 Filt_BandPass
                 < PreEmph1.par
 IHC_Meddis86
                 < Meddis86.par
 repeat 20 {
 AN_SG_Simple
                 < SimpleSG1.par
 Ana_Histogram
                  < PSTH1.par
 }
 Display_Signal
}
```

Figure 3.6. Histogram output for HistPSTH1.simThe figure shows the puretone response from a linear auditory nerve model.

Example: AutoTest/A/HistPH1.sim

38

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/HistPH1.sim
begin {
   Stim_PureTone < PTone3.par
   Ana_Histogram < HistPH1.par
   Display_Signal
}</pre>
```


Figure 3.7. PH Output from Histogram function

Comments:

The period histogram, like the auto-correlation function, is used to investigate periodicity effects in signals. In constructing a period histogram the occurrence of each spike is summed into a histogram bin corresponding to time, but the time axis is reset for a constant period on the stimulus time scale.

Ana_Intensity: RMS Intensity Analysis Function

File name: AnIntensity.[ch]

Description

This routine calculates the (rms) intensities for each channel of the process *EarObject's* input signal. The result for each channel is output in the respective first sample of the output signal in dB SPL. The intensity calculation starts from the **offsetTime** (s). Please note that the intensity calculation is only accurate for pure tone signals. For other signals it can be used as a guide.

Intensity I is calculated by:

$$I(x) = 20.0 \times \log_{10} \left(\frac{\sqrt{\sum_{i=1}^{N} x_i^2 / N}}{20} \right)$$

-where x is the input signal and N is the number of samples in the input.

InputsArbitrary single input, but to produce an output in dB SPL, the input signal must be pressure
amplitudes in micro-pascals (mPa).OutputsA single result sample in for each channel in dB re. 20 microPa.Reference

Module Parameters

Example 3.10. Ana_Intensity parameter file

OFFSET0.0025Time from which to start calculation (s).EXTENT-1Time over which calculation is performed: -ve value assumes end of signal (s).

Examples Using the 'Ana_Intensity' Process Module

Example: AutoTest/A/Intensity.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/Intensity.sim
begin {
   Stim_PureTone < PTone5.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Comments:

This simulation script produces no display. If the 'DataFile_Out' module is uncommented, then the result will be output to the file 'output.dat'. The output value should be 1 (db SPL) for this test.

Ana_ISIH: Inter-spike Interval Histogram File name: AnInterSIH.[ch]

Description

This routine generates an inter-spike interval histogram from the input signal. A spike event is counted for every maximum following a positive-going crossing of THRESHOLD. The ORDER parameter defines how many spikes beyond the originating spike should be included in the analysis. Note that an ORDER of -1, all-order intervals, calculates an autocorrelation function.

This module accumulates data cross loops until the process is reset - see section the section called "Accumulating Data with Process Modules"

Inputs	Arbitrary single input.
Outputs	An ISIH for each channel, the length being defined by the MAX_INTERVAL parameter
	and the sampling interval of the input signal. The ISIH uses the same sampling interval as
	for the input signal.
Reference	

Module Parameters

Example 3.11. Ana ISIH parameter file

ORDER	-1	Order of spike interactions $(1 = 1st, 2 = 2nd, -1 = all order)$.
THRESHOLD	0	Event threshold (arbitrary units).
MAX_INTERVAL	-1	Max. interval for histogram: -ve assumes end of signal (s).

Examples Using the 'Ana_ISIH' Process Module

Example: AutoTest/A_Di/ISIH1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./A_Di/ISIH1.sim begin {

Stim_Harmonic	< Harmonic2.par
Trans_Gate	< Ramp1.par
Filt_BandPass	< PreEmph1.par
BM_GammaT	< GammaT500Hz.par
IHC_Meddis86	< Meddis86.par

```
repeat 2 {
AN_SG_Simple < SimpleSG1.par
Ana_ISIH < InterSIH1.par
}
Display_Signal
}</pre>
```

Figure 3.8. ISIH process output The results shown are for two auditory nerve fibres.

Ana_SAI: Stabilised Auditory Image function

Description

This module implements the auditory image model (AIM) Strobed Temporal Integration (STI) process (see [27]). STI may be visualised as a bank of delay lines used to form a buffer store for the process input signal, one delay line per channel. The input signal is usually the output from the auditory nerve process, or neural activity pattern (NAP). As the process input proceeds along the buffer, it decays linearly with time, at about 2.5 %/ms, so there is no activity beyond about 40 ms in the NAP buffer. Each channel of the buffer is assigned a strobe unit that monitors activity in that channel, looking for local maxima in the stream of NAP pulses. When one is found, the unit initiates temporal integration in that channel: it transfers a copy of the entire NAP function in that channel at

that instant, to the corresponding channel of an image buffer. The NAP is added point-for-point with whatever is already in that channel of the image buffer. The local maximum itself is mapped to the 0 ms point in the image buffer.

The multi-channel version of this STI process is AIM's representation of our auditory image of a sound. Periodic and quasi-periodic sounds typically produce a single local maximum per cycle, per channel of the NAP. In any given channel, this leads to regular strobing and the transfer into the auditory image of a sequence of NAP functions that are all virtually identical. As a result the auditory images of periodic sounds lead to static auditory images, and quasi-periodic sounds lead to nearly static images. These images, however, have the same temporal resolution as the NAP. Dynamic sounds are represented as a sequence of auditory image frames. If the rate of change in a sound is not too rapid, as is diphthongs, features are seen to move smoothly as the sound proceeds, much as objects move smoothly in animated cartoons.

In this implementation of STI the different auditory image frames can only be produced if this module is used in segment processing mode (see the section called "Using the Segment-processing Mode"). In the standard processing mode, only the final image will be output.

This module uses the Util_Strobe module (see the section called "Util_Strobe: Signal Strobe Utility Module"), where a detailed description of the strobe modes is presented.

Inputs	Arbitrary single input, though it is used in AIM with the neural activity pattern (NAP).
Outputs	A 'static' signal with the same number of channels as the input signal. The channel length is
-	defined by the nwidth and pwidth parameters.
Reference	Patterson R. D. and Allerhand M. H. (1995): 'Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform', J. Acoust. Soc. Am. [98], 1890-1894.

Module Parameters

DIAGNOSTICS	OFF	Diagnostic mode ('off', 'screen', 'error' or <file name="">).</file>
INT_MODE	STI	Integration mode: 'STI' - stabilised temporal integration, 'AC' - autocorrelation.
CRITERION	PEAK_SHADOW+	Strobe criterion (mode): 'user ', 'threshold' (0), 'peak' (1), 'peak_shadow-' (3), or 'peak_shadow+' (4/5).
STROBE_DIAGNOSTICS	OFF	Diagnostic mode ('off', 'screen', 'error' or <file name="">).</file>
THRESHOLD	0	Threshold for strobing: 'user', 'threshold' and 'peak' modes only.
THRESHOLD_DECAY	5000	Threshold decay rate (%/s).
STROBE_LAG	0.005	Strobe lag (delay) time (s).
TIMEOUT	0.01	Strobe lag (delay) timeout (s).
NWIDTH	-0.035	Negative width of auditory image (s).
PWIDTH	0.005	Positive width of auditory image (s).
NAP_DECAY	2500	Neural activity pattern (input) decay rate (%/s)
IMAGE_DECAY	0.03	Auditory image decay half-life (s).

Example 3.12. Ana_SAI parameter file

Table 3.10. Ana_SAI Diagnostics Mode Options

Diagnostic Mode	Description
off	No diagnostics are output.;
screen	Diagnostics from the module are output to the screen.
error	Diagnostics are output to the standard error output stream (stderr on Unix)
<file name=""></file>	Diagnostics are output to the specified file.

Table 3.11. Ana_SAI Integration Mode Options

Integration Mode	Description
sti	This option provides the standard stabilised temporal integration behaviour
ac	This option makes this module implement an autocorrelation integration method.

Examples Using the 'Ana_ACF' Process Module

Note that for the following tests the segmented processing mode must be 'off'.

Example: AutoTest/A/SAI1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI1.sim
begin {
stim% Util_SimScript (->image) < SAIStim.sim
trig% Stim_PulseTrain (->image) < PulseTr3.par
image% Ana_SAI (stim, trig->) < SAImage1.par
Display_Signal
}</pre>
```

Figure 3.9. Stimulus input for the stabilised auditory image (SAI) analysis module tests.

Figure 3.10. SAI module output using 'user' strobe modeThe strobe input is a train of pulses. The image frame is negative.

Example: AutoTest/A/SAI2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI2.sim
begin {
stim% Util_SimScript (->image) < SAIStim.sim
trig% Stim_PulseTrain (->image) < PulseTr3.par
image% Ana_SAI (stim, trig->) < SAImage2.par
Display_Signal
}</pre>
```

Figure 3.11. SAI module output 2 using 'user' strobe modeThe strobe input is a train of pulses. The image frame is from -1.0 to 5.0 ms.

Example: AutoTest/A/SAI3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI3.sim
begin {
   Util_SimScript < SAIStim.sim
   Ana_SAI < SAImage3.par
   Display_Signal
}</pre>
```

Figure 3.12. SAI module output using 'threshold' strobe modeIn this mode strobes are triggered when the process input rises over a specified threshold.

Example: AutoTest/A/SAI4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI4.sim
begin {
   Util_SimScript < SAIStim.sim
   Ana_SAI < SAImage4.par
   Display_Signal
}</pre>
```

Figure 3.13. SAI module output using 'peak' strobe modeIn this mode strobes are triggered when a peak over a specified threshold occurs in the process input.

Example: AutoTest/A/SAI5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI5.sim
begin {
stim% Util_SimScript (->image) < SAIStim.sim
trig% Stim_PulseTrain (->image) < PulseTr3.par
repeat 10 {
    image% Ana_SAI (stim, trig->) < SAImage5.par
    }
    Display_Signal
}</pre>
```

Figure 3.14. SAI module output using the 'peak_Shadow-' strobe modeIn this mode strobes are triggered on peaks which are not followed by a larger peak.

Example: AutoTest/A/SAI6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI6.sim
begin {
   Util_SimScript < SAIStim.sim
   Ana_SAI < SAImage6.par
   Display_Signal
}</pre>
```

Figure 3.15. SAI module output using the 'peak_shadow+' strobe modeIn this mode peaks that are not followed by a larger peak trigger strobe events.

Example: AutoTest/A/SAI7.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI7.sim
begin {
stim% Util_SimScript (->image) < SAIStim.sim
trig% Stim_PulseTrain (->image) < PulseTr3.par
repeat 10 {
image% Ana_SAI (stim, trig->) < SAImage7.par
}
Display_Signal
}</pre>
```

Figure 3.16. SAI module output using the 'peak_shadow+' strobe mode with the timeout parameter set.In this mode peaks that are not followed by a larger peak trigger strobe events, but when the timeout period expires, a strobe event is triggered anyway.

Example: AutoTest/A/SAI8.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SAI8.sim
begin {
   Util_SimScript < SAIStim.sim
   Ana_SAI < SAImage8.par
   Display_Signal
}</pre>
```

Figure 3.17. SAI module output using the autocorrelation, 'ac' integration mode with the 'threshold' strobe mode. With the autocorrelation integration mode, at each strobe event the input signal added to the stabilised auditory image is multiplied by the input signal value at the strobe instant.

Comments

For these test *simulation scripts* the Ana_SAI process module is tested using the impulse response of a gamma-tone filter. The 'SAIStim.sim' *Simulation script* is used to create the stimulus. The stimulus is shown in Figure 3.9, "Stimulus input for the stabilised auditory image (SAI) analysis module tests." This stimulus particular stimulus was chosen because it contains peaks surrounded on both sides by successively lower peaks.

Figure 3.10, "SAI module output using 'user' strobe modeThe strobe input is a train of pulses. The image frame is negative." and Figure 3.11, "SAI module output 2 using 'user' strobe modeThe strobe input is a train of pulses. The image frame is from -1.0 to 5.0 ms." show the response of the Ana_SAI process module in 'user' strobe mode. In this mode the Ana_SAI module strobe trigger is defined by the 'Stim_PulseTrain' stimulus module, set using the 'PulseTr1.par' parameter file. This stimulus generation process module produces a train of pulses.

Ana_SpikeRegularity: Spike Regularity Analysis Function

File name: AnSpikeReg.[ch]

Description

This module carries out a spike regularity analysis, calculating the mean, standard deviation and covariance measures of successive intervals for a spike train in the process input signal. The results for each channel are stored in the first three samples of the output signal in the order - mean, standard deviation, covariance (coefficient of variance corrected for refractoriness, CV') (see [30]).

CV' is a measure of regularity, defined as the ratio of the standard deviation to the mean of the interspike intervals (ISI), i.e.

$$CV' = \frac{StdDev(ISI)}{\overline{ISI} - t_0}$$

where t0 is the **DEAD_TIME**.

Note: To calculate a single CV value for the entire signal, **WINDOW_WIDTH** should be set to -1. Values of **WINDOW_WIDTH** other than -1 generate a CV output every **WINDOW_WIDTH** seconds.

Inputs	Arbitrary single input			
Outputs	The following output is output for each channel:			
	mean standard deviation corrected covariance			
	mean, sianaara aeviation, corrected covariance.			
	Values of the refractoriness corrected covariance, CV' are only calculated if there are two or			
	more spike events. The output length is defined by the WINDOW_WIDTH, OFFSET and			
	RANGE parameters.			
Reference	Young, E. D., Robert, J. and Shofner, W. P. (1988). 'Regularity and latency of units in			
	ventral cochlear nucleus: Implications for unit classification and generation of response			
	properties'. J. Neurophysiology, 60(1), 1 – 29. Rothman J. S., Young E. D., and Manis P. B.			
	(1993). "Convergence of Auditory Nerve Fibers in the Ventral Cochlear Nucleus:			
	Implications of a Computational Model" J. Neurophysiology, 70, 2562-2583.			

Module Parameters

Example 3.13. Ana_SpikeRegularity parameter file

THRESHOLD	0	Event threshold (arbitrary units).
WINDOW_WIDTH	-1	Width of analysis window: -ve assumes total analysis range (s).
OFFSET	0	Time offset for start of analysis (s).
RANGE	-10	Time range for analysis: -ve assumes to end of signal (s).
DEAD_TIME	0	Spike dead time or absolute refractory period (s).

Examples Using the 'Ana_SpikeRegularity' Process Module

Example: AutoTest/A/SpikeRegularity1.sim

```
# ./A/SpikeRegularity1.sim
begin {
   Stim_PulseTrain < PulseTr1.par
   repeat 100 {
   Ana_SpikeRegularity < SpikeReg1.par</pre>
```

```
}
Display_Signal
}
```

Example: AutoTest/A/SpikeRegularity2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SpikeRegularity2.sim
begin {
   Stim_PulseTrain < PulseTr1.par
   repeat 100 {
   reset sr
   sr% Ana_SpikeRegularity < SpikeReg1.par
   }
   Display_Signal
}</pre>
```

Comments

These simulation scripts produce no displays. If the 'DataFile_Out' module in the respective script is uncommented, then the results for the test are output to a file.

Ana_SynchIndex: Synchronisation Index

File name: AnSynchIndex.[ch]

Description

This routine calculates the synchronisation index (vector strength) from the process' input. **It expects its input to come from a period histogram** (see the section called "Ana_Histogram: Histogram analysis function"). The results are put into the first and only sample of the output signal for each respective channel.

The synchronisation index measures the ability of a system to follow the periodicity of a stimulus. (see [10]).

The synchronisation index is calculated from:

$$SI = \frac{\sqrt{\left[\sum_{i=1}^{N} x_i \sin\left(2\frac{i}{N}\right)\right]^2 + \left[\sum_{i=1}^{N} x_i \sin\left(2\frac{i}{N}\right)\right]^2}}{\sum_{i=1}^{N} |x_i|}$$

N is the number of points in the PH (period/bin width).

Note: The alternative is to use an FFT of a histogram to obtain synchronisation to all periods.

Inputs	This process requires input from a period histogram (see the section called
-	"Ana_Histogram: Histogram analysis function"
Outputs Reference	The results are set in the first sample of the output signal for each respective channel.
See also	See the section called "Ana_Histogram: Histogram analysis function"

Module Parameters

This module has no parameters.

Examples Using the 'Ana_SynchIndex' Process Module

Example: AutoTest/A/SynchIndex.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./A/SynchIndex.sim
begin {
   Stim_PureTone_AM < AMPTonel.par
   Ana_Histogram < HistPH1.par
   Ana_SynchIndex
   Display_Signal
}</pre>
```

Comments

This simulation script produces no display. If the 'DataFile_Out' module line is uncommented, then the result will be output to the file 'output.dat'. The output should look as shown below:-

Time (s)	100	146	213	311	453	662	965	1409	2056	3000
5e-05	0.0320	0.0294	0.0057	0.0186	0.0562	0.0428	0.2903	0.0400	0.0394	0.0352

Chapter 4. Auditory Nerve Model Modules

AN_SG_Binomial: Auditory Nerve Binomial Approximation

File name: MoANSGBinom.[ch]

Description

This module expects to receive spike probabilities as an input signal, which is then converted to spike events using a random number generator. It uses the geometric distribution method to produce the results for s specified number of fibres (without the need for a loop). A refractory effect is also applied (see module Util_RefractoryAdjust).

This approximation runs much faster then the other less efficient auditory nerve modules. There is no speed gain when there is only one fibre but efficiency increases substantially as the number of fibres increases. The approximation is only valid when the probabilities are small (say less than 0.2). If in doubt, compare the output against the output using the AN_SG_Simple module.

Inputs	Arbitrary signal input.	Expects spike probability input.
Outputs		
Reference		

Module Parameters

Example 4.1. AN_SG_Binomial Parameter File

5000	Number of fibres.
-1	Random number seed (0 for different seed for each run).
2e-05	Pulse duration (s).
1	Pulse magnitude (arbitrary units).
0.001	Refractory period (s).
	5000 -1 2e-05 1 0.001

Examples Using the 'AN_SG_Binomial' Process Module

Example: AutoTest/AN/Binomial1.sim

```
# ./AN/Binomial.sim
begin {
```

Stim_PureTone	< PTonel.par
Trans_Gate	< Rampl.par
IHC_Meddis86	< Meddis86.par
AN_SG_Binomial	< BinomSG1.par
Display_Signal	

}

Figure 4.1. Binomial Approximation Spike Generation Output

AN

Comments

This simulation script shows the Binomial spike generation routine used in conjunction with the Meddis '86 hair cell. It shows the stochastic response expected of a real AN fibre.

AN_SG_Carney: Auditory Nerve Spike Generation (1993) File name: MoANSGCarney.[ch]

Description

This module expects to receive spike probabilities as an input signal, which is then converted to spike events using a random number generator. A refractory period is introduced whose characteristics are controlled by the module parameters. It uses Carney's spike generation algorithm described in [5], and her code.

Inputs	Arbitrary signal input. Expects spike probability input.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	Carney L. H. (1993) 'A model for the responses of low-frequency auditory-nerve fibers in
	cat', JASA, [93], pp 401-417.

Module Parameters

Example 4.2. AN_SG_	Carney Parameter File
---------------------	-----------------------

AN

INPUT_MODE	ORIGINAL	Input mode, 'corrected' (2001), or 'original' (1993) setting.
RAN_SEED	-1	Random number seed (0 produces a different seed each run).
NUM_FIBRES	1	Number of fibres.
PULSE_DURATION	-1	Excitary post-synaptic pulse duration (s).
MAGNITUDE	1	Pulse magnitude (arbitrary units).
REFRAC_PERIOD	0.00075	Refractory period (s).
THRESHOLD_INC	1	Maximum threshold increase following discharge, Hmax (spikes/s).
C0	0.5	Coefficient for discharge history effect, c0 (s).
C1	0.5	Coefficient for discharge history effect, c1 (s).
S0	0.001	Time constant for discharge history effect, s0 (s).
S1	0.0125	Time constant for discharge history effect, s1 (s).

Table 4.1. AN_SG_Carney 'input_mode' options

Mode	Description
original	This is the original input mode used in the 1993 paper. It is also used for the AN model of Sumner
	et al. described in [32]. In this mode the input to the process is divided by the sampling interval.
corrected	This mode employs the corrected input mode as used in the new AN model by Zhang et al.
	described in ,

Examples Using the 'AN_SG_Carney' Process Module

Example: AutoTest/AN_Di/Carney1.sim

```
# ./AN_Di/Carney1.sim
begin {
```

Stim_PureTone	< PTonel.par
Trans_Gate	< Rampl.par
IHC_Meddis86	< Meddis86.par
Util_MathOp	< UpScale1.par
AN_SG_Carney	< CarneySG1.par
Display_Signal	

[}]

5000 4500 4000 3500 AN output (spikes) 3000 2500 2000 1500 1000 500 0 0.05 0.055 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0 Time (s)

AN

Comments

In this simulation test the scaled output from the IHC_Meddis86 process has been used to allow a comparison between the output of this process module and that of other spike generation process modules.

AN_SG_Simple: Auditory Nerve Simple Spike Generation

File name: MoANSGSimple.[ch]

Description

This module expects to receive spike probabilities as an input signal, which are then converted to spike events using a random number generator. It uses a simple spike generation.

```
InputsArbitrary signal input.Expects spike probability input.OutputsProduces an output signal with the same dimensions as the input signal.Reference
```

Module Parameters

Example 4.3. AN_SG_Simple Parameter File

RAN_SEED	-1	Random number seed (0 produces a different seed each run.
NUM_FIBRES	5	Number of fibres.
PULSE_DURATION	0.0001	Pulse duration (s).
MAGNITUDE	4.3	Pulse magnitude (arbitrary units).
REFRAC_PERIOD	0.001	Refractory period (s).

Examples Using the 'AN_SG_Simple' Process Module

Example: AutoTest/AN/Simple1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./AN/Simple1.sim
begin {
   Stim_StepFun < StepFun1.par
   AN_SG_Simple < SpikeGen1.par
   Display_Signal
}</pre>
```

Figure 4.3. Simple AN Spike Generation Output (1)

Example: AutoTest/AN/Simple2.sim

AN

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./AN/Simple2.sim
begin {
   Stim_StepFun < StepFun2.par
   AN_SG_Simple < SpikeGen1.par
   Display_Signal
}</pre>
```

Figure 4.4. Simple AN Spike Generation Output (2)

AN

Comments

By applying a constant high input to the model, it spikes at the refractory rate. Simulation script 'Simple1.sim' shows the accumulation of a number of runs, so the total number of spikes should be dependent upon the number of runs specified in the main parameter file for the test program. Simulation script 'Simple2.sim' is also the result of multiple runs, but it is reset each time so the total spikes should not be dependent upon the number of runs.

Chapter 5. Basilar Membrane Model Modules

BM_Carney: Non-linear BM (1993)

File name: MoBMCarney.[ch]

Description

This is the Carney non-linear basilar membrane filter model, revised from her original C code. The centre frequency mode is controlled using the UtCFList module as described in the section called "Using the Basilar Membrane Filter Modules".

For further information on the use of BM filterbanks see the section called "Using the Basilar Membrane Filter Modules".

Inputs	Arbitrary signal input.
Outputs	Produces multi-channel output signal, according to the CF list parameters.
Reference	[5]

Module Parameters

Example 5.1. BM_Carney Parameter File

CASCADE	4	Filter cascade.
FC	1100	Cut-off frequency for OHC low-pass filter, Fc (Hz).
P_DFB	5000	Operating point of OHC (feedback) non-linearity, P_Dfb (Pa).
PO	0.462	Asymmetrical bias for OHC non-linearity, P0 (rad).
V_MAX	10	Maximum depolarising hair cell voltage, Vmax (V).
#CF List Param	eters:-	
DIAG_MODE	PARAMETERS	Diagnostic mode ('list' or 'parameters').
CF_MODE	LOG	Centre frequency mode ('single', 'ERB', 'ERB_n', 'log', 'linear', 'focal_log', 'user', 'human', 'cat', 'chinchilla',
		'guinea-pig' or 'macaque').
MIN_CF	200	Minimum centre frequency (Hz).
MAX_CF	5000	Maximum centre frequency (Hz).
CHANNELS	30	No. of centre frequencies.
B_MODE	INTERNAL_DYNAMIC	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig', 'user' or 'Nonlinear').

Examples Using the 'BM_Carney' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Impulse Response Example: AutoTest/BM/Carney3.sim

This example simulation script with its associated parameter files is in the

AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney3.sim
begin {
   Stim_Click < Click1.par
   BM_Carney < Carney1k.par
}</pre>
```

Figure 5.1. The impulse response of the Carney BM modelCF = 1 kHz.

FT Analysis Example: AutoTest/BM/Carney10.sim

```
# ./BM/Carney10.sim
begin {
   Stim_Puretone_Multi < MPTone2.par
   Trans_Gate < Ramp1.par</pre>
```

```
BM
```

```
BM_Carney < Carneylk.par
Ana_FourierT < FourierT1.par
}</pre>
```

Figure 5.2. Fourier analysis of the Carney BM model response to a two-tone stimulus.CF = 1 kHz.

Gain Response Example: AutoTest/BM/Carney11.sim

```
# ./BM/Carneyll.sim
begin {
   Stim_Click < Click3.par
   BM_Carney < Carneylk.par
   Ana_FourierT < FourierT1.par
}</pre>
```


Figure 5.3. Fourier analysis of the Carney BM model response to a single toneCF = 1 kHz.

Filter Shape: AutoTest/BM/Carney1.sim

```
# ./BM/Carney1.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PreEmph1.par
   BM_Carney < Carney1k.par
   Ana_Intensity < Intensty1.par
}
```

BM

Figure 5.4. Carney BM model filter function.CF = 1 kHz.

Tuning Curve: AutoTest/BM/Carney2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_Carney < Carneylk.par
   Ana_Intensity < Intenstyl.par
}
```

Figure 5.5. Carney BM model Tuning curve.CF = 1 kHz. This particular Carney model is unstable above ~ 4 kHz (see [5]

68

I/O function AutoTest/BM/Carney4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney4.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_Carney < Carneylk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

Figure 5.6. The input-output response of all the BM models. The 'GammaT' and 'Cooke' functions show the linear response.

Multiple I/O Functions: AutoTest/BM/Carney5.sim

BM

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney5.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_Carney < Carneylk.par
   Ana_Intensity < Intenstyl.par
}
```

Figure 5.7. The input-output functions for the Carney BM model.Both on and off CF functions are shown.

I/O Ratio vs Frequency: AutoTest/BM/Carney6.sim

BM

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney6.sim
begin {
   Stim_Puretone < PTone2.par
   Trans_Gate < Ramp1.par
   BM_Carney < Carney1k.par
   Ana_Intensity < Intensty1.par
}
```

Figure 5.8. Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against changing frequency.

Latency: AutoTest/BM/Carney7.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney7.sim
begin {
   Stim_Click < Click2.par
   Trans_Gate < Ramp1.par
   BM_Carney < CarneyLog1.par
   Ana_FindNextIndex < FindInd1.par
}
```

Figure 5.9. Latency of response for the BM models.

Q vs Frequency: AutoTest/BM/Carney8.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Carney8.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Ramp1.par
   BM_Carney < Carney1k.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Figure 5.10. The Q10 tuning characteristics for the BM models.

Distortion Products: AutoTest/BM/Carney9.sim

```
# ./BM/Carney9.sim
begin {
   Stim_Puretone_Multi < MPTonel.par
   Trans_Gate < Ramp1.par
   BM_Carney < Carney1k.par
   Ana_FourierT < FourierT1.par
}
```

Figure 5.11. Distortion products investigation for the Carney BM model. A similar analysis paradigm as used in [29] was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the DRNL filter, and both compare well with experimental data (see Figure 5.25, "Distortion products investigation for the DRNL BM model. A similar analysis paradigm as used in was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined for the DRNL BM model. A similar analysis paradigm as used in was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the Carney filter, and both compare well with experimental data (see).").

Two Tone Suppression: AutoTest/BM/Carney12.sim

```
# ./BM/Carney12.sim
begin {
  Trans_Gate < Ramp1.par
  BM_Carney < Carney1k.par
}</pre>
```

Figure 5.12. Two-tone suppression response for the Carney BM model. Two stimuli are used. There is a single pure tone, and the other consisting of two pure tones: a probe tone, T1 and a suppresser tone, T2. The relative suppression is then calculated by dividing the unsuppressed model FFT modulus by the suppressed output modulus and multiplying by 100. This is calculated from the Fourier component at the probe frequency.

BM_Cooke: Linear BM (1991)

File name: MoBMCooke.[ch]

Description

This is an implementation of Martin Cooke's model of the response of the Basilar Membrane. This module uses sine and cosine tables, so it requires a lot of memory. It has three different output options.

For further information on the use of BM filterbanks see the section called "Using the Basilar Membrane Filter Modules".

Inputs	Arbitrary signal input.
Outputs	Produces multi-channel output signal, according to the CF list parameters.
Reference	

Module Parameters

Example 5.2. BM_Cooke Parameter File

BWI_FACTOR	1.019	ERB Bandwidth correction factor.	
OUTPUT_MODE	BM	Output mode ('bm', 'pow', 'amp').	
#CF List Parameter	:s:-		
DIAG_MODE	PARAMETERS	Diagnostic mode ('list' or 'parameters').	
CF_MODE	LOG	Centre frequency mode ('single', 'ERB', 'ERB_n', 'log', 'linear',	
		'focal_log', 'user', 'human', 'cat', 'chinchilla', 'guinea-pig' or	
		'macaque').	
MIN_CF	100	Minimum centre frequency (Hz).	
MAX_CF	10000	Maximum centre frequency (Hz).	
CHANNELS	30	No. of centre frequencies.	
B_MODE	ERB	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig', 'user' or	
		'Nonlinear').	

Table 5.1. BM	_Cooke	'output_	_mode'	options
---------------	--------	----------	--------	---------

Output Mode	Description
bm	Produce basilar membrane detailed output.
pow	Produce power envelope output.
amp	Produce amplitude envelope output.

Examples Using the 'BM_Cooke' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the AMS program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of this process module.

Impulse Response Example: AutoTest/BM/Cooke3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cooke3.sim
begin {
   Stim_Click < Click1.par
   BM_Cooke < CookeBM1k.par
}</pre>
```

Figure 5.13. The impulse response of the Cooke BM modelCF = 1 kHz.

Gain Response Example: AutoTest/BM/Cooke11.sim

BM

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cookell.sim
begin {
   Stim_Click < Click3.par
   BM_Cooke < CookeBM1k.par
   Ana_FourierT < FourierT1.par
}</pre>
```

Figure 5.14. Fourier analysis of the Cooke BM model response to a single toneCF = 1 kHz.

Filter Shape: AutoTest/BM/Cooke1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cookel.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_Cooke < CookeBM1k.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

Figure 5.15. Cooke BM model filter function.CF = 1 kHz.

Tuning Curve: AutoTest/BM/Cooke2.sim

BM

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cooke2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_Cooke < CookeBMlk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

Figure 5.16. Cooke BM model Tuning curve.CF = 1 kHz.

I/O function AutoTest/BM/Cooke4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cooke4.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_Cooke < CookeBMlk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

See Figure 5.6, "The input-output response of all the BM models. The 'GammaT' and 'Cooke' functions show the linear response.". Note that this filter has a linear input-output response.

Multiple I/O Functions: AutoTest/BM/Cooke5.sim

This example simulation script with its associated parameter files is in the

AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cooke5.sim
begin {
  Stim_Puretone < PTonel.par
  Trans_Gate < Rampl.par
  Filt_BandPass < PreEmphl.par
  BM_Cooke < CookeBMlk.par
  Ana_Intensity < Intenstyl.par
}
```

Figure 5.17. The input-output functions for the Cooke BM model.Both on and off CF functions are shown.

I/O Ratio vs Frequency: AutoTest/BM/Cooke6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./BM/Cooke6.sim

```
begin {
   Stim_Puretone < PTone2.par
   Trans_Gate < Rampl.par
   BM_Cooke < CookeBMlk.par
   Ana_Intensity < Intensty1.par
}</pre>
```

See Figure 5.8, "Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against changing frequency.". As this is a purely functional model, the fact that it attenuates signals is not important. It is the qualitative behaviour that is significant, rather than the quantitative behaviour.

Latency: AutoTest/BM/Cooke7.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./BM/Cooke7.sim
begin {
   Stim_Click < Click2.par
   Trans_Gate < Rampl.par
   BM_Cooke < CookeBMLogl.par
   Ana_FindNextIndex < FindIndl.par
}</pre>
```

See Figure 5.9, "Latency of response for the BM models.".

Q vs Frequency: AutoTest/BM/Cooke8.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Cooke8.sim
begin {
  Stim_Puretone < PTone3.par
  Trans_Gate < Ramp1.par
  BM_Cooke < CookeBM1k.par
  Ana_Intensity < Intensty1.par
}
```

See Figure 5.10, "The Q10 tuning characteristics for the BM models.".

BM_DRNL: Non-linear BM (1995)

File name: MoBMDRNL.[ch]

Description

This model implements the Dual Resonance Non-linear (DRNL) filter in a filterbank configuration. [23] Several of the parameters are computed using functions that depend on the centre frequency of each channel. For example, the *non-linear bandwidth*, *compression A (linear) scale, compression b (gain) scale, linear CF, linear bandwidth* and *linear filter scale* variables are all computed as a function of CF. This method is described in the section called "Using Parameter Arrays". Each parameter is defined by providing a function name, followed by a number of additional parameters as required by the function. The process module then uses the function to calculate the value of the respective variable parameter at each centre frequency. Tables of appropriate parameters are given in the publications cited.

If a single filter is required where the parameters can be set directly (rather than computed) use the BM_DRNL_Test process module instead (see the section called "BM_DRNL_Test: Test version of DRNL model".

For further information on the use of BM filterbanks see the section called "Using the Basilar Membrane Filter Modules".

Inputs	Arbitrary signal input.
Outputs	Produces multi-channel output signal, according to the CF list parameters.
Reference	[23]

Module Parameters

Example 5.3. BM_DRNL Parameter File

NL_GT_CASCADE NL_LP_CASCADE NONLINBWIDTH_MODE	3 4 LOG_FUNC1	Nonlinear gammatone filter cascade. Nonlinear low-pass filter cascade. Variable 'NonLinBwidth' mode ('EXP_FUNC1', 'LINEAR_FUNC1', 'LOG_FUNC1', 'LOG_FUNC2' or 'POLY_FUNC1').
NONLINBWIDTH_PARAMETER NONLINBWIDTH_PARAMETER COMPRSCALEA_MODE	0:0.8 1:58 LOG_FUNC1	Variable 'ComprScaleA' mode ('EXP_FUNC1', 'LINEAR_FUNC1', 'LOG_FUNC1', 'LOG_FUNC2' or 'POLY_FUNC1').
COMPRSCALEA_PARAMETER	0:1.67	_ ,
COMPRSCALEA_PARAMETER	1:0.45	
COMPRSCALEB_MODE	LOG_FUNC1	Variable 'ComprScaleB' mode ('EXP_FUNC1', 'LINEAR_FUNC1', 'LOG_FUNC1', 'LOG_FUNC2' or 'POLY_FUNC1').
COMPRSCALEB_PARAMETER	0:-5.85	
COMPRSCALEB_PARAMETER	1:0.875	
COMP_N_EXPON	0.1	Compression exponent, n (units).
L_GT_CASCADE	3	Linear gammatone filter cascade.
L_LP_CASCADE	4	Linear low-pass filter cascade.
LINCF_MODE	LOG_FUNC1	Variable 'LinCF' mode ('EXP_FUNC1', 'LINEAR_FUNC1', 'LOG_FUNC1', 'LOG FUNC2' or 'POLY FUNC1').
LINCF PARAMETER	0:0.14	
LINCF PARAMETER	1:0.95	
LINBWIDTH_MODE	LOG_FUNC1	Variable 'LinBwidth' mode ('EXP_FUNC1', 'LINEAR_FUNC1', 'LOG_FUNC1', 'LOG_FUNC2' or 'POLY_FUNC1').
LINBWIDTH_PARAMETER	0:1.3	
LINBWIDTH_PARAMETER	1:0.53	
LINSCALEG_MODE	LOG_FUNC1	Variable 'linScaleG' mode ('EXP_FUNC1', 'LINEAR_FUNC1', 'LOG_FUNC1', 'LOG_FUNC2' or 'POLY_FUNC1').
LINSCALEG_PARAMETER	0:5.48	
LINSCALEG_PARAMETER #CF List Parameters:-	1:-0.97	
DIAG_MODE CF_MODE	PARAMETERS LOG	Diagnostic mode ('list' or 'parameters'). Centre frequency mode ('single', 'ERB', 'ERB_n', 'log', 'linear', 'focal_log',
		'user', 'human', 'cat', 'chinchilla', 'guinea-pig' or 'macaque').
MIN_CF	100	Minimum centre frequency (Hz).
MAX_CF	10000	Maximum centre frequency (Hz).
CHANNELS	30	No. of centre frequencies.
B_MODE	INTERNAL_STATIC	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig', 'user' or 'Nonlinear').

Examples Using the 'BM_DRNL' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the AMS program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of this process module.

Impulse Response Example: AutoTest/BM/DRNL3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL3.sim
begin {
   Stim_Click < ClickHu1.par
   Filt_BandPass < PEHuY0.par
   BM_DRNL < DRNL1k.par
}</pre>
```

}

FT Analysis Example: AutoTest/BM/DRNL10.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL10.sim
begin {
   Stim_Puretone_Multi < MPTone2.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY0.par
   BM_DRNL < DRNL1k.par
   Ana_FourierT < FourierT1.par
}
```

Figure 5.19. Fourier analysis of the DRNL BM model response to a two-tone stimulus.CF = 1 kHz.

Gain Response Example: AutoTest/BM/DRNL11.sim
```
# ./BM/DRNL11.sim
begin {
  Stim_Click < Click3.par
  Filt_BandPass < PEHuY0.par
  BM_DRNL < DRNL1k.par
  Ana_FourierT < FourierT1.par
}
```

BM

Figure 5.20. Fourier analysis of the DRNL BM model response to a single toneCF = 1 kHz.

Filter Shape: AutoTest/BM/DRNL1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL1.sim
begin {
```

Stim_Puretone < PTonel.par

```
BM
```

```
Trans_Gate < Ramp1.par
Filt_BandPass < PEHuY0.par
BM_DRNL < DRNL1k.par
Ana_FindBin < FindBin1.par
}</pre>
```

Figure 5.21. DRNL BM model filter function.CF = 1 kHz.

Tuning Curve: AutoTest/BM/DRNL2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./BM/DRNL2.sim
begin {

< PTonel.par
< Rampl.par
< PEHuY0.par
< DRNL1k.par
< FindBinl.par

}

110 DRNL2 100 90 Threshold Intensity (dB SPL) 80 70 60 50 40 30 20 10 100 1000 10000 10000 Frequency (Hz)

Figure 5.22. DRNL BM model Tuning curve.CF = 1 kHz.

BM

I/O function AutoTest/BM/DRNL4.sim

```
# ./BM/DRNL4.sim
begin {
  Stim_Puretone < PTonel.par
  Trans_Gate < Rampl.par
  Filt_BandPass < PEHuY0.par
  BM_DRNL < DRNL1k.par
  Ana_FindBin < FindBin1.par
}
```


Figure 5.23. The input-output respnose of the DRNL BM modules'BM_DRNL' and 'BM_DRNL_Test' proces module responses.

Multiple I/O Functions: AutoTest/BM/DRNL5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL5.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEHuY0.par
   BM_DRNL < DRNLlk.par
   Ana_FindBin < FindBin1.par</pre>
```

}

Figure 5.24. The input-output functions for the DRNL BM model.Both on and off CF functions are shown. Note that the off-CF input-output functions show compression at higher intensities.

I/O Ratio vs Frequency: AutoTest/BM/DRNL6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL6.sim
begin {
```

```
Stim_Puretone < PTone2.par
Trans_Gate < Rampl.par
BM_DRNL < DRNL1k.par
Ana_Intensity < Intensty1.par</pre>
```

See Figure 5.8, "Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against changing frequency.".

Latency: AutoTest/BM/DRNL7.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL7.sim
begin {
  Stim_Click < Click2.par
  Trans_Gate < Rampl.par
  Filt_BandPass < PEHuY0.par
  BM_DRNL < DRNLLog1.par
  Ana_FindNextIndex < FindInd1.par
}
```

See Figure 5.9, "Latency of response for the BM models.".

Q vs Frequency: AutoTest/BM/DRNL8.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNL8.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEHuY0.par
   BM_DRNL < DRNLlk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

See Figure 5.10, "The Q10 tuning characteristics for the BM models.".

Distortion Products: AutoTest/BM/DRNL9.sim

```
# ./BM/DRNL9.sim
begin {
  Stim_Puretone_Multi < MPTonel.par
  Trans_Gate < Rampl.par
  Filt_BandPass < PEHuY0.par
  BM_DRNL < DRNL1k.par
  Ana_FourierT < FourierT1.par</pre>
```

}

Figure 5.25. Distortion products investigation for the DRNL BM model. A similar analysis paradigm as used in [29] was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the Carney filter, and both compare well with experimental data (see Figure 5.11, "Distortion products investigation for the Carney BM model. A similar analysis paradigm as used in was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the DRNL filter, and both compare well with experimental data (see). ").

Two Tone Suppression: AutoTest/BM/DRNL12.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./BM/DRNL12.sim
begin {

```
Trans_Gate < Rampl.par
Filt_BandPass < PEHuY0.par
BM_DRNL < DRNL1k.par
}
```

Figure 5.26. Two-tone suppression response for the DRNL BM model. Two stimuli are used. There is a single pure tone, and the other consisting of two pure tones: a probe tone, T1 and a suppresser tone, T2. The relative suppression is then calculated by dividing the unsuppressed model FFT modulus by the suppressed output modulus and multiplying by 100. This is calculated from the Fourier component at the probe frequency.

BM_DRNL_Test: Test version of DRNL model File name: MoBMODRNL.[ch]

Description

DRNL (Dual resonance non-linear) single filter module. This module provides the user with comprehensive control of the model's individual parameters. If a full filterbank is required, see the section called "BM_DRNL: Non-linear BM (1995)".

For further information on the use of BM filterbanks see the section called "Using the Basilar Membrane Filter Modules".

Inputs	Arbitrary signal input.
Outputs	Produces multi-channel output signal, according to the CF list parameters.
Reference	[23]

Module Parameters

Example 5.4. BM_DRNL Parameter File

NL_GT_CASCADE	3	Nonlinear gammatone filter cascade ('order').
NL_LP_CASCADE	3	Nonlinear low-pass filter cascade ('order').
LP_FILTER	BUTTERWORTH	Low-pass filter mode ('butterworth' or 'Beauchamp').
COMP_MODE	BROKEN_STICK1	Compression mode ('original', 'inv_power',
		'broken_stick1' or 'upton_bstick').
COMP_PAR	0:50	
COMP_PAR	1:0.008	
COMP_PAR	2:0.25	
L_GT_CASCADE	2	Linear gammatone filter cascade ('order').
L_LP_CASCADE	4	Linear low-pass filter cascade ('order').
L_CF	700	Linear filter Centre Frequency (Hz).
L_BWIDTH	130	Linear filter band width (Hz).
L_SCALER	83	Linear filter scale (units).
#CF List Parameters:-		
DIAG_MODE	PARAMETERS	Diagnostic mode ('list' or 'parameters').
CF_MODE	SINGLE	Centre frequency mode ('single', 'ERB', 'ERB_n', 'log',
		'linear', 'focal_log', 'user', 'human', 'cat', 'chinchilla',
		'guinea-pig' or 'macaque').
SINGLE_CF	750	Centre frequency (Hz).
B_MODE	ERB	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig',
		'user' or 'Nonlinear').

Table 5.2. BM_DRNL_Test compression modes.

Mode	Formula	Parameters
Original	??	Threshold, Exponent.
Inv_Power	??	Shift, Slope.
Broken_Stick1	??	a, b, c.
Upton_BStick	??	a, b, c, d.

Examples Using the 'BM_DRNL' Process Module

The following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the AMS program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of this process module.

Filter Shape: AutoTest/BM/DRNLT1.sim

```
# ./BM/DRNLT1.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEChinchl.par
   BM_DRNL_Test < DRNLT750.par
   Ana_FindBin < FindBinl.par
}
```


Tuning Curve: AutoTest/BM/DRNLT2.sim

```
# ./BM/DRNLT2.sim
begin {
```

```
Stim_Puretone < PTonel.par
Trans_Gate < Rampl.par
Filt_BandPass < PEChinchl.par
BM_DRNL_Test < DRNLT750.par
Ana_FindBin < FindBinl.par</pre>
```

Figure 5.28. Tuning Curve for the test version of the DRNL BM model.CF = 300 Hz.

I/O function AutoTest/BM/DRNLT4.sim

```
# ./BM/DRNLT4.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEChinchl.par
   BM_DRNL_Test < DRNLT750.par</pre>
```

```
Ana_FindBin < FindBin1.par
```

BM

See Figure 5.23, "The input-output respnose of the DRNL BM modules'BM_DRNL' and 'BM_DRNL_Test' proces module responses.".

Multiple I/O Functions: AutoTest/BM/DRNLT5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNLT5.sim
begin {
  Stim_Puretone < PTonel.par
  Trans_Gate < Rampl.par
  Filt_BandPass < PEChinchl.par
  BM_DRNL_Test < DRNLT750.par
  Ana_FindBin < FindBinl.par
}
```

Figure 5.29. The input-output functions for the test version of the DRNL BM model.Both on and off CF functions are shown. Note that the off-CF input-output functions show compression at higher intensities.

I/O Ratio vs Frequency: AutoTest/BM/DRNLT6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/DRNLT6.sim
begin {
 Stim_Puretone
                  < PTone2.par
 Trans_Gate
                 < Rampl.par
 BM_DRNL_Test
                 < DRNLT750.par
 Ana_Intensity
                  < Intenstyl.par
}
```

See Figure 5.8, "Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against changing frequency.".

BM_GammaT: Linear BM

Description

100

Simple, linear gamma tone filter basilar membrane model. The filters can be implemented as a full filterbank where the CF's and bandwidths are computed across a range or as a single filter where the CF and bandwidth are specified directly. A single site on the BM is modelled as a cascade of gammatone filters. A fourth-order gammatone filter is therefore modelled with a cascade value of 4. The bandwidth parameter applies to a single filter before cascading.

For further information on the use of BM filterbanks see the section called "Using the Basilar Membrane Filter Modules".

Inputs	Arbitrary signal input.
Outputs	Produces multi-channel output signal, according to the CF list parameters.
Reference	

Module Parameters

Example 5.5. BM_GammaT Parameter File

CASCADE	4	Filter cascade.
#CF List Param	eters:-	
DIAG_MODE	PARAMETERS	Diagnostic mode ('list' or 'parameters').
CF_MODE	LOG	Centre frequency mode ('single', 'ERB', 'ERB_n', 'log', 'linear',
		'focal_log', 'user', 'human', 'cat', 'chinchilla', 'guinea-pig' or
		'macaque').
MIN_CF	100	Minimum centre frequency (Hz).
MAX_CF	10000	Maximum centre frequency (Hz).
CHANNELS	30	No. of centre frequencies.
B_MODE	ERB	Bandwidth mode ('ERB', 'Custom_ERB', 'Guinea_Pig', 'user' or
		'Nonlinear').

Impulse Response Example: AutoTest/BM/GammaT3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT3.sim
begin {
   Stim_Click < Click1.par
   BM_GammaT < GammaTlk.par</pre>
```

}

Figure 5.30. The impulse response of the GammaT BM modelCF = 1 kHz.

BM

Gain Response Example: AutoTest/BM/GammaT11.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT11.sim
begin {
   Stim_Click < Click3.par
   BM_GammaT < GammaT1k.par
   Ana_FourierT < FourierT1.par
}</pre>
```

Figure 5.31. Fourier analysis of the GammaT BM model response to a single toneCF = 1 kHz.

Filter Shape: AutoTest/BM/GammaT1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT1.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PreEmph1.par
   BM_GammaT < GammaT1k.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Figure 5.32. GammaT BM model filter function.CF = 1 kHz.

Tuning Curve: AutoTest/BM/GammaT2.sim

BM

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTlk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

Figure 5.33. GammaT BM model Tuning curve.CF = 1 kHz.

I/O function AutoTest/BM/GammaT4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT4.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTlk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

See Figure 5.6, "The input-output response of all the BM models. The 'GammaT' and 'Cooke' functions show the linear response.". Note that this filter has a linear input-output response.

Multiple I/O Functions: AutoTest/BM/GammaT5.sim

This example simulation script with its associated parameter files is in the

AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT5.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTlk.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

Figure 5.34. The input-output functions for the GammaT BM model.Both on and off CF functions are shown.

I/O Ratio vs Frequency: AutoTest/BM/GammaT6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./BM/GammaT6.sim

```
begin {
```

```
Stim_Puretone < PTone2.par
Trans_Gate < Ramp1.par
BM_GammaT < GammaTlk.par
Ana_Intensity < Intensty1.par
```

}

See Figure 5.8, "Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against changing frequency.".

Latency: AutoTest/BM/GammaT7.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT7.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTLogl.par
   Ana_Intensity < Intenstyl.par
}</pre>
```

See Figure 5.9, "Latency of response for the BM models.". The latency for this model compares very well with experiment (see [16]).

Q vs Frequency: AutoTest/BM/GammaT8.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/GammaT8.sim
begin {
  Stim_Puretone < PTone3.par
  Trans_Gate < Ramp1.par
  BM_GammaT < GammaT1k.par
  Ana_Intensity < Intensty1.par</pre>
```

}

See Figure 5.10, "The Q10 tuning characteristics for the BM models.".

BM_Zhang: Non-linear BM (1993) File name: MoBMZhang.[ch]

Description

This is the Zhang et al [34] non-linear basilar membrane filter model. It was revised from C code provided by the authors (the 'ARLO' code). The centre frequency mode is controlled using the UtCFList module as described in the section called "Using the Basilar Membrane Filter Modules".

For further information on the use of BM filterbanks see the section called "Using the Basilar Membrane Filter Modules".

Inputs	Arbitrary signal input.
Outputs	Produces multi-channel output signal, according to the CF list parameters.
Reference	[34]

Module Parameters

Example 5.6. BM_Zhang Parameter File

MODEL	FEED_FORWARD_NL	Model type ('feed_forward_nl').
SPECIES	HUMAN	Species type ('Human').
MICRO_PASCALS	ON	Input expected in micro pascals instead of pascals
		('on' or 'off').
N_ORDER	3	Order of the narrow bandpass filter (int).
GAMMA_CP	3	Order of the wide bandpass filter (int).
CORNER_CP	8	Corner parameter at which the BM starts compression
SLOPE_CP	0.22	Slope of compression nonlinearity in Boltzmann
		combination.
STRENGTH_CP	0.08	Strength of compression nonlinearity in Boltzmann
		combination.
X0_CP	5	Parameter in Boltzman function.
S0_CP	12	Parameter in Boltzman function.
X1_CP	5	Parameter in Boltzman function.
S1_CP	5	Parameter in Boltzman function.
SHIFT_CP	7	Parameter in Boltzman function.
CUT_CP	800	Cut-off frequency of control-path low-path filter (Hz).
K_CP	3	Order of control-path low-pass filter.
R0	0.05	Ratio of tau_LB (lower bound of tau_SP) to
		tau_narrow
#CF List Parameters:-		
DIAG_MODE	PARAMETERS	Diagnostic mode ('list' or 'parameters').
CF_MODE	LOG	Centre frequency mode ('single', 'ERB', 'ERB_n',
		'log', 'linear', 'focal_log', 'user', 'human', 'cat',
		'chinchilla', 'guinea-pig' or 'macaque').
MIN_CF	100	Minimum centre frequency (Hz).
MAX_CF	10000	Maximum centre frequency (Hz).
CHANNELS	30	No. of centre frequencies.
B_MODE	INTERNAL_DYNAMIC	Bandwidth mode ('ERB', 'Custom_ERB',
		'Guinea_Pig', 'user' or 'Nonlinear').

Examples Using the 'BM_Zhang' Process Module

BM

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the AMS program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of this process module.

Impulse Response Example: AutoTest/BM/Zhang3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Zhang3.sim
begin {
   Stim_Click < Click1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang1k.par
   Display_Signal
}
```


Figure 5.35. The impulse response of the Zhang BM modelCF = 1 kHz.

FT Analysis Example: AutoTest/BM/Zhang10.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Zhang10.sim
begin {
   Stim_Puretone_Multi < MPTone2.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang1k.par
   Ana_FourierT < FourierT1.par
}
```

Figure 5.36. Fourier analysis of the Zhang BM model response to a two-tone stimulus.CF = 1 kHz.

Gain Response Example: AutoTest/BM/Zhang11.sim

```
# ./BM/Zhangl1.sim
begin {
   Stim_Click < Click3.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang1k.par
   Ana_FourierT < FourierT1.par
}
```


Figure 5.37. Fourier analysis of the Zhang BM model response to a single toneCF = 1 kHz.

Filter Shape: AutoTest/BM/Zhang1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./BM/Zhangl.sim
begin {

Stim_Puretone < PTonel.par

```
Trans_Gate < Rampl.par
Filt_BandPass < PEHuYl.par
BM_Zhang < Zhanglk.par
Ana_Intensity < Intenstyl.par</pre>
```

Figure 5.38. Zhang BM model filter function.CF = 1 kHz.

Tuning Curve: AutoTest/BM/Zhang2.sim

```
# ./BM/Zhang2.sim
begin {
```

Stim_Puretone	< PTonel.par
Trans_Gate	< Ramp1.par
Filt_BandPass	< PEHuY1.par
BM_Zhang	< Zhang1k.par
Ana_Intensity	< Intenstyl.par

}

Figure 5.39. Zhang BM model Tuning curve.CF = 1 kHz.

I/O function AutoTest/BM/Zhang4.sim

```
# ./BM/Zhang4.sim
begin {
   Stim_Puretone < PTone4.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang1k.par
   Ana_Intensity < Intensty1.par
}
```

See Figure 5.6, "The input-output response of all the BM models. The 'GammaT' and 'Cooke' functions show the linear response.".

Multiple I/O Functions: AutoTest/BM/Zhang5.sim

```
# ./BM/Zhang5.sim
begin {
  Stim_Puretone < PTone4.par
  Trans_Gate < Rampl.par
  Filt_BandPass < PEHuY1.par
  BM_Zhang < Zhang8k.par
  Ana_Intensity < Intensty1.par
}
```


I/O Ratio vs Frequency: AutoTest/BM/Zhang6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Zhang6.sim
begin {
  Stim_Puretone < PTone2.par
  Trans_Gate < Ramp1.par
  BM_Zhang < Zhanglk.par
  Ana_Intensity < Intensty1.par
}
```

See Figure 5.8, "Input-output (I/O) ratio functions for all the BM models. The I/O characteristics are plotted against changing frequency.".

Latency: AutoTest/BM/Zhang7.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Zhang7.sim
begin {
  Stim_Click < Click2.par
  Trans_Gate < Ramp1.par
  Filt_BandPass < PEHuY1.par
  BM_Zhang < ZhangLog1.par
  Ana_FindNextIndex < FindInd1.par</pre>
```

}

See Figure 5.9, "Latency of response for the BM models.".

Q vs Frequency: AutoTest/BM/Zhang8.sim

```
# ./BM/Zhang8.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhanglk.par
   Ana_Intensity < Intensty1.par</pre>
```

}

See Figure 5.10, "The Q10 tuning characteristics for the BM models.".

Distortion Products: AutoTest/BM/Zhang9.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Zhang9.sim
begin {
   Stim_Puretone_Multi < MPTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEHuYl.par
   BM_Zhang < Zhanglk.par
   Ana_FourierT < FourierTl.par
}
```

Figure 5.41. Distortion products investigation for the Zhang BM model. A similar analysis paradigm as used in [29] was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the DRNL filter, and both compare well with experimental data (see Figure 5.25, "Distortion products investigation for the DRNL BM model. A similar analysis paradigm as used in was employed: the f1 tone was kept at a constant level while f2 was increased in level. The outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the outputs shown are the respective frequency component intensities as determined from a fourier analysis. The response is similar to that of the Carney filter, and both compare well with experimental data (see).").

Two Tone Suppression: AutoTest/BM/Zhang12.sim

BM

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./BM/Zhang12.sim
begin {
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang1k.par
}</pre>
```

Figure 5.42. Two-tone suppression response for the Zhang BM model. Two stimuli are used. There is a single pure tone, and the other consisting of two pure tones: a probe tone, T1 and a suppresser tone, T2. The relative suppression is then calculated by dividing the unsuppressed model FFT modulus by the suppressed output modulus and multiplying by 100. This is calculated from the Fourier component at the probe frequency.

BM

Chapter 6. Display Modules

Display_Signal: Standard Signal Display File name: GrSignalDisp.[cpp,h]

Description

This module allows the signal data held by a process to be displayed. Programs may always include this module, however the signal display will only be produced if the program has been compiled using the DSAM library with Graphics Support included. The display module does not change the input signal passed to it. This means that, the display module is 'transparent'.

Inputs Arbitrary signal input. Passes the input signal on to the next process unchanged. Outputs Reference

Module Parameters

Example 6.1. Display_Signal Parameter File

MAGNIFICATION	1	Signal magnification.
NORMALISATION	MIDDLE	Y normalisation mode ('bottom' or 'middle').
CHANNEL_STEP	1	Channel stepping mode.
NUMGREYSCALES	10	Number of grey scales.
X_RESOLUTION	0.01	Resolution of X scale (1 - low, fractions are higher).
WIDTH	-1	Displayed signal width (seconds or x units).
Y_AXIS_TITLE		Y-axis title.
Y_AXIS_MODE	AUTO	Y-axis mode ('channel' (No.) or 'scale').
AUTO_SCALING	ON	Automatic scaling ('on' or 'off').
AUTO_Y_SCALE	ON	Automatic y-axis scale ('on' or 'off').
MAXY	0	Maximum Y value (for manual scaling).
MINY	0	Minimum Y Value (for manual scaling).
Y_NUMBER_FORMAT	"y"	Y axis scale number format, (e.g. y.yye-3).
Y_DEC_PLACES	0	Y axis scale decimal places.
Y_TICKS	15	Y axis tick marks.
Y_INSET_SCALE	ON	Y inset scale mode ('on' or 'off').
X_AXIS_TITLE		X axis title.
AUTO_X_SCALE	ON	Autoscale option for x-axis ('on' or 'off')
X_NUMBER_FORMAT	"xe-3"	X axis scale number format, (e.g. x.xxe-3).
X_DEC_PLACES	0	X axis scale decimal places.
X_TICKS	6	X axis tick marks.
X_OFFSET	0	X offset for display in zoom mode (x units).
X_EXTENT	-1	X extent for display in zoom mode (x units or -1 for end of signal).
WIN_TITLE		Display window title.
MODE	LINE	Display mode ('off', 'line' or 'gray_scale').
SUMMARYDISPLAY	OFF	Summary display mode ('on' or 'off').
FRAMEDELAY	0	Delay between display frames (s)
TOPMARGIN	5	Top margin for display (percent of display height).
WIN_HEIGHT	500	Display frame height (pixel units).
WIN_WIDTH	440	Display frame width (pixel units).
WIN_X_POS	1	Display frame X position (pixel units).
WIN_Y_POS	16	Display frame Y position (pixel units).

Examples Using the 'Display_Signal' Process Module

Example: AutoTest/Di/Meddis86.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Di/Meddis86.sim
begin {
   Stim_PureTone_2 < P2Tonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTLogl.par
   IHC_Meddis86 < Meddis86.par
   Display_Signal < Displ.par
}
```

Figure 6.1. Signal Display WindowOutput from the Hair Cell process in the Simulation is shown.

Displays

Chapter 7. Filter Process Modules

Filt_BandPass: Band pass filter process

File name: FIBandPass.[ch]

Description

This is a band pass filter process, which is typically used as the outer-/middle-ear filter model but can be applied generally. It uses a first order band pass filter, cascaded **order** times.

InputsArbitrary signal input.OutputsProduces an output signal with the same dimensions as the input signal.Reference[3]

Module Parameters

Example 7.1. Filt_Bandpass Parameter File

CASCADE	2	Filter cascade.
GAIN	0	Pre-attenuation for filter (dB).
LOWER_FREQ	450	Lower, 3 dB down cut-off frequency (Hz).
UPPER_FREQ	8500	Upper, 3 dB down cut-off frequency (Hz).

Examples Using the 'Filt_Bandpass' Process Module

Example: AutoTest/FI/BPass1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Fl/BPass1.sim
begin {
   Stim_PureTone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Figure 7.1. Filter shape for the Bandpass FilterOften used as outer-/middle-ear preemphasis model.

Filt_FIR: Finite Impulse Response filter.

File name: FIFIR.[ch]

Description

This routine process is an FIR filter. For each channel of the signal, the filtered output samples, y are produced from the input samples, x using the FIR equation

$$y_n = \sum_{k=0}^{M} c_k x_{n-k}$$

- where Ck are the filter coefficients (the impulse response function). This module is under development, and at present only works in 'user' mode when the FIR coefficients are supplied in the parameter file.

Inputs In user mode the input sampling interval must correspond to the sampling rate used to produce the filter coefficients. Outputs Produces an output signal with the same dimensions as the input signal. Reference

Module Parameters

123
Example 7.2. Filt_FIR Parameter File

DIAG_MODE	OFF	Diagnostic mode ('off', 'screen' or <file name="">).</file>
TYPE	USER	FIR filter type 'bandpass', 'differentiator' or 'Hilber').
NUM_TAPS	0	Number of filter tapsl
NUM_BANDS	0	No. of frequency bands.

Table 7.1. Filt_FIR: Diagnostic mode options

Diagnostic	Description
Mode	
off	No diagnostics are output.;
screen	Diagnostics from the module are output to the screen.
error	Diagnostics are output to the standard error output stream (stderr on Unix)
<file name=""></file>	Diagnostics are output to the specified file.

Table 7.2. Filt_FIR: Type mode options

Туре	Description
user	Each of the freq_resp array entries is the corresponding filter coefficient. The num_bands
	parameter should be set to the number of filter coefficients

Examples Using the 'Filt_FIR' Process Module

Example: AutoTest/FI/FIR1.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./Fl/FIR1.sim
begin {
   Stim_PureTone < PTone3.par
   Trans_Gate < Rampl.par
   Filt_FIR < FIRff_50k.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Figure 7.2. Filter shape for the FIR process module.

Filt_MultiBPass: Multiple band pass filter.

File name: FIMultiBPass.[ch]

Description

This is the multi-filter band pass process, which is often used as an outer-/middle-ear filter model but may have applications elsewhere. It uses a specified number of first order band pass filter, each capable of being cascaded **order** times, to model the effects of this section of the auditory periphery. The filters operate in parallel:

Figure 7.3. Multi-Bandpass filter

InputsArbitrary signal input.OutputsProduces an output signal with the same dimensions as the input signal.Reference

Module Parameters

Example 7.3. Filt_MultiBPass Parameter File

NUM_FILTERS	3	No. of parallel band pass filters.
CASCADE	0:2	
CASCADE	1:2	
CASCADE	2:2	
GAIN	0:1.5	
GAIN	1:6	
GAIN	2:-11	
LOWER_FREQ	0:330	
LOWER_FREQ	1:1900	
LOWER_FREQ	2:7500	
UPPER_FREQ	0:5500	
UPPER_FREQ	1:5000	
UPPER_FREQ	2:1400	0

Examples Using the 'Filt_MultiBPass' Process Module Example: AutoTest/FI/MBPass1.sim

```
# ./Fl/MBPass1.sim
begin {
   Stim_PureTone < PTonel.par
   Trans_Gate < Ramp1.par
   Filt_MultiBPass < MBPassPE1.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Figure 7.4. Filter shape for the multi-bandpass filterOften used as outer-/middle-ear preemphasis model.

Filt_LowPass: Low pass filter process

File name: FILowPass.[ch]

Description

This simple low-pass is filter is used as a dendritic filter model but also has general applications. In the dendritic filter model it converts summed spike events into a post-synaptic potential.

InputsArbitrary signal input.OutputsProduces an output signal with the same dimensions as the input signal.Reference

Module Parameters

Example 7.4. Filt_LowPass Parameter File

MODENORMAL Output mode for model ('normal' or 'scaled').CUT_OFF_FREQ5000Cut-off frequency (3 dB down point - Hz).SCALE1Signal multiplier scale ('scaled' mode only).

Examples Using the 'Filt_LowPass' Process Module

Example: AutoTest/Fl/LowPass1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Fl/LowPass1.sim
begin {
   Stim_PureTone < PTone2.par
   Trans_Gate < Ramp1.par
   Filt_LowPass < Dendrite1.par
   Ana_Intensity < Intensty1.par
}</pre>
```

Figure 7.5. Filter shape for the low-pass filterThis process module is often used as a dendritic filtering model.

Example: AutoTest/Fl/LowPass2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Fl/LowPass2.sim
begin {
   Stim_Click < Click1.par
   Filt_LowPass < Dendrite1.par
}</pre>
```

Figure 7.6. Response of the low pass filter process click stimulusThis process module is often used as a dendritic filtering model.

Chapter 8. Input/Output Modules

DataFile In/DataFile Out: Sound File Format Support File name: FiDataFile.[ch]

Description

The DataFile_In and DataFile_Out process modules provide the sound file format support. For all intents and purposes these are two processes, however, the same code module represents them both. This means that both modules use the same parameter sets, according to the file format being used. Table 8.1, "Supported File Formats", shows the file formats that can be read or written respectively using these modules.

Table 8.1. Supported File Formats

Extension	Description
'.aiff' or '.aif'	AIFF (audio interchange file format),
'.wav'	Microsoft WAV format
'.dat'	Multi-column ASCII (text) files (without a time column)
'.raw'	Raw binary file.

If the main portion of the file name is given as a minus sign, e.g. '-.aif', the DataFile_In/Out module will read or write to *stdoin* or *stdout*. This allows data to be passed using UNIX pipes (e.g. 'dsam_program1 | other_program').

The AIFF standard has no provision to save the magnitude of a signal, however, '. AIFF' files created using this module include a custom AIFF chunk or header that records the signal magnitude. This means that such a file will have the correct magnitude set when read in by this module.

Some parameters are technical in nature. For example, *endian_mode* is specific to your type of computer. Use the default values whenever possible.

Several parameters are ignored when their values are given in the data file itself. For example, samplerate is specified within the 'AIFF' and 'WAV' file formats, and is therefore not controlled by the module.

The Gain parameter is important when the gain is not specified within the respective file format. For example, data in '.wav' files are normalised to lie between -1 and +1. The user must therefore supply a gain parameter in (dB) to restore the input signal to a level in micro-Pascals. To do this, it is normally necessary to know the normalisation factor used when creating the '.wav' file.

Inputs Arbitrary single process: For DataFile_Out, none for DataFile_In. Outputs For DataFile In, an output signal is produced, dependent upon the input sound file and the process parameters.

Reference

Module Parameters

Example 8.1. DataFile_In/Out Parameter File

FILENAME	output.dat	Stimulus file name.
WORDSIZE	2	Default word size for sound data (1,2 or 4 bytes)
ENDIAN_MODE	DEFAULT	Default (for format), 'little' or 'big'-endian.
CHANNELS	1	No. of Channels: for raw binary and ASCII files.)
NORM_MODE	-1	Normalisation factor for writing (either 0 or -ve: automatic).
SAMPLERATE	8000	Default sample rate: for raw binary and ASCII files (Hz).
DURATION	-1	Duration of read signal: $-ve = unlimited (s)$
STARTTIME	0	Start time (offset) for signal (s).
GAIN	0	Relative signal gain (dB).

Examples Using the 'DataFilt_In/Out' Process Module AIFF Read Example: AutoTest/IO/DFAIFF1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IO/DFAIFF1.sim
begin {
    DataFile_In < DFAIFF1.par
    Display_Signal
}</pre>
```

Figure 8.1. AIFF stimulus read by the DataFile module

Ю

Microsoft WAVE Read Example: AutoTest/IO/DFWAV1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IO/DFWAV1.sim
begin {
    DataFile_In < DFWAV1.par
    Display_Signal
}</pre>
```

Figure 8.2. Microsoft WAVE stimulus read by the DataFile module

Raw binary Read Example: AutoTest/IO/DFRaw1.sim

Ю

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IO/DFRaw1.sim
begin {
    DataFile_In < DFRaw1.par
    Display_Signal
}</pre>
```

Figure 8.3. Raw binary stimulus read by the DataFile module

Chapter 9. Transduction Model **Modules**

IHC_Carney: Inner Hair Cell Synapse (1993) File name: MolHCCarney.[ch]

Description

Laurel H. Carney inner hair cell (IHC) synapse module ([5]). It requires an IHC receptor potential module as input (e.g. see IHCRP_Carney It outputs spike probabilities.

Inputs	Arbitrary single input, however, it expects input from an inner hair cell receptor potential
-	process.
Outputs	Produces an output signal of spike probabilities, with the same dimensions as the input
-	signal.
Reference	[5]

Module Parameters

Example 9.1. IHC_Carney Parameter File

V_MAX	10	Maximum depolarising hair cell voltage, Vmax (V).
R0	70	Resting release from synapse, R0 (spikes/s).
P_REST	0.015	Resting permeability, Prest ('volume'/s).
PG_MAX	0.08	Maximum global permeability, PGmax ('volume'/s).
PL_MAX	0.1	Maximum local permeability, PLmax ('volume'/s).
PI_MAX	1.5	Maximum immediate permeability, PImax ('volume'/s)
VL_MAX	0.003	Maximum local volume, VLmax ('volume').
VL_MIN	0.001	Minimum local volume, VLmin ('volume').
VI_MAX	0.0003	Maximum immediate volume, VImax ('volume').
VI_MIN	0.0001	Minimum immediate volume, VImin ('volume').

Examples Using the 'IHC_Carney' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the AMS program. These simulation scripts are run using the AutoTest program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/IHC/Carney5.sim

```
# ./IHC/Carney5.sim
begin {
 Stim_Puretone_2 < P2Tone1.par</pre>
 Trans Gate < Rampl.par
 BM_Carney
                < Carney1k.par
```

```
IHCRP_Carney < CarneyRP1.par
IHC_Carney < CarneyIHC1.par
AN_SG_Binomial < BinomSG1.par
Ana_Histogram < PSTH3.par</pre>
```

Figure 9.1. Post stimulus time histogram (PSTH) for the Carney AN model

Phase-locking vs Frequency Example: AutoTest/IHC/Carney1.sim

```
# ./IHC/Carney1.sim
begin {
```

Stim_Puretone	< PTonel.par
Trans_Gate	< Rampl.par
BM_Carney	< Carney1k.par
IHCRP_Carney	< CarneyRP1.par
IHC_Carney	< CarneyIHC1.par

```
Ana_Histogram < PH1.par
}
```


Figure 9.2. Phase-locking vs frequency Firing characteristics for the DSAM AN models

Phase-locking vs Intensity Example: AutoTest/IHC/Carney2.sim

```
# ./IHC/Carney2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   BM_Carney < Carneylk.par
   IHCRP_Carney < CarneyRPl.par
   IHC_Carney < CarneyIHCl.par
}
```


Figure 9.3. Carney AN Model: Firing characteristics vs intensity

Figure 9.4. Phase-locking vs Intensity vs intensity. Firing characteristics for the DSAM AN models

Rate-Intensity Functions (Spike Probabilities) Example: AutoTest/IHC/Carney3.sim

```
# ./IHC/Carney3.sim
begin {
 Stim_Puretone
                 < PTone2.par
 Trans_Gate
                 < Rampl.par
                < Carney1k.par
 BM_Carney
 IHCRP_Carney
                 < CarneyRP1.par
 reset hi
mr% repeat 1 {
 IHC_Carney
                 < CarneyIHC1.par
 hi% Ana_Histogram
                     < PSTH1.par
 }
}
```


Figure 9.5. Carney AN model: Rate-intensity functions

Rate-Intensity Functions (Multiple Runs) Example: AutoTest/IHC/Carney4.sim

```
# ./IHC/Carney4.sim
begin {
                 < PTone2.par
 Stim_Puretone
 Trans Gate
                < Rampl.par
                < Carney1k.par
 BM_Carney
 IHCRP_Carney
                 < CarneyRP1.par
 IHC_Carney
                 < CarneyIHC1.par
 reset hi
mr% repeat 200 {
                 < Carney1SG.par
 AN_SG_Carney
 hi% Ana_Histogram
                      < PSTH2.par
 }
}
```

Figure 9.6. Carney AN model: Rate-intensity functions Rate-intensity functions for the Carney AN model. Note that the main parameter file was changed to produce this diagram: the AN_SG_Carney module was put in (using the 'Carney1SG.par' module parameter file, the 'Histogm2.par' module parameter file was replaced by 'Histogm4.par' and the number of model runs was set to 200.

Figure 9.7. Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models

Two-component Adaptation Example: AutoTest/IHC/Carney6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Carney6.sim
begin {
 Stim_Puretone
               < PTone4.par
 Trans_Gate
                < Rampl.par
 BM_Carney
                < Carney1k.par
 IHCRP_Carney
                < CarneyRP1.par
 IHC_Carney
                < CarneyIHC1.par
 reset hi
                    < PSTH5.par
hi% Ana_Histogram
}
```

Figure 9.8. Carney AN Model: Two-component adaptation characteristics

Two-Tone Suppression Example: AutoTest/IHC/Carney7.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Carney7.sim
begin {
 Stim_Puretone_Multi < MPTone1.par</pre>
 Trans_Gate
                < Rampl.par
 BM_Carney
                < Carney4k.par
 IHCRP_Carney
                 < CarneyRP1.par
 IHC_Carney
                 < CarneyIHC1.par
 reset hi
mr% repeat 1 {
 hi% Ana_Histogram
                      < PSTH5.par
 }
}
```

Figure 9.9. Carney AN Model: Two-tone suppression characteristics.

IHC_Cooke91: Inner Hair Cell (1991)

Description

Martin Cooke (1991) inner hair cell model.

Inputs	Aribrary single input, however, it expects input from an inner hair cell receptor potential
	process.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	

Module Parameters

Example 9.2. IHC_Cooke91 Parameter File

C_VALUE	100	Crawford and Fettiplace c value.
RELEASE	24	Release fraction.
REFILL	6	Replenishment (refill) fraction.
SPONT_FIRING	50	Desired spontaneous firing rate (spikes/s).
MAX_FIRING	1000	Maximum possible firing rate (spikes/s).

Examples Using the 'IHC_Cooke91' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/IHC/Cooke5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Cooke5.sim
begin {
   Stim_Puretone_2 < P2Tonel.par
   Trans_Gate < Rampl.par
   BM_Cooke < CookePowlk.par
   IHC_Cooke91 < Cooke91.par
   Ana_Histogram < PSTH3.par
}</pre>
```


Figure 9.10. Post stimulus time histogram (PSTH) for the Cooke AN model

146

Phase-locking vs Frequency Example: AutoTest/IHC/Cooke1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Cookel.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   BM_Cooke < CookeAMlk.par
   IHC_Cooke91 < Cooke91.par
   Ana_Histogram < PH1.par
}
```

See Figure 9.2, "Phase-locking vs frequency Firing characteristics for the DSAM AN models". Compared to the other models, the Cooke AN model has very poor synchronisation characteristics.

Phase-locking vs Intensity Example: AutoTest/IHC/Cooke2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Cooke2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   BM_Cooke < CookeAMlk.par
   IHC_Cooke91 < Cooke91.par
}</pre>
```

Figure 9.11. Cooke AN Model: Firing characteristics vs intensity

See also Figure 9.4, "Phase-locking vs Intensity vs intensity. Firing characteristics for the DSAM AN models".

Rate-Intensity Functions (Spike Probabilities) Example: AutoTest/IHC/Cooke3.sim

```
# ./IHC/Cooke3.sim
begin {
 Stim_Puretone
                  < PTone2.par
 Trans_Gate
                 < Rampl.par
 BM_Cooke
                < CookeAM1k.par
 IHC_Cooke91
                 < Cooke91.par
 reset hi
mr% repeat 1 {
 hi% Ana_Histogram
                      < PSTH1.par
 }
}
```


Figure 9.12. Cooke AN model: Rate-intensity functions

See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Two-component Adaptation Example: AutoTest/IHC/Cooke6.sim

```
# ./IHC/Cooke6.sim
begin {
   Stim_Puretone < PTone4.par
   Trans_Gate < Ramp1.par
   BM_Cooke < CookeAM1k.par
   IHC_Cooke91 < Cooke91.par
   reset hi
hi% Ana_Histogram < PSTH5.par
}
```


Figure 9.13. Cooke AN Model: Two-component adaptation characteristics

IHC_Meddis86: Inner Hair Cell (1986) File name: MolHC86Meddis.[ch]

Description

Inputs	Aribrary single input, usually from the basilar membrane process modules.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	[20]

Module Parameters

Example 9.3. IHC_Meddis86 Parameter File

PERM_CONST_A	100	Permeability constant A (units/s).
PERM_CONST_B	6000	Permeability constant B (units/s).
RELEASE_G	2000	Release rate (units/s).
REPLENISH_Y	5.05	Replenishment rate (units/s).
LOSS_L	2500	Loss rate (units/s).
REPROCESS_X	66.31	Reprocessing rate (units/s).
RECOVERY_R	6580	Recovery rate (units/s).
MAX_FREE_POOL_M	1	Max. no. of transmitter packets in free pool.
FIRING_RATE_H	50000	Firing rate (spikes/s)

Examples Using the 'IHC_Meddis86' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/IHC/Meddis86_5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Meddis86_5.sim
begin {
   Stim_Puretone_2 < P2Tonel.par
   Trans_Gate < Rampl.par
   IHC_Meddis86 < Meddis86.par
   AN_SG_Binomial < BinomSGl.par
   Ana_Histogram < PSTH3.par
}</pre>
```

Figure 9.14. Post stimulus time histogram (PSTH) for the Carney AN model

Phase-locking vs Frequency Example: AutoTest/IHC/Meddis86_1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Meddis86_2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   IHC_Meddis86 < Meddis86.par
   Ana_Histogram < PH1.par
}</pre>
```

See Figure 9.2, "Phase-locking vs frequency Firing characteristics for the DSAM AN models".

Phase-locking vs Intensity Example: AutoTest/IHC/Meddis86_2.sim

```
# ./IHC/Meddis86_2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   IHC_Meddis86 < Meddis86.par
}</pre>
```

Figure 9.15. Meddis86 AN Model: Firing characteristics vs intensity

Rate-Intensity Functions (Spike Probabilities) Example: AutoTest/IHC/Meddis86_3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./IHC/Meddis86_3.sim
begin {

Stim_Puretone < PTone2.par Trans_Gate < Rampl.par

```
IHC_Meddis86 < Meddis86.par
reset hi
mr% repeat 1 {
    hi% Ana_Histogram < PSTH1.par
    }
}</pre>
```


Figure 9.16. Meddis86 AN model: Rate-intensity functions

Rate-Intensity Functions (Multiple Runs) Example: AutoTest/IHC/Meddis86_4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

./IHC/Meddis86_4.sim
begin {

Stim_Puretone< PTone2.par</th>Trans_Gate< Ramp1.par</td>IHC_Meddis86< Meddis86.par</td>

```
reset hi
mr% repeat 200 {
  AN_SG_Simple < SpikeGnl.par
  hi% Ana_Histogram < PSTH2.par
  }
}</pre>
```

Figure 9.17. Meddis86 AN model: Rate-intensity functions Rate-intensity functions for the Meddis86_ AN model. Note that the main parameter file was changed to produce this diagram: the $AN_SG_Meddis86_$ module was put in (using the 'Meddis86_1SG.par' module parameter file, the 'Histogm2.par' module parameter file was replaced by'Histogm4.par' and the number of model runs was set to 200.

See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Two-component Adaptation Example: AutoTest/IHC/Meddis86_6.sim

```
# ./IHC/Meddis86_6.sim
begin {
   Stim_Puretone < PTone4.par
   Trans_Gate < Rampl.par
   IHC_Meddis86 < Meddis86.par
   reset hi
   hi% Ana_Histogram < PSTH5.par
}</pre>
```


IHC_Meddis86a: Inner Hair Cell Synapse File name: MolHC86aMeddis.[ch]

Description

This module is the Meddis 86a inner hair cell (IHC) synapse module. It is the same as the Meddis 86 IHC model, but using an exponential permeability function. It requires an IHC receptor potential module as input. It outputs spike probabilities.

Inputs	Aribrary single input, however, it expects input from an inner hair cell receptor potential
	process.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	

Module Parameters

Example 9.4. IHC_Meddis86a Parameter File

MAX_FREE_POOL	1	Max. no. of transmitter packets in free pool.
REPLENISH_Y	5.05	Replenishment rate (units per second).
LOSS_L	2500	Loss rate (units per second).
REPROCESS_X	66.31	Reprocessing rate (units per second).
RECOVERY_R	6580	Recovery rate (units per second).
PERM_CONST_H	800	Permeability constant, h.
PERM_CONST_Z	8.6538e+10	Permeability constant, z.
FIRING_RATE_H2	50000	Firing rate (spikes per second).

Examples Using the 'IHC_Meddis86a' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/IHC/Meddis86a5.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./IHC/Meddis86a5.sim
begin {
   Stim_Puretone_2 < P2Tone3.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEDRNL1.par
   BM_DRNL < DRNL18k.par
   IHCRP_Shamma < ShammaRP1.par
   IHC_Meddis86a < Medd86aH.par
   AN_SG_Binomial < BinomSG1.par
   Ana_Histogram < PSTH3.par
}
```

Figure 9.19. Post stimulus time histogram (PSTH) for the Meddis 86a AN model

Phase-locking vs Frequency Example: AutoTest/IHC/Meddis86a1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Meddis86a1.sim
begin {
 Stim_Puretone
                 < PTonel.par
 Trans_Gate
                 < Rampl.par
 Filt_BandPass
                 < PEDRNL1.par
 BM_DRNL
                < DRNL18k.par
 IHCRP_Shamma
                 < ShammaRP1.par
 IHC Meddis86a
                 < Medd86aM.par
 Ana_Histogram
                  < PH1.par
}
```

See Figure 9.2, "Phase-locking vs frequency Firing characteristics for the DSAM AN models".

Phase-locking vs Intensity Example: AutoTest/IHC/Meddis86a2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Meddis86a2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEDRNL1.par
   BM_DRNL < DRNL1k.par
   IHCRP_Shamma < ShammaRP1.par
   IHC_Meddis86a < Medd86aH.par
}
```

Figure 9.20. Meddis 86a AN Model: Firing characteristics vs intensity

See also Figure 9.4, "Phase-locking vs Intensity vs intensity.Firing characteristics for the DSAM AN models".

Rate-Intensity Functions (Spike Probabilities) Example: AutoTest/IHC/Meddis86a3.sim
```
# ./IHC/Meddis86a3.sim
begin {
 Stim Puretone
                 < PTonel.par
                 < Rampl.par
 Trans_Gate
                 < PEDRNL1.par
 Filt_BandPass
 BM_DRNL
                < DRNL1k.par
 IHCRP_Shamma
                 < ShammaRP1.par
 IHC_Meddis86a
                 < Medd86aH.par
 reset hi
mr% repeat 1 {
hi% Ana_Histogram
                      < PSTH1.par
 }
}
```


Figure 9.21. Meddis86a AN model: Rate-intensity functions

See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Rate-Intensity Functions (Multiple Runs) Example: AutoTest/IHC/Meddis86a4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Meddis86a4.sim
begin {
```

```
Stim_Puretone < PTonel.par
Trans_Gate < Rampl.par
Filt_BandPass < PEDRNL1.par
BM_DRNL < DRNL1k.par
IHCRP_Shamma < ShammaRP1.par
IHC_Meddis86a < Medd86aH.par
reset hi
mr% repeat 200 {
AN_SG_Simple < SpikeGn1.par
hi% Ana_Histogram < PSTH2.par
}
```

Figure 9.22. Meddis 86a AN model: Rate-intensity functions Rate-intensity functions for the Meddis 86a AN model. Note that the main parameter file was changed to produce this diagram: the $AN_SG_Meddis86a$ module was put in (using the 'Meddis86a1SG.par' module parameter file, the 'Histogm2.par' module parameter file was replaced by'Histogm4.par' and the number of model runs was set to 200.

See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Two-component Adaptation Example: AutoTest/IHC/Meddis86a6.sim

```
# ./IHC/Meddis86a6.sim
begin {
 Stim_Puretone
                 < PTone4.par
 Trans_Gate
                < Rampl.par
 Filt_BandPass
                 < PEDRNL1.par
 BM_DRNL
               < DRNL1k.par
 IHCRP_Shamma
                 < ShammaRP1.par
 IHC Meddis86a
                 < Medd86aH.par
 reset hi
hi% Ana_Histogram
                    < PSTH5.par
}
```


Figure 9.23. Meddis 86a AN Model: Two-component adaptation characteristics

Two-Tone Suppression Example: AutoTest/IHC/Meddis86a7.sim

```
# ./IHC/Meddis86a7.sim
begin {
 Stim_Puretone_Multi < MPTone2.par</pre>
 Trans_Gate
                 < Rampl.par
 Filt_BandPass
                  < PEDRNL1.par
 BM_DRNL
                < DRNL8k.par
 IHCRP_Shamma
                  < ShammaRP1.par
 IHC_Meddis86a
                  < Medd86aH.par
 reset hi
mr% repeat 1 {
 hi% Ana_Histogram
                      < PSTH5.par
 }
}
```


IHC_Meddis2000: Inner Hair Cell Synapse

File name: MoIHCMeddis2000.[ch]

Description

This is model of the hair cell synapse. The release of neurotransmitter into the synaptic cleft is mediated by calcium ions in all synapses. The transmitter release function is a three-part process.

Part I

Depolarisation of the IHC membrane leads to the opening of calcium ion channels. We employ a third-order process similar to Hudspeth and Lewis (1988) and Kidd and Weiss (1990), but with a time constant that is not voltage dependent. Calcium current (Ica) is a function of the RP

$$I_{Ca}(t) = G_{Ca}^{\max} m_{I_{Ca}}^{3}(t)(V(t) - E_{Ca})$$

where E_{Ca} is the reversal potential for calcium and G_{Ca}^{max} is the calcium conductance in the vicinity of the synapse, with all the channels open and $m_{I_{Ca}}(t)$ is the fraction of calcium channels that are open. The steady state value of the latter, $m_{I_{Ca},\infty}$, is modeled by a Boltzmann function

$$m_{I_{C_a},\infty} = [1 + \beta_{C_a}^{-1} \exp(\gamma_{C_a} V(t))]^{-1}$$

where β_{Ca} and γ_{Ca} are constants chosen to reflect published observations of calcium currents, and $m_{I_{Ca}}(t)$ is a low pass filtered function of $m_{I_{Ca},\infty}$

$$m_{I_{c_a},\infty} = \tau_{I_{c_a}} \frac{dm_{I_{c_a}}(t)}{dt} + m_{I_{c_a}}(t)$$

where $\tau_{I_{Ca}}$ is a time constant.

Part II

Calcium ions enter the cell, and accumulate briefly in the vicinity of the synapse., calcium concentration $[Ca^{2+}](t)$ is modeled as a first-order low-pass filtered function of calcium current, $I_{Ca}(t)$ (after Hudspeth and Lewis (1988)).

$$I_{Ca}(t) = \tau_{[Ca]} \frac{d[Ca^{2+}]^{3}(t)}{dt} - [Ca^{2+}](t)$$

where $\tau_{\rm Ca}$ is a time constant.

Part III

The probability of the release of transmitter is proportional to the cube of the Ca^{2+} concentration. We employ the function:

$$k(t) = \max\left\{ \left(\left[Ca^{2+} \right]^3(t) - \left[Ca^{2+} \right]^3_{thr} \right)_{z,0} \right\}$$

where $[Ca^{2+}]^{3}_{thr}$ is a threshold constant, z is a scalar for converting calcium concentration levels into release rate, and the cube function reflects data by Augustine et al. [1].

The transmitter release rate, k(t), drives a model of synaptic adaptation identical to that given in Lopez-Poveda et. al. (1998) [18]. It simulates the functional characteristics of adaptation, which are assumed here to be due to pre-synaptic transmitter depletion. The scheme is the same as that proposed by Meddis [20] except that release of transmitter into the cleft is now quantal and stochastic. It is described by the following eqns:

$$\frac{dq(t)}{dt} = N\left(\left[w(t,x)\right] + N\left(\left[M - q(t)\right]y\right) - N\left[\left(q(t),k(t)\right]\right]\right)$$

$$\frac{dc(t)}{dt} = N[q(t,k(t))] - lc(t) - rc(t)$$

$$\frac{dw(t)}{dt} = rc(t) - N[W(t), x]$$

InputsAribrary single input, however, it expects input from an inner hair cell recptor potential
process.OutputsProduces an output signal with the same dimensions as the input signal.Reference[32]

Module Parameters

Example 9.5. IHC_Meddis2000 Parameter File

PROB	Output mode: stochastic ('spike') or probability
	('prob').
OFF	Diagnostic mode. Outputs internal states of running
	model in non-threaded mode('off', 'screen' or <file< td=""></file<>
	name>).
ORIGINAL	Calcium conductance mode ('original' or 'revision_1').
ORIGINAL	Cleft replenishment mode ('original' or 'unity').
-1	Random number seed (0 for different seed for each run).
0.066	Calcium reversal potential, E_Ca (Volts).
400	Calcium channel Boltzmann function parameter, beta.
130	Calcium channel Boltzmann function parameter,
	gamma.
3	Calcium channel transmitter release exponent (power).
8e-09	Maximum calcium conductance (Siemens).
4.48e-11	Calcium threshold Concentration.
2e+32	Transmitter release permeability, Z (unitless gain)
0.0001	Calcium current time constant (s).
0.0001	Calcium ion diffusion (accumulation) time constant (s).
10	Max. no. of transmitter packets in free pool (integer).
10	Replenishment rate (units per second).
2580	Loss rate (units per second).
66.31	Reprocessing rate (units per second).
6580	Recovery rate (units per second).
	PROB OFF ORIGINAL ORIGINAL -1 0.066 400 130 3 8e-09 4.48e-11 2e+32 0.0001 0.0001 10 10 2580 66.31 6580

Examples Using the 'IHC_Meddis2000' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/IHC/Med2000_5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Med2000_5.sim
begin {
```

```
Stim_Puretone_2 < P2Tone4.par</pre>
Trans_gate
                < Rampl.par
Filt_BandPass
                 < BPassGP2381.par
BM_DRNL_Test
                 < DRNLT16_7k.par
IHCRP_Shamma3StateVelIn < Shamma3sRP1.par</pre>
                  < Med2000HSRpl.par
IHC_Meddis2000
reset hi
repeat 500 {
AN_SG_Carney
                 < CarneyANSG1.par
hi% Ana_Histogram
                      < PSTH4.par
Display_Signal
 }
}
```


Figure 9.25. Post stimulus time histogram (PSTH) for the Meddis 2000 AN model

167

Phase-locking vs Frequency Example: AutoTest/IHC/Med2000_1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Med2000_1.sim
begin {
Stim_Puretone < PTone3.par
Trans_gate < Ramp1.par
Filt_BandPass < BPassGP2381.par
BM_DRNL_Test < DRNLT16_7k.par
IHCRP_Shamma3StateVelIn < Shamma3sRP1.par
IHC_Meddis2000 < Med2000HSRp1.par
Ana_Histogram < PH1.par
}
```

See Figure 9.2, "Phase-locking vs frequency Firing characteristics for the DSAM AN models".

Phase-locking vs Intensity Example: AutoTest/IHC/Med2000_2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Med2000_2.sim
begin {
 Stim_Puretone
               < PTonel.par
 Trans_Gate
               < Rampl.par
 Filt_BandPass
                < BPassGP4a.par
 Filt_BandPass
                < BPassGP4b.par
               < DRNL_GP4_1k.par
 BM DRNL
 IHCRP_Shamma3StateVelIn < IHCRP_GP3.par
 IHC_Meddis2000
                < Med2000HSRp1.par
 Display_Signal
}
```

Figure 9.26. Meddis 2000 AN Model: Firing characteristics vs intensity


```
See also Figure 9.4, "Phase-locking vs Intensity vs intensity.Firing characteristics for the DSAM AN models".
```

Rate-Intensity Functions (Spike Probabilities) Example: AutoTest/IHC/Med2000_3.sim

```
# ./IHC/Med2000_3.sim
begin {
 Stim_Puretone
                  < PTone3.par
 Trans_Gate
                 < Rampl.par
 Filt_BandPass
                  < BPassGP2381.par
                  < DRNLT16_7k.par
 BM_DRNL_Test
 IHCRP_Shamma3StateVelIn < Shamma3sRP1.par</pre>
 IHC_Meddis2000
                 < Med2000HSRp1.par
 reset hi
mr% repeat 1 {
 hi% Ana_Histogram
                      < PSTH1.par
 }
}
```


Figure 9.27. Meddis 2000 AN model: Rate-intensity functions

Rate-Intensity Functions (Multiple Runs) Example: AutoTest/IHC/Med2000_4.sim

```
# ./IHC/Med2000_4.sim
begin {
 Stim_Puretone
                  < PTone3.par
 Trans Gate
                 < Rampl.par
 Filt_BandPass
                  < BPassGP2381.par
                 < DRNLT16_7k.par
 BM_DRNL_Test
 IHCRP_Shamma3StateVelIn < Shamma3sRP1.par</pre>
 IHC_Meddis2000
                  < Med2000HSRp1.par
 reset hi
mr% repeat 200 {
 AN_SG_Carney
                 < CarneyANSG1.par
 hi% Ana_Histogram
                      < PSTH2.par
 }
}
```

Figure 9.28. Meddis 2000 AN model: Rate-intensity functions Rate-intensity functions for the Meddis 2000_ AN model. Note that the main parameter file was changed to produce this diagram: the $AN_SG_Meddis2000_$ module was put in (using the 'Meddis2000_1SG.par' module parameter file, the 'Histogm2.par' module parameter file was replaced by'Histogm4.par' and the number of model runs was set to 200.

See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Two-component Adaptation Example: AutoTest/IHC/Med2000_6.sim

```
# ./IHC/Med2000_6.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_gate < Ramp1.par
   Filt_BandPass < BPassGP2381.par</pre>
```

```
BM_DRNL_Test < DRNLT16_7k.par
IHCRP_Shamma3StateVelIn < Shamma3sRP1.par
IHC_Meddis2000 < Med2000HSRp1.par
reset hi
hi% Ana_Histogram < PSTH5.par
Display_Signal
}
```


Two-Tone Suppression Example: AutoTest/IHC/Med2000_7.sim

```
# ./IHC/Med2000_7.sim
begin {
   Stim_Puretone_Multi < MPTone2.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < BPassGP4a.par</pre>
```

```
Filt_BandPass
                  < BPassGP4b.par
                < DRNL_GP4_8k.par
 BM_DRNL
 IHCRP_Shamma3StateVelIn < IHCRP_GP3.par</pre>
 reset hi
mr% repeat 1 {
 IHC_Meddis2000 < Med2000HSRp1.par
 hi% Ana_Histogram
                    < PSTH1.par
 }
}
```

Figure 9.30. Meddis 2000 AN Model: Two-tone suppression characteristics.

IHC_Zhang: Inner Hair Cell Synapse (2001)

File name: MoIHCZhang.[ch]

Description

This is the Zhang et al [34] inner hair cell (IHC) synapse. It was revised from C code provided by the authors (the 'ARLO' code). It requires an IHC receptor potential process module as input. It outputs spike probabilities, and was designed to be used with the 'AN_SG_Carney' spike generation module.

Inputs	Arbitrary single input, however, it expects input from an inner hair cell receptor potential
	process.
Outputs	Produces an output signal of spike probabilities, with the same dimensions as the input
	signal.
Reference	[34]

Module Parameters

Example 9.6. IHC_Zhang Parameter File

50	Spontaneous rate of fiber (spikes/s).
130	Steady-state rate (spikes/s).
0.06	Short-term time constant (s).
0.002	Rapid time constant (s).
6	Rapid response amplitude to short-term response amplitude ratio.
0.6	Permeability at high sound level.
1.3	Species dependend voltage staturation parameter.
60	Species dependend voltage staturation parameter.
1	Species dependend voltage staturation parameter.
6	Species dependend voltage staturation parameter.
	50 130 0.06 0.002 6 0.6 1.3 60 1 6

Examples Using the 'IHC_Zhang' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the AMS program. These simulation scripts are run using the AutoTest program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/IHC/Zhang5.sim

```
# ./IHC/Zhang5.sim
begin {
 Stim_Puretone_2 < P2Tone5.par</pre>
 Trans_Gate < Ramp1.par
 Filt_BandPass < PEHuY1.par
               < Zhang1_5k.par
 BM Zhang
IHCRP_Zhang < ZhangRPCat1.par
IHC_Zhang < ZhangIHCCat1.par</pre>
AN SG Carney
                  < Carney3SG.par
                  < PSTH3.par
 Ana_Histogram
Display_Signal
}
```


Phase-locking vs Frequency Example: AutoTest/IHC/Zhang1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Zhang1.sim
begin {
 Stim_Puretone
                 < PTonel.par
 Trans_Gate
                < Rampl.par
 Filt_BandPass
                 < PEHuY1.par
 BM_Zhang
                < Zhang1k.par
 IHCRP_Zhang
                 < ZhangRPCat1.par
 IHC Zhang
                < ZhangIHCCat1.par
 Ana_Histogram
                 < PH1.par
```

}

See Figure 9.2, "Phase-locking vs frequency Firing characteristics for the DSAM AN models".

Phase-locking vs Intensity Example: AutoTest/IHC/Zhang2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Zhang2.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEHuYl.par
   BM_Zhang < Zhanglk.par
   IHCRP_Zhang < ZhangRPCatl.par
   IHC_Zhang < ZhangIHCCatl.par
}
```


Figure 9.32. Zhang AN Model: Firing characteristics vs intensity

See also Figure 9.4, "Phase-locking vs Intensity vs intensity. Firing characteristics for the DSAM AN models".

Rate-Intensity Functions (Spike Probabilities) Example: AutoTest/IHC/Zhang3.sim

```
# ./IHC/Zhang3.sim
begin {
 Stim Puretone
                 < PTone5.par
 Trans_Gate
                < Rampl.par
 Filt_BandPass
                 < PEHuY1.par
 BM_Zhang
                < Zhanglk.par
 IHCRP_Zhang
                 < ZhangRPCat1.par
 IHC_Zhang
                < ZhangIHCCat1.par
 reset hi
mr% repeat 1 {
hi% Ana_Histogram
                      < PSTH1.par
 }
}
```


See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Rate-Intensity Functions (Multiple Runs) Example: AutoTest/IHC/Zhang4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./IHC/Zhang4.sim
begin {
```

```
Stim_Puretone
                < PTone5.par
Trans_Gate
                < Rampl.par
 Filt_BandPass
               < PEHuY1.par
 BM_Zhang
               < Zhang1k.par
 IHCRP_Zhang
               < ZhangRPCat1.par
               < ZhangIHCCat1.par
 IHC_Zhang
Display_Signal
reset hi
mr% repeat 200 {
 AN_SG_Carney
                < Carney4SG.par
hi% Ana_Histogram
                     < PSTH2.par
 }
}
```

Figure 9.34. Zhang AN model: Rate-intensity functions Rate-intensity functions for the Zhang AN model. Note that the main parameter file was changed to produce this diagram: the AN_SG_Zhang module was put in (using the 'Zhang1SG.par' module parameter file, the 'Histogm2.par' module parameter file was replaced by 'Histogm4.par' and the number of model runs was set to 200.

See also Figure 9.7, "Steady-state firing rate vs intensity comparisonFiring characteristics for the DSAM AN models".

Two-component Adaptation Example: AutoTest/IHC/Zhang6.sim

```
# ./IHC/Zhang6.sim
begin {
 Stim_Puretone
                 < PTone4.par
 Trans_Gate
                 < Rampl.par
 Filt_BandPass
                 < PEHuY1.par
 BM_Zhang
                < Zhang1k.par
 IHCRP_Zhang
                 < ZhangRPCat1.par
 IHC Zhang
                < ZhangIHCCat1.par
 reset hi
hi% Ana_Histogram
                     < PSTH5.par
}
```


Figure 9.35. Zhang AN Model: Two-component adaptation characteristics

Two-Tone Suppression Example: AutoTest/IHC/Zhang7.sim

```
# ./IHC/Zhang7.sim
begin {
 Stim_Puretone_Multi < MPTone3.par</pre>
 Trans_Gate
                < Rampl.par
 BM_Zhang
                < Zhang8k.par
 IHCRP_Zhang
                 < ZhangRPCat1.par
 IHC_Zhang
                < ZhangIHCCat1.par
 reset hi
mr% repeat 1 {
hi% Ana_Histogram
                      < PSTH5.par
 }
}
```


IHCRP_Carney: Inner Hair Cell Receptor Potential (1993)

MoHCRPCarney.[ch]

Description

Laurel H. Carney IHC receptor potential module [5]. It supplies input to the inner hair cell synapse models, e.g. IHC_Carney, IHC_Meddis2000, IHC_Zhang or IHC_Meddis86a.

```
InputsArbitrary single process. Usually a basilar membrane process supplies input to this process.OutputsProduces an output signal with the same dimensions as the input signal.Reference[5]
```

Module Parameters

Example 9.7. HCRP_Carney Parameter File

FC	1100	Cut-off frequency for OHC low-pass filter, Fc (Hz).
P_D_IHC	1000	Operating point of OHC (feedback) non-linearity, P_Dihc (uPa).
P0	0.462	Asymmetrical bias for OHC non-linearity, P0 (rad)
V_MAX	10	Maximum depolarising hair cell voltage, Vmax (V).
A_D	0.00813	Travelling wave delay coefficient, A_D (s).
A_L	0.00649	Travelling wave delay length constant, A_L (m).
V_REF	0	Reference potential (V).

Examples Using the 'IHCRP_Carney' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/HCRP/Carney4.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./HCRP/Carney4.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Ramp1.par
   BM_Carney < Carney18k.par
   IHCRP_Carney < CarneyRP1.par
   Display_Signal
</pre>
```

```
}
```

Figure 9.37. Pure tone response of the Carney hair cell receptor process module.

AC/DC Ratio vs Frequency Example: AutoTest/HCRP/Carney1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Carney1.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < ../BM/PreEmph1.par
   BM_Carney < Carney18k.par
   IHCRP_Carney < CarneyRP1.par
   @ Display_Signal
}</pre>
```

Figure 9.38. AC/DC frequency dependent characteristics for the DSAM IHCRP models.

Peak/Troughs function Example: AutoTest/HCRP/Carney2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Carney2.sim
begin {
   Stim_Puretone < PTone2.par
   Trans_Gate < Ramp1.par
   BM_Carney < Carney700.par
   IHCRP_Carney < CarneyRP1.par
}</pre>
```

Figure 9.39. Peak-Trough characteristics for the Carney IHCRP model

AC/DC Ratio vs Intensity Example: AutoTest/HCRP/Carney3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Carney3.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   BM_Carney < Carney18k.par
   IHCRP_Carney < CarneyRP1.par
}</pre>
```

Figure 9.40. AC/DC intensity dependent characteristics for the DSAM IHCRP models.

IHCRP_Meddis: Inner Hair Cell Receptor Potential

MoHCRPMeddis.[ch]

Description

This is the Meddis receptor potential module. It supplies input to the inner hair cell synapse models, e.g. IHC_Meddis2000, IHC_Zhang, IHC_Carney or IHC_Meddis86a.

InputsArbitrary single process. Usually a basilar membrane process supplies input to this process.OutputsProduces an output signal with the same dimensions as the input signal.Reference

Module Parameters

Example 9.8. HCRP_Meddis Parameter File

PERM_CONST_A	100	Permeability constant A (units/s).
PERM_CONST_B	6000	Permeability constant B (units/s).
RELEASE_G	2000	Release rate (units/s).
TIME_CONST_TM	0.0001	Receptor potential time constant for IHC model (s).

Examples Using the 'IHCRP_Meddis' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/HCRP/Meddis4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Meddis4.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaT18k.par
   IHCRP_Meddis < MeddisRP1.par
   @ Display_Signal
}</pre>
```


Figure 9.41. Pure tone response of the Meddis hair cell receptor process module.

187

AC/DC Ratio vs Frequency Example: AutoTest/HCRP/Meddis1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Meddisl.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaT18k.par
   IHCRP_Meddis < MeddisRPl.par
   @ Display_Signal
}
```

See Figure 9.38, "AC/DC frequency dependent characteristics for the DSAM IHCRP models.".

Peak/Troughs function Example: AutoTest/HCRP/Meddis2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Meddis2.sim
begin {
   Stim_Puretone < PTone2.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaT700.par
   IHCRP_Meddis < MeddisRP1.par
}</pre>
```

}

AC/DC Ratio vs Intensity Example: AutoTest/HCRP/Meddis3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Meddis3.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTl8k.par
   IHCRP_Meddis < MeddisRPl.par
}</pre>
```

Figure 9.43. AC/DC intensity dependent characteristics for the DSAM IHCRP models.

IHCRP_Shamma: Inner Hair Cell Receptor Potential (1986) MoHCRPCarney.[ch]

Description

This module contains the model for the Shamma hair cell receptor potential [31]. It supplies input to the inner hair cell synapse models, e.g. IHC_Meddis2000, IHC_Zhang, IHC_Carney or IHC_Meddis86a .

Inputs Arbitrary single process. Usually a basilar membrane process supplies input to this process. Outputs Produces an output signal with the same dimensions as the input signal. Reference [31]

Module Parameters

Example 9.9. HCRP_Shamma Parameter File

E_T	0.1	Endocochlear potential, Et (V).
E_K	-0.084	Reversal potential, Ek (V).
RP_CORRECTION	0.04	Reversal potential correction, Rp/(Rt+Rp).
C_TOTAL	6.21e-12	Total capacitance, $C = Ca + Cb$ (F).
G0	4.3e-09	Resting conductance, G0 (S).
G_K	1.07e-08	Potassium conductance, Gk (S = Siemens).
G_MAXC	4.18e-09	Maximum mechanical conductance, Gmax (S).
BETA	0.25	Beta constant, exp(-G1/RT).
GAMMA	1e+07	Gamma constant, Z1/RT (/m).
T_C	0.0003	Cilia/BM time constant (s).
GAIN_C	16	Cilia/BM coupling gain, C (dB).
REF_POT	0	Reference potential (V).

Examples Using the 'IHCRP_Shamma' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/HCRP/Shamma4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Shamma4.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < BPassGP2381.par
   BM_DRNL_Test < DRNLT17_3k.par
   IHCRP_Shamma < ShammaRP1.par
   @ Display_Signal
}
```

Figure 9.44. Pure tone response of the Shamma hair cell receptor process module.

AC/DC Ratio vs Frequency Example: AutoTest/HCRP/Shamma1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Shammal.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < BPassGP2381.par
   BM_DRNL_Test < DRNLT17_3k.par
   IHCRP_Shamma < ShammaRP1.par
}</pre>
```

See Figure 9.38, "AC/DC frequency dependent characteristics for the DSAM IHCRP models.".

Peak/Troughs function Example: AutoTest/HCRP/Shamma2.sim

```
# ./HCRP/Shamma2.sim
begin {
   Stim_Puretone < PTone2.par
   Trans_Gate < Rampl.par
   Filt_BandPass < BPassGP2381.par
   BM_DRNL < DRNL700.par
   IHCRP_Shamma < ShammaRP1.par
}
```

Figure 9.45. Peak-Trough characteristics for the Shamma IHCRP model

AC/DC Ratio vs Intensity Example: AutoTest/HCRP/Meddis3.sim

```
# ./HCRP/Meddis3.sim
begin {
```

```
Stim_Puretone
                < PTonel.par
Trans_Gate
               < Rampl.par
Filt_BandPass
                < PreEmph1.par
BM_GammaT
               < GammaT18k.par
IHCRP Meddis
                < MeddisRP1.par
```

}

See Figure 9.40, "AC/DC intensity dependent characteristics for the DSAM IHCRP models.".

IHCRP_Shamma3StateVelln: Inner Hair Cell Receptor Potential (2002) MoHCRPSham3StVIn.[ch]

Description

This module incorporates a modified version of the model by Shamma et al. ([31]) of the transduction of basilar membrane (BM) motion into receptor potential. It supplies input to the inner hair cell synapse models, e.g. IHC_Meddis2000, IHC_Zhang, IHC_Carney or IHC_Meddis86a. The displacement of the IHC cilia, u(t), is given by

$$\tau_{c} \frac{du(t)}{dt} + u(t) = \tau_{c} C_{cilia} v(t)$$

where C_{cilia} is a gain factor and τ_c is a time constant. Cilia therefore move in phase with BM velocity at low frequencies and with displacement at high frequencies. Cilia displacement causes a change in the number of open ion channels and, consequently, in the apical conductance G(u). The total apical conductance is given by

$$G(u) = G_{cilia}^{\max} \left\{ 1 + \exp\left(-\frac{u(t) - u_0}{s_0}\right) \times \left[1 + \exp\left(-\frac{u(t) - u_1}{s_1}\right)\right] \right\}^{-1} + G_a$$

- where G^{max}_{cilia} is the intracellular conductance with all channels open, and G_a is the passive conductance in the apical membrane. The proportion of open channels is modeled as a three-state energy barrier (Boltzmann) function (see [24]), where s_0 , u_0 , s_1 and u_1 are constants determining the exact shape of the nonlinearity. Equation 9.0, "" replaces a first-order Bolztmann function employed by Shamma et al. The membrane potential of the cell body is described by

$$C_{m}\frac{dV(t)}{dt}+G(u)\left[V(t)-E_{t}\right]+G_{k}\left[V(t)-E_{sk}\right]=0$$

where V(t) is the intracellular hair cell potential; C_m is the cell capacitance; G_k is the voltage-invariant basolateral membrane conductance; E_t is the endocochlear potential; and $E'_k = E_k + E_t R_p/(R_t + R_p)$ is the reversal potential of the basal current E_k , corrected for the resistance (E_t, R_p) of the supporting cells (see [31]).

Inputs	Arbitrary single process. Usually a basilar membrane process supplies velocity input to this
	process.
Outputs	Produces an output signal with the same dimensions as the input signal. The output is a potential in volta (V). It usually supplies input to the inner hair cell synapse models, e.g. the section called "IHC Meddis2000: Inner Hair Cell Synapse"
Reference	[32]

Module Parameters

Example 9.10. IHCRP_Shamma3StateVelIn Parameter File

E_T	0.1	Endocochlear potential, Et (V).
E_K	-0.07045	Reversal potential, Ek (V).
RP_CORRECTION	0.04	Reversal potential correction, Rp/(Rt+Rp).
C_TOTAL	6e-12	Total capacitance, $C = Ca + Cb$ (F).
G0	1.974e-09	Resting conductance, G0 (S).
G_K	1.8e-08	Potassium conductance, Gk (S = Siemens).
G_MAXC	8e-09	Maximum mechanical conductance, Gmax (S).
T_C	0.00213	Cilia/BM time constant (s).
GAIN_C	16	Cilia/BM coupling gain, C (dB).
REF_POT	0	Reference potential (V).
S0	8.5e-08	Sensitivity constant, S0 (/m).
S1	5e-09	Sensitivity constant, S1 (/m).
U0	7e-09	Offset constant, U0 (m).
U1	7e-09	Offset constant, U1 (m).

Examples Using the 'IHCRP_Shamma3StateVelIn' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/HCRP/Shamma3s4.sim

```
# ./HCRP/Shamma3s4.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Rampl.par
   Filt_BandPass < BPassGP2381.par
   BM_DRNL_Test < DRNLT17_3k.par
   IHCRP_Shamma3StateVelIn < Shamma3sRP1.par
   Display_Signal</pre>
```
}

Figure 9.46. Pure tone response of the Shamma 3 State Velocity In hair cell receptor process module.

AC/DC Ratio vs Frequency Example: AutoTest/HCRP/Shamma3s1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Shamma3s1.sim
begin {
  Stim_Puretone < PTonel.par
  Trans_Gate < Ramp1.par
  Filt_BandPass < BPassGP2381.par
  BM_DRNL_TEST < DRNLT17_3k.par
  IHCRP_Shamma3StateVelIn < Shamma3sRP1.par</pre>
```

```
}
```

See Figure 9.38, "AC/DC frequency dependent characteristics for the DSAM IHCRP models.".

Peak/Troughs function Example: AutoTest/HCRP/Shamma3s2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Shamma3s2.sim
begin {
```

```
Stim_Puretone< PTone2.par</th>Trans_Gate< Ramp1.par</td>Filt_BandPass< BPassGP2381.par</td>BM_DRNL< DRNL700.par</td>IHCRP_Shamma3StateVelIn < Shamma3sRP1.par</td>
```

}

Figure 9.47. Peak-Trough characteristics for the Shamma 3 State Velocity In IHCRP model

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Meddis3.sim
begin {
Stim_Puretone < PTonel.par
Trans_Gate < Ramp1.par
Filt_BandPass < PreEmph1.par</pre>
BM_GammaT < GammaT18k.par
IHCRP_Meddis
               < MeddisRP1.par
}
```

See Figure 9.40, "AC/DC intensity dependent characteristics for the DSAM IHCRP models.".

IHCRP_Zhang: Inner Hair Cell Receptor Potential (2001) MOHCRPZhang.[ch]

Description

This is the Zhang et al [34] receptor potential module. It was revised from C code provided by the authors (the 'ARLO' code). It supplies input to the inner hair cell synapse models, e.g. IHC_Zhang, IHC_Meddis2000, IHC_Carney or IHC_Meddis86a .

Inputs Arbitrary single process. Usually a basilar membrane process supplies input to this process. Outputs Produces an output signal with the same dimensions as the input signal. Reference [34]

Module Parameters

Example 9.11. HCRP_Shamma Parameter File

E_T	0.1	Endocochlear potential, Et (V).
E_K	-0.084	Reversal potential, Ek (V).
RP_CORRECTION	0.04	Reversal potential correction, Rp/(Rt+Rp).
C_TOTAL	6.21e-12	Total capacitance, $C = Ca + Cb$ (F).
G0	4.3e-09	Resting conductance, G0 (S).
G_K	1.07e-08	Potassium conductance, Gk (S = Siemens).
G_MAXC	4.18e-09	Maximum mechanical conductance, Gmax (S).
BETA	0.25	Beta constant, exp(-G1/RT).
GAMMA	1e+07	Gamma constant, Z1/RT (/m).
T_C	0.0003	Cilia/BM time constant (s).
GAIN_C	16	Cilia/BM coupling gain, C (dB).
REF_POT	0	Reference potential (V).

Examples Using the 'IHCRP_Shamma' Process Module

Some of the following tests require multiple observations using a range of stimuli and cannot be produced directly with a single run of the *AMS* program. These simulation scripts are run using the *AutoTest* program, which is employed to test the operation of the DSAM process modules.

Simple Response Example: AutoTest/HCRP/Zhang4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Zhang4.sim
begin {
   Stim_Puretone < PTone3.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang18k.par
   IHCRP_Zhang < ZhangRPCat1.par
   @ Display_Signal
}
```


Figure 9.48. Pure tone response of the Zhang hair cell receptor process module.

199

AC/DC Ratio vs Frequency Example: AutoTest/HCRP/Zhang1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Zhangl.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PEHuYl.par
   BM_Zhang < Zhangl8k.par
   IHCRP_Zhang < ZhangRPCatl.par
   @ Display_Signal
}
```

See Figure 9.38, "AC/DC frequency dependent characteristics for the DSAM IHCRP models.".

Peak/Troughs function Example: AutoTest/HCRP/Zhang2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Zhang2.sim
begin {
   Stim_Puretone < PTone2.par
   Trans_Gate < Ramp1.par
   Filt_BandPass < PEHuY1.par
   BM_Zhang < Zhang700.par
   IHCRP_Zhang < ZhangRPCat1.par
}
```

Figure 9.49. Peak-Trough characteristics for the Zhang IHCRP model

AC/DC Ratio vs Intensity Example: AutoTest/HCRP/Meddis3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./HCRP/Meddis3.sim
begin {
   Stim_Puretone < PTonel.par
   Trans_Gate < Rampl.par
   Filt_BandPass < PreEmphl.par
   BM_GammaT < GammaTl8k.par
   IHCRP_Meddis < MeddisRPl.par
}</pre>
```

See Figure 9.40, "AC/DC intensity dependent characteristics for the DSAM IHCRP models.".

Chapter 10. Neuron Model Modules

Neur_ArleKim: Neural Cell Model

File name: MoNCArkeKim.[ch]

Description

This module implements a version of the McGregor model of a neural cell. The changes implemented in [2] have been added to this version of the McGregor model. Several different cells can be modelled.

Inputs	Arbitary single inputs. This process is normally uses inputs from a dendrite (low-pass
	filtered) process.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	[2]

Module Parameters

Example 10.1. Neur_ArleKim Parameter File

T_M	0.005	Cell membrane time-constant, tm (s).
T_GK	0.002	Potassium decay time-constant, tGk (s).
T_TH	0.002	Threshold time-constant, tTh (s).
С	0	Accommodation constant, c (dimensionless).
В	0.00025	Delayed rectifier postassium conductance, b (nano-Siemens).
TH0	12	Cell resting Threshold, Th0 (mV).
ACTION_POT	50	Action potential (mV).
V_NL	0.5	Non-linear voltage constant, Vnl (mV).
E_K	-65	Reversal potential of the potassium conductance, Ek (mV).
E_B	-65	Reversal potential of all other conductances, Eb (mV).
G_K	0.02	Resting potassium conductance, gk (nS).
G_B	0	Resting component of all other conductances, gb (nS).

Examples Using the 'Neur_ArleKim' Process Module Simple Bushy Cell Response Examples

Example 10.2. AutoTest/NC/AKBushyP.sim: Super-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKBushyP.sim
begin {
   Stim_StepFun < StepFun1.par
   Neur_ArleKim < AKBushy.par</pre>
```

}

Example 10.3. AutoTest/NC/AKBushyN.sim: Hyper-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKBushyN.sim
begin {
   Stim_StepFun < StepFun2.par
   Neur_ArleKim < AKBushy.par
}</pre>
```

Figure 10.1. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised bushy cell responses were produced using the 'AKBushyP.sim' and 'AKBushyN.sim' Simulation scripts respectively.

Simple Fusiform Cell Response Examples

Example 10.4. AutoTest/NC/AKFusiformP.sim: Super-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKFusiformP.sim
begin {
   Stim_StepFun < StepFun3.par
   Neur_ArleKim < AKFusiform.par
}</pre>
```

Example 10.5. AutoTest/NC/AKFusiformN.sim: Hyper-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKFusiformN.sim
begin {
   Stim_StepFun < StepFun4.par
   Neur_ArleKim < AKFusiform.par
}</pre>
```

Figure 10.2. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised Fusiform cell responses were produced using the 'AKFusiformP.sim' and 'AKFusiformN.sim' Simulation scripts respectively.

Simple Stellate Cell Response Examples

Example 10.6. AutoTest/NC/AKStellateP.sim: Super-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKStellateP.sim
begin {
   Stim_StepFun < StepFun1.par
   Neur_ArleKim < AKStellate.par
}</pre>
```

Example 10.7. AutoTest/NC/AKStellateN.sim: Hyper-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKStellateN.sim
begin {
   Stim_StepFun < StepFun2.par</pre>
```

```
Neur_ArleKim < AKStellate.par
```

```
}
```

Figure 10.3. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised Stellate cell responses were produced using the 'AKStellateP.sim' and 'AKStellateN.sim' Simulation scripts respectively.

Potential vs. Current Example

Example 10.8. AutoTest/NC/AKBushy1.sim

206

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKBushy1.sim
begin {
   Stim_StepFun < StepFun5.par
   Neur_ArleKim < AKBushy.par</pre>
```

}

Example 10.9. AutoTest/NC/AKFusiform1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKFusiform1.sim
begin {
   Stim_StepFun < StepFun5.par
   Neur_ArleKim < AKFusiform.par
}</pre>
```

Example 10.10. AutoTest/NC/AKStellate1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/AKStellate1.sim
begin {
   Stim_StepFun < StepFun5.par
   Neur_ArleKim < AKStellate.par
}</pre>
```

Figure 10.4. Input-output current characteristics for the Arle-Kim neural cell model The functions for the respective cell characteristics were produced using the 'AKStellate1.sim', 'AKFusiform1.sim' and 'AKBush1.sim' simulation script files.

Neur_HHuxley: Hodkin Huxley Neural Cell Model

File name: MoNCHHuxley.[ch]

Description

This module implements an efficient version of the Hodgkin-Huxley general neural cell model. Its fast operation is enabled through the use of tables for the ion-channel voltage-dependent conductances.

The module has two *operating modes*: 'normal' and 'voltage_clamp' respectively. If these operating modes are prefaced with 'debug_', e.g. 'debug_normal', then a signal file 'test.dat' will be output in the format:

membrane potential, leakage current, IC 1 (activating, inactivating currents), IC2 ...

This module can be connected to up to four processes (*EarObjects*). When the *injection mode* is 'on', the first connected process is always treated as an injected current. Otherwise the first, second and third processes (or second, third and fourth if the *injection mode* is 'on') are used as excitatory, inhibitory and shunt-inhibitory signals respectively.

The ion channels will be listed if the *print ion channel tables mode* is 'On', but as these tables can be very long, it is useful to set this option to 'off'. One would set this option to 'On' for diagnostic or de-bugging purposes.

This cell model is defined by differential equations for which the resting state has not been analytically determined. For this reason the *resting potential* for a particular cell configuration can be set as a parameter. If the value of the *resting potential* parameter is set to a value greater or equal to zero, then before the process is first run in a simulation, the resting potential will be determined in a calibration run. The calculated *resting potential* value

can then be put into the parameter file for subsequent simulation runs, as long as the other cell parameters remain unchanged. If the other cell parameters are changed, then the resting potential may change. For this reason it is simpler to leave the *resting potential* parameter set to do a calibration run each time it is first run. Setting the *resting potential* parameter should only be done when many runs of an established cell are required, and the calibration would unduly increase the experiment time. It is important to reiterate that a calibration run is only done the first time a particular simulation is run, only when the simulation is restarted, or the process reset will there be another calibration run.

Inputs	One to four arbitary inputs. This process is normally uses inputs from a dendrite (low-pass
	filtered) process.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	[14]

Module Parameters

Example 10.11. Neur_HHuxley Parameter File

DIAG_MODE	OFF	Diagnostic mode ('off', 'screen' or <file< th=""></file<>
		name>).
OP_MODE	NORMAL	Operation mode ('normal' or 'voltage clamp').
INJECT_MODE	OFF	Injection mode ('on' or 'off').
EXCIT_REV_POT	-0.01	Excitatory reversal potential (V).
INHIB_REV_POT	-0.01	Inhibitory reversal potential (V).
SHUNT_INHIB_REV_POT	-0.01	Shunt inhibitory reversal potential (V).
CAPACITANCE	1e-11	Cell capacitance (Farads).
RESTING_POT	-0.06553	Resting potential (>=0 for calibration run).
RESTING_DUR	0.03	Resting signal duration - used when finding V0
		(s).
RESTING_DV	1e-09	Resting criteria, dV (V).
DESCRIPTION	"Na_Conner"	Description.
MODE	BOLTZMANN	Mode option ('file', 'hHuxley' or 'boltzmann').
ENABLED	ON	Ion channel enabled status ('on' or 'off).
EQUIL_POT	0.055	Equilibrium potential (V).
BASE_MAX_COND	3e-07	Base maximum conductance (S).
ACTIVATION	1	Activation exponent (real).
COND_Q10	2.5	Conductance Q10.
V_HALF	0:-0.0191	
V_HALF	1:-0.053	
Z	0:3.7	
Z	1:-3.6	
TAU	0:0.0001	
TAU	1:0.0005	
DESCRIPTION	"K+_FastHiT"	Description.
MODE	BOLTZMANN	Mode option ('file', 'hHuxley' or 'boltzmann').
ENABLED	ON	Ion channel enabled status ('on' or 'off).
EQUIL_POT	-0.073	Equilibrium potential (V).
BASE_MAX_COND	5.4e-08	Base maximum conductance (S).
ACTIVATION	1	Activation exponent (real).
COND_Q10	2.5	Conductance Q10.
V_HALF	0:-0.015	
V_HALF	1:0	
Z	0:4	
Z	1:0	
TAU	0:0.00161	
TAU	1:0	
DESCRIPTION	"K+_SlowLoT"	Description.
MODE	BOLTZMANN	Mode option ('file', 'hHuxley' or 'boltzmann').
ENABLED	ON	Ion channel enabled status ('on' or 'off).
EQUIL_POT	-0.073	Equilibrium potential (V).
BASE_MAX_COND	1.8e-08	Base maximum conductance (S).
ACTIVATION	1	Activation exponent (real).
COND_Q10	2.5	Conductance Q10.
V_HALF	0:-0.028	
V_HALF	1:0	
Z	0:4.6	
Z	1:0	
TAU	0:0.01	
TAU	1:0	
DESCRIPTION	"K+_BoltzmannTr"	Description.
MODE	BOLTZMANN	Mode option ('file', 'hHuxley' or 'boltzmann').
ENABLED	ON	Ion channel enabled status ('on' or 'off).
EQUIL_POT	-0.073	Equilibrium potential (V).
BASE_MAX_COND	2.4e-08	Base maximum conductance (S).
ACTIVATION	1	Activation exponent (real).
COND_Q10	2.5	Conductance Q10.
V_HALF	0:-0.0302	
V_HALF	$210^{1:0.0612}$	
Z	0:0.6	
Z	1:-4.9	
TAU	0:0.001	
TAU	1:0.003	

Examples Using the 'Neur_ArleKim' Process Module

Simple DCN Cell Response Example: AutoTest/NC/HHDCN1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/HHDCN1.sim
begin {
   Stim_StepFun < StepFun6.par
   Neur_HHuxley < HHDCN1.par
   Display_Signal
}</pre>
```


Figure 10.5. Current step response of the Hodgkin-Huxley neural cell model

Neur_McGregor: McGregor Neural Cell Model File name: MoNCMcGregor.[ch]

Description

This module implements a version of the McGregor model of a neural cell ([19]). Dependent upon the parameters used, it can model several different cells.

Inputs	Arbitary single inputs. This process is normally uses inputs from a dendrite (low-pass	
	filtered) process.	
Outputs	Produces an output signal with the same dimensions as the input signal.	
Reference	[19]	

Module Parameters

Example 10.12. Neur_McGregor Parameter File

0.002	Cell membrane time-constant, tm (s).
0.0009	Potassium decay time-constant, tGk (s)
0.02	Threshold time-constant, tTh (s).
0.3	Accommodation constant, c (dimensionless).
0.017	Delayed rectifier postassium conductance, b (nano-Siemens).
10	Cell resting Threshold, Th0 (mV).
50	Action potential (mV).
-10	Reversal potential of the potassium conductance, Ek (mV).
-60	Cell resting potential Er (mV).
	0.002 0.0009 0.02 0.3 0.017 10 50 -10 -60

Examples Using the 'Neur_McGregor' Process Module

Simple Stellate Cell Response Examples

Example 10.13. AutoTest/NC/MGStellateP.sim: Super-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/MGStellateP.sim
begin {
   Stim_StepFun < StepFun7.par
   Neur_McGregor < MGStellate92.par
}</pre>
```

Example 10.14. AutoTest/NC/MGStellateN.sim: Hyper-polarizing Injected current

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./NC/MGStellateN.sim
begin {
   Stim_StepFun < StepFun8.par</pre>
```

Neur_McGregor < MGStellate92.par

```
}
```

Figure 10.6. The current step response of the Arle-Kim neural cell model The hyperpolarised and superpolarised Stellate cell responses were produced using the 'MGStellateP.sim' and 'MGStellateN.sim' Simulation scripts respectively.

Chapter 11. Misc. Modules

Null: Used to Skip Process stage in Program

File name: GeModuleMgr.[ch]

Description

This module can be used in generic programming to maintain the continuity of a process pipeline. It does not carry out any processing; it merely connects the input signal of the process *EarObject* directly to the output signal. This means that it can be replaced by another process module if required.

Module Parameters

This module has no parameters.

Chapter 12. Stimulus Modules

Stim_Click: Click Stimulus Module

File name: StClick.[ch]

Description

Click stimulus generation module.

InputsNoneOutputsSingle channel.Reference

Module Parameters

Example 12.1. Stim_Click Parameter File

TIME0.01Time for the delta-function click (s).AMPLITUDE1Amplitude (uPa).DURATION0.1Duration (s).DT1e-05Sampling interval, dt (s).

Examples Using the 'Stim_Click' Process Module

Example: AutoTest/St/Click1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/Click1.sim
begin {
   Stim_Click < Click1.par
   Display_Signal
}</pre>
```

Figure 12.1. A stimulus generated by the Stim_Click module.

Segmented Mode Example: AutoTest/St/Click2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/Click2.sim
begin {
   Stim_Click < Click2.par
   Display_Signal
}</pre>
```

Figure 12.2. Click stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode. Note that in *segmented-processing* mode the stimulus is repeated.

Stim_ExpGatedTone: Exponentially Gated Pure Tone Stimulus Module

File name: StEGatedTone.[ch]

Description

Exponentially gated pure tone stimulus generation routine.

Inputs	None
Outputs	Single channelled signal.
Reference	[26]

Module Parameters

Example 12.2. Stim_Click Parameter File

T_MODE	RAMPED	Type mode ('ramped' or 'damped').
F_MODE	ON	Floor mode ('on' or 'off').
FREQUENCY	1000	Carrier frequency (Hz).
AMPLITUDE	10000	Amplitude (uPa).
PHASE	0	Phase (degrees).
SILENCE	0	Begin period duration - silence (s).
R_RATE	40	Repetition rate (Hz).
HALF_LIFE	0.005	Half life (s).
FLOOR	0	Floor value (uPa).
DURATION	0.1	Duration (s).
DT	0.0001	Sampling interval, dt (s).

Table 12.1. Stim_ExpGatedTone: 't_mode' options

Type Mode	Description
ramped	This produces a ramped (ascending) pulse signal.
damped	This produces a damped (descending) pulse signal

Table 12.2. Stim_ExpGatedTone: 'floor_mode' options

Floor	Description
Mode	
on	When this mode is on, the output signal is not allowed to fall below the floor parameter value.
off	

Examples Using the 'Stim_ExpGatedTone' Process Module

Example: AutoTest/St/EGTone1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/EGTonel.sim
begin {
   Stim_ExpGatedTone < EGTonel.par
   Display_Signal
}</pre>
```

Figure 12.3. A stimulus generated by the exponentially gated pure tone module.

Segmented Mode Example: AutoTest/St/EGTone2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/EGTone2.sim
begin {
   Stim_ExpGatedTone < EGTonel.par
   Display_Signal
}</pre>
```

Figure 12.4. Exponentially gated pure tone stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode.

Stim_Harmonic: Harmonic Stimulus Module

File name: StHarmonic.[ch]

Description

This module generates a harmonic series stimulus. There are frequency modulation and Butterworth bandpass filter options that can be used. The bandpass filter is in the frequency domain where the filter amplitude is given by

$$FilterAmplitude = \sqrt{\frac{1}{1 + \left[\frac{2 f - (f_u + f_{sl})}{f_u - f_l}\right]^{2p}}}$$

- where f is the instantaneous frequency, f_u is the upper cut-off frequency, f_1 is the lower cut-off frequency and p is the filter order.

InputsNone.OutputsSingle channelled signal.Reference

Module Parameters

Example 12.3. Stim_Harmonic Parameter File

LOW_HARMONIC	1	Lowest harmonic number.
HIGH_HARMONIC	10	Highest harmonic number.
PHASE_MODE	SINE	Phase mode (SINE, COSINE, RANDOM, SCHROEDER,
		ALTERNATING).
PHASE_PAR	1	Phase parameter (Shroeder phase: C value, Random: random number seed)
MISTUNED_HARM	-1	Mistuned harmonic number ($0 = F0$, -ve implies none mistuned).
MT_FACTOR	40	Mistuning factor (%).
FUND_FREQ	100	Fundamental frequency (Hz).
INTENSITY	56	Intensity (dB SPL).
DURATION	0.1	Duration (s).
DT	1e-05	Sampling interval, dt (s).
MOD_FREQ	1	Modulation Frequency (Hz).
MOD_PHASE	0	Modulation Phase (degrees).
MOD_DEPTH	0	Modulation depth (%).
ORDER	0	Filter order.
LOW_CUTOFF	200	Lower cut off frequency 3 dB down (Hz).
UPPER_CUTOFF	600	Upper cut off frequency 3 dB down (Hz).

Table 12.3. Stim_Harmonic: 'Phase_mode' options

Phase_Mode	Description
sine	The harmonics are all in sine phase.
cosine	The harmonics are all in cosine phase.
random	The harmonics are in random phase. In this mode the phase_par value is used as the random number seed. It should be set to zero for a completely random phase on each run. Set to a negative number so that the random number seed is initialised to the same series each time.
Shroeder	The harmonics are in Shroeder phase: phase = $C*PI*n*(n-1)/N$. C is the phase_par parameter in this mode, 'n' is the harmonic number and 'N' is the total number of harmonics.
alternating	The harmonics alternate between zero and PI / 2 (90 degrees).

Examples Using the 'Stim_Harmonic' Process Module

Example: AutoTest/St/Harmonic1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/Harmonicl.sim
begin {
   Stim_Harmonic < Harmonicl.par
   Display_Signal
}</pre>
```


Figure 12.5. A stimulus generated by the Stim_Harmonic module.

Segmented Mode Example: AutoTest/St/Harmonic2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/Harmonic2.sim
begin {
   Stim_Harmonic < Harmonic2.par
   Display_Signal
}</pre>
```

Figure 12.6. Harmonic stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode. Note that in *segmented-processing* mode the stimulus is repeated.

Stim_PulseTrain: Pulse Train Stimulus Module

Description

This module generates a stimulus consisting of a train of pulses.

Inputs None. Outputs Single channelled output. Reference

Module Parameters

Example 12.4. Stim_Harmonic Parameter File

RATE	360	Pulse rate (pulses/s)
PULSE_DURATION	0.0001	Pulse duration (s).
AMPLITUDE	3.4e-07	Amplitude (arbitary units).
DURATION	0.1	Duration (s).
DT	1e-05	Sampling interval, dt (s).

Examples Using the 'Stim_Harmonic' Process Module

Example: AutoTest/St/PulseTrain1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PulseTrain1.sim
begin {
   Stim_PulseTrain < PulseTr1.par
   Display_Signal
}</pre>
```


Figure 12.7. A stimulus generated by the Stim_PulseTrain module.

Segmented Mode Example: AutoTest/St/PulseTrain2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PulseTrain2.sim
begin {
   Stim_PulseTrain < PulseTr1.par
   Display_Signal
}</pre>
```

Figure 12.8. PulseTrain stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode.

Stim_PureTone: Pure Tone Stimulus Module File name: StPTone.[ch]

Description

Simple pure tone stimulus generation module.

InputsNone.OutputsSingle channelled output.Reference

Module Parameters

Example 12.5. Stim_PureTone Parameter File

FREQUENCY	1000	Frequency (Hz).
INTENSITY	56	Intensity (dB SPL).
DURATION	0.1	Duration (s).
DT	1e-05	Sampling interval, dt (s).

Examples Using the 'Stim_PureTone' Process Module

Example: AutoTest/St/PTone1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PTonel.sim
begin {
   Stim_PureTone < PTonel.par
   Display_Signal
}</pre>
```

Figure 12.9. A stimulus generated by the Stim_PureTone module.

Segmented Mode Example: AutoTest/St/PTone2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PTone2.sim
begin {
   Stim_PureTone < PTone2.par
   Display_Signal
}</pre>
```

Figure 12.10. PureTone stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode.

Stim_PureTone_2: Pure Tone Stimulus with Starting and Ending Periods Module

Description

This module generates a pure tone, preceded and ended by periods of constant amplitudes. e.g. the beginning and ending periods could be set to zero amplitude for silence.

Inputs	None.
Outputs	Single channelled output.
Reference	

Module Parameters

Example 12.6. Stim_PureTone_2 Parameter File

Stimuli.

FREQUENCY	1000	Frequency (Hz).
INTENSITY	56	Intensity (dB SPL).
DURATION	0.08	Duration (s).
DT	1e-05	Sampling interval, dt (s).
BEGIN_SILENCE	0.01	Silence period before the signal begins (s).
END_SILENCE	0.01	Silence period after the signal ends (s).

Examples Using the 'Stim_PureTone_2' Process Module

Example: AutoTest/St/PTone2_1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PTone2_1.sim
begin {
   Stim_PureTone_2 < P2Tone1.par
   Display_Signal
}</pre>
```

Figure 12.11. A stimulus generated by the Stim_PureTone_2 module.

Segmented Mode Example: AutoTest/St/PTone2_2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PTone2_2.sim
begin {
  Stim_PureTone_2 < P2Tone2.par
  Display_Signal
}</pre>
```

Figure 12.12. PureTone 2 stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode. Note that in *segmented-processing* mode the stimulus is repeated.

Stim_PureTone_AM: Amplitude Modulated Pure Tone Stimulus Module

Description

Amplitude modulated pure tone generation algorithm.

Inputs None. Outputs Single Channelled output. Reference

Module Parameters

Example 12.7. Stim_PureTone_AM Parameter File

1000	Carrier frequency (Hz).
50	Modulation frequency (Hz).
100	Amplitude modulation depth (%).
56	Intensity (dB SPL).
0.1	Duration (s).
1e-06	Sampling interval, dt (s).
	1000 50 100 56 0.1 1e-06
Examples Using the 'Stim_PureTone_AM' Process Module

Example: AutoTest/St/PToneAM1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PToneAM1.sim
begin {
   Stim_PureTone_AM < AMPTonel.par
   Display_Signal
}</pre>
```


Figure 12.13. A stimulus generated by the Stim_PureTone_AM module.

```
Segmented Mode Example: AutoTest/St/PToneAM2.sim
```

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site. # ./St/PToneAM2.sim begin { Stim_PureTone_AM < AMPTonel.par Display_Signal }

Figure 12.14. Amplitude modulated pure tone stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode.

Stim_PureTone_Binaural: Binaural Pure Tone Stimulus Module

File name: StBPTone.[ch]

Description

This module generates a binaural pure tone stimulus.

InputsNone.OutputsBinaural (two-channelled) outputReference

Module Parameters

Example 12.8. Stim_PureTone_Binaural Parameter File

LEFT_FREQUENCY	1000	Left channel frequency (Hz).
RIGHT_FREQUENCY	1000	Right channel frequency (Hz).
LEFT_INTENSITY	56	Left channel intensity (dB SPL).
RIGHT_INTENSITY	56	Right channel intensity (dB SPL).
PHASE_DIFF	180	Phase difference between channels (degrees).
DURATION	0.1	Duration (s).
DT	1e-05	Sampling interval, dt (s).

Examples Using the 'Stim_PureTone_AM' Process Module

Example: AutoTest/St/PToneBinaural1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PToneAM1.sim
begin {
   Stim_PureTone_AM < AMPTonel.par
   Display_Signal
}</pre>
```

Figure 12.15. A stimulus generated by the Stim_PureTone_Binaural module.

Stim_PureTone_FM: Frequency Modulated Pure Tone Stimulus Module

File name: StFMTone.[ch]

Description

This program generates a frequency modulated (FM) pure tone.

InputsNone.OutputsSingle channelled output.Reference

Module Parameters

Example 12.9. Stim_PureTone_FM Parameter File

Stimuli.

FREQUENCY	1000	Frequency (Hz).
INTENSITY	56	Intensity (dB SPL).
PHASE	0	Phase (degrees).
MOD_DEPTH	80	Modulation depth (%).
MOD_FREQ	2000	Modulation frequency (Hz).
MOD_PHASE	0	Modulation phase (degrees).
DURATION	0.1	Duration (s).
DT	1e-05	Sampling interval, dt (s).

Examples Using the 'Stim_PureTone_AM' Process Module

Example: AutoTest/St/PToneFM1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/PToneFM1.sim
begin {
   Stim_PureTone_FM < FMPTonel.par
   Display_Signal
}</pre>
```

Figure 12.16. A stimulus generated by the Stim_PureTone_FM module.

Stim_PureTone_Multi: Multiple Pure Tone Stimulus Module

File name: StMPTone.[ch]

Description

This module generates a multiple pure tone stimulus. Each pure tone is specified individually.

Inputs	None.
Outputs	Single channelled output.
Reference	

Module Parameters

Example 12.10. Stim_PureTone_Multi Parameter File

NUM	2	Number of pure tones.
FREQUENCY	0:100	
FREQUENCY	1:200	
INTENSITY	0:56	
INTENSITY	1:56	
PHASE	0:0	
PHASE	1:0	
DURATION	0.1	Duration (s).
DT	1e-05	Sampling interval, dt (s).

Examples Using the 'Stim_PureTone_Multi' Process Module

Example: AutoTest/St/PToneMulti1.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./St/PToneAM1.sim
begin {
   Stim_PureTone_AM < AMPTone1.par
   Display_Signal
}</pre>
```

Figure 12.17. A stimulus generated by the PureTone_Multi module. This stimulus consists of individually specified pure tones which are added together to form a composite signal.

Stim_PureTone_MultiPulse: Multiple Pure Tone Pulse Stimulus Module

File name: StMPPTone.[ch]

Description

The module generates a signal that contains multiple pure tone pulses at different frequencies.

Inputs	None.
Outputs	Single-channelled output.
Reference	

Module Parameters

Example 12.11. Stim_PureTone_MultiPulse Parameter File

Stimuli.

NUM_PULSES	2	Number of Pulse Frequencies
PULSE_FREQ	0:1000	
PULSE_FREQ	1:2000	
INTENSITY	56	Intensity (dB SPL).
SILENCE	0.01	Silent period, before first pulse (s).
PULSE_DURATION	0.005	Pulse duration (s).
REP_PERIOD	0.007	Repetition period (s).
DURATION	0.08	Duration (s).
DT	0.0001	Stimulus sampling interval, dt (s).

Examples Using the 'Stim_PureTone_MultiPulse' Process Module

Example: AutoTest/St/PToneMPulse1.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./St/PToneMPulsel.sim
begin {
   Stim_PureTone_MultiPulse < MPPTonel.par
   Display_Signal
}</pre>
```

Figure 12.18. A stimulus generated by the PureTone_MultiPulse module. The stimulus consists of a series of pulses, indivudually specified, which are repeated. The figure illustrates a stimulus which has a series of two pulses of different frequency.

Stim_StepFun: Step function Stimulus Module

Description

T his module generates a step function stimulus.

Inputs None. Outputs Single channelled output. Reference

Module Parameters

Example 12.12. Stim_StepFun Parameter File

AMPLITUDE	30	Amplitude (arbitrary units).
B_E_AMP	0	Begin-end period amplitude (arbitrary units).
BEGIN_PERIOD	0.01	Period before the signal begins (s).
END_PERIOD	0.01	Period after the signal ends (s).
DURATION	0.08	Duration (s).
DT	1e-05	Sampling interval, dt (s).

Examples Using the 'Stim_StepFun' Process Module

Example: AutoTest/St/StepFun1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/StepFun1.sim
begin {
   Stim_StepFun < StepFun1.par
   Display_Signal
}</pre>
```

Figure 12.19. A stimulus generated by the Stim_StepFun module. This stimulus has been used where a current pulse is required, though it can be applied to other cases.

Segmented Mode Example: AutoTest/St/StepFun2.sim

This example simulation script with its associated parameter files is in the

AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/StepFun2.sim
begin {
   Stim_StepFun < StepFun2.par
   Display_Signal
}</pre>
```

Figure 12.20. StepFun stimulus behaviour in *segmented rocessing* mode. The full stimulus is generated once in normal mode, then the stimulus is generated in segments in *segment-processing* mode. Note that in *segmented-processing* mode the stimulus is repeated.

Stim_WhiteNoise: White Noise Stimulus Module

File name: StWhiteNoise.[ch]

Description

This module generates a monaural or binaural white noise stimulus.

InputsNone.OutputsSingle channelled output.Reference

Module Parameters

Example 12.13. Stim_WhiteNoise Parameter File

	Number of Sound Channels (Binaural = 2 ; Monaural = 1).
	Degree of Binaural noise correlation (Correlated = 1; Uncorrelated = -1).
	Noise Randomization Index (greater than 12).
	Random Number Seed.
	Intensity (dB SPL).
1	Duration (s).
-05	Sampling Interval, dt (s).
; 1	.05

Examples Using the 'Stim_WhiteNoise' Process Module

Example: AutoTest/St/WhiteNoise1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./St/WhiteNoisel.sim
begin {
   Stim_WhiteNoise < WNoisel.par
   Display_Signal
}</pre>
```

Figure 12.21. A stimulus generated by the Stim_WhiteNoise module.

Chapter 13. Transform Modules

Introduction

The transform process modules are a later addition to the DSAM library. Unlike the other process modules, transform modules do not create a signal but change or *transform* an existing one. For example, if a stimulus is ramped using the Trans_Gate module, then unless the stimulus generation is repeated, any process connected to the stimulus process will use the transformed, ramped signal. The use of a transform modules makes no significant difference when using simulation scripts.

Transform Module

File name: TrCollectSignals.[ch]

Description

This process module collects the channels from multiple input signals. The output is a single multi-channel signal with the number of channels equal to the sum of all the input signal channels.

Inputs Multi-signal input. Outputs The input signal channels.are rearranged to appear as a single multi-channel signal. Reference

Module Parameters

Example 13.1. Trans_CollectSignals Parameter File

MODE CHAN_INDEX Channel labelling mode ('chan_index', 'input_labels' or 'user').

Examples Using the 'Trans_CollectSignals' Process Module

Example: AutoTest/Tr/CollectSignals1.sim

```
begin {
```

```
s1% Stim_PureTone (->cc) < PTone2.par</pre>
s2% Stim_Click (->bm1) < Click1.par</pre>
bm1% BM_GammaT (s2->cc) < GammaTLog1.par</pre>
s3% Stim_Harmonic (->cc) < Harmonic1.par
cc% Trans CollectSignals (s1, bm1, s3->)
Display_Signal
```

```
}
```

Example: AutoTest/Tr/CollectSignals2.sim

begin {

```
sl% Stim_PureTone (->cc) < PTone2.par
s2% Stim_Click (->bm1) < Click1.par
bm1% BM_GammaT (s2->cc) < GammaTLog1.par
s3% Stim_Harmonic (->cc) < Harmonic1.par
cc% Trans_CollectSignals (s1, bm1, s3->) < CollectSigs1.par
Display_Signal
}
```

ſ

Example: AutoTest/Tr/CollectSignals3.sim

```
begin {
```

```
s1% Stim_PureTone (->cc) < PTone2.par
s2% Stim_Click (->bml) < Click1.par
bml% BM_GammaT (s2->cc) < GammaTLog1.par
s3% Stim_Harmonic (->cc) < Harmonic1.par
cc% Trans_CollectSignals (s1, bml, s3->) < CollectSigs2.par
Display_Signal
```

}

Trans_Damp: Damping Transform Module

Description

When this process module is used the Trans_Gate process module is called in reduced operation mode.

Inputs	Arbitrary signal input.
Outputs	Transforms the input signal and passes on.
Reference	

Module Parameters

Example 13.2. Trans_Damp Parameter File

POS_MODE	RELATIVE	Position mode ('absolute' or 'relative')
OP_MODE	RAMP	Operation mode ('ramp' or 'damp')
TYPE_MODE	RAISED_COS	Type mode ('linear', 'sine', 'raised_cos' or 'exp_decay')
OFFSET	0	Time offset (s)
DURATION	0.0025	Ramp duration - negative assumes to the end of the signal (s)
SLOPE	0.016	Slope parameter or half-life (in 'decay_par' mode only)

See the section called "Trans_Gate: Gating Transform Module" for the parameter options. Note that the use of the process module implies that the *op_mode* parameter is set to *damp* and cannot be changed.

Examples Using the 'Trans_Damp' Process Module

Damped Example: AutoTest/Tr/Damp1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Tr/Damp1.sim
begin {
   Stim_PureTone_2 < P2Tone1.par
   Trans_Damp < Damp4.par
   Display_Signal
}</pre>
```

Figure 13.1. Damped Sinusoid

Trans_Gate: Gating Transform Module

File name: TrGate.[ch]

Description

This is the general signal gating transformation module. It changes the start or end envelope of a signal using a selection of ramping, or damping functions. The ramp functions are defined as a function that can vary from 0 to 1 as a function of the ramp interval.

Impulse signals, such as clicks, should not be ramped; if a warning message is given, in this case ignore it. If a signal is ramped, then its ramp flag will be set. This process will only operate on the first signal section in segmented processing mode.

Inputs	Arbitrary signal input.
Outputs	Transforms the input signal and passes on.
Reference	

Module Parameters

Example 13.3. Trans_Gate Parameter File

POS_MODE	RELATIVE	Position mode ('absolute' or 'relative')
OP_MODE	RAMP	Operation mode ('ramp' or 'damp')
TYPE_MODE	RAISED_COS	Type mode ('linear', 'sine', 'raised_cos' or 'exp_decay')
OFFSET	0	Time offset (s)
DURATION	0.0025	Ramp duration - negative assumes to the end of the signal (s)
SLOPE	0.016	Slope parameter or half-life (in 'decay_par' mode only)

 Table 13.1. Trans_Gate: Position mode options.

Pos_Mode	Description
absolute	In this mode the signal is 'ramped' forwards from the offset time and 'damped' forwards to the
	offset time (effectively the damped option is a ramp backwards from the offset time).
relative	

 Table 13.2. Trans_Gate: Op_Mode options.

Op_mode	Description
ramp	Ramp (raise) the signal forwards in time using the specified type_mode for the period specified
	by the duration parameter.
damp	Damp (lower) the signal forwards in time using the specified type_mode for the period specified
-	by the duration parameter (effectively the signal is ramped backwards for the specified
	duration).

 Table 13.3. Trans_Gate: Type_mode options.

Type_Mode Linear	Function	Description This is a simple linear gating function. It varies from 0 to 1 as t
	t interval	ranges from 0 to the interval .
Exp_decay		This is the exponential gating function. It varies from 1 to a lower value, dependent upon the slope parameter (half-life), as the t ranges from 0 to the interval
	$\exp\left(\frac{-dt \cdot t \cdot \ln 2}{slope}\right)$	ule t langes from 0 to the interval

Raised_cos

$$\frac{1}{2}\cos\left(\pi\frac{t}{\text{interval}}+1\right)$$

This is the commonly used raised-cosine gating function. It varies from 0 to 1 as the **t** ranges from 0 to the **interval** length.

Sine

This is the sine gating function. It varies from 0 to 1 as the t ranges from 0 to the **interval** length.

Examples Using the 'Trans_Gate' Process Module

Absolute Ramp and Damp Examples: AutoTest/Tr/GateAbsRamp1.sim & AutoTest/Tr/GateAbsDamp1.sim

```
# This example simulation script
                                     # This example simulation script
with its associated parameter files
                                     with its associated parameter files
is in the
                                     is in the
# AutoTest package, which can be
                                     # AutoTest package, which can be
downloaded from the DSAM web site.
                                     downloaded from the DSAM web site.
# ./Tr/GateAbsRamp1.sim
                                     # ./Tr/GateAbsDamp1.sim
begin {
                                     begin {
 Stim_PureTone_2
                  < P2Tonel.par
                                      Stim_PureTone_2
                                                       < P2Tone1.par
 repeat 10 {
                                      repeat 10 {
                                      Trans_Gate
 Trans_Gate
                  < Rampl.par
                                                        < Dampl.par
 Display_Signal
                                      Display_Signal
 }
                                      }
}
                                     }
```

Figure 13.2. Absolute Sine Ramp

Figure 13.3. Absolute Sine Damp

Relative Ramp and Damp Examples: AutoTest/Tr/GateRelRamp1.sim & AutoTest/Tr/GateRelDamp1.sim

```
# This example simulation script
                                     # This example simulation script
with its associated parameter files
                                     with its associated parameter files
is in the
                                     is in the
# AutoTest package, which can be
                                     # AutoTest package, which can be
downloaded from the DSAM web site.
                                     downloaded from the DSAM web site.
# ./Tr/GateRelRamp1.sim
                                     # ./Tr/GateRelDamp1.sim
begin {
                                     begin {
 Stim PureTone 2
                  < P2Tonel.par
                                      Stim PureTone 2 < P2Tonel.par
 Trans_Gate
                  < Ramp2.par
                                      Trans_Gate
                                                       < Damp2.par
 Display_Signal
                                      Display_Signal
}
                                     }
```

Figure 13.4. Relative Sine Ramp

Figure 13.5. Relative Sine Damp

Raised Cosine Example: AutoTest/Tr/GateRelRamp2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Tr/GateRelRamp2.sim
begin {
   Stim_PureTone_2 < P2Tonel.par
   Turang_Gate</pre>
```

```
Trans_Gate < Ramp3.par
Display_Signal
```

}

Figure 13.6. Gating module results using *raised_cos* function.

Exponential Decay Example: AutoTest/Tr/GateRelRamp3.sim & AutoTest/Tr/GateRelDamp2.sim

```
# This example simulation script
                                     # This example simulation script
with its associated parameter files
                                     with its associated parameter files
is in the
                                     is in the
# AutoTest package, which can be
                                     # AutoTest package, which can be
downloaded from the DSAM web site.
                                     downloaded from the DSAM web site.
# ./Tr/GateRelRamp3.sim
                                     # ./Tr/GateRelDamp2.sim
begin {
                                     begin {
 Stim PureTone 2
                  < P2Tonel.par
                                      Stim PureTone 2
                                                       < P2Tonel.par
                                                        < Damp3.par
 Trans_Gate
                  < Ramp4.par
                                      Trans_Gate
 Display_Signal
                                      Display_Signal
}
                                     }
```

Figure 13.7. Relative Exponential Ramp

Figure 13.8. Relative Exponential Damp

Comments:

All the tests use a pure tone stimulus surround by silence.

Ramp: Ramping Transform Module Trans File name: TrGate.[ch]

Description

When this process module is used the Trans_Gate process module is called in reduced operation mode.

Note that the use of the process module implies that the *op_mode* parameter is set to *ramp* and cannot be changed.

InputsArbitrary signal input.OutputsTransforms the input signal and passes on.Reference

Module Parameters

Example 13.4. Trans_Ramp Parameter File

POS_MODE	RELATIVE	Position mode ('absolute' or 'relative')
OP_MODE	RAMP	Operation mode ('ramp' or 'damp')
TYPE_MODE	RAISED_COS	Type mode ('linear', 'sine', 'raised_cos' or 'exp_decay')
OFFSET	0	Time offset (s)
DURATION	0.0025	Ramp duration - negative assumes to the end of the signal (s)
SLOPE	0.016	Slope parameter or half-life (in 'decay_par' mode only)

See the section called "Trans_Gate: Gating Transform Module" for the parameter options. Note that the use of the process module implies that the *op_mode* parameter is set to *ramp* and cannot be changed.

Examples Using the 'Trans_Ramp' Process Module

Ramped Example: AutoTest/Tr/Ramp1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Tr/Ramp1.sim
begin {
   Stim_PureTone_2 < P2Tone1.par
   Trans_Ramp < Ramp5.par
   Display_Signal
}</pre>
```

Figure 13.9. Ramped Sinusoid

Trans_SetDBSPL: Level transform module

File name: TrSetDBSPL.[ch]

Description

This program calculates a signal's current intensity and adjusts it to a specified intensity. An offset is specified for the start of the intensity calculation. It is not advisable using this module in segment processing mode, as it will set the gain for the entire signal from the first processed segment only. Therefore the appropriate gain will only be correct for the rest of the signal if the first segment contains a reference pure tone.

```
InputsArbitrary signal input.OutputsTransforms the input signal and passes on.Reference
```

Module Parameters

Example 13.5. Trans_SetDBSPL Parameter File

 $OFFSET \quad 0 \quad Time \ offset \ for \ intensity \ calculation \ (s).$

DBSPL 0 Required intensity setting (dB SPL).

Example: AutoTest/Tr/SetDBSPL1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Tr/SetDBSPL1.sim
begin {
   Stim_PureTone < PTone1.par
   repeat 10 {
   Trans_SetDBSPL < DBSPL1.par
   Display_Signal
   }
   Ana_Intensity < Intensty1.par
}</pre>
```

This test outputs a single number result.

Chapter 14. Utility Modules

Util_Accumulate: Accumulate Utility Module

File name: UtAccumulate.[ch]

Description

This utility accumulates data from its input process. It adds to previous data if the process has already been used. **It will continue adding to the previous data unless the process is reset -** see the section called "Accumulating Data with Process Modules".

This utility can also accumulate output from more than one connected process. This allows the output from more than one process to be accumulated as a single process signal.

InputsArbitrary. If input is being supplied from multiple processes, then they must all have the
same signal dimensions.OutputsProduces an output signal with the same dimensions as the input signal, though the output.Reference

Module Parameters

This utility has no parameters.

Examples Using the 'Ana_ACF' Process Module

Example: AutoTest/Ut/Accumulate1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Accumulate1.sim
begin {
   sl% Stim_PureTone (->a) < PTone2.par
   s2% Stim_PureTone (->a) < PTone3.par
   repeat 3 {
    a% Util_Accumulate (s1, s2->)
    Display_Signal
   }
}
```

Figure 14.1. Two pure tones added together using the accumulator module.

Util_AmpMod: Amplitude Modulation Utility Module

File name: UtAmpMod.[ch]

Description

This module generates an amplitude modulated output signal from the connected input signal. A number of amplitude modulations can be specified.

InputsArbitrary single input.OutputsProduces output signal with the same dimensions as the input.Reference

Module Parameters

Example 14.1. Util_AmpMod Parameter File

NUM_FREQS1Number of modulation frequencies.DEPTH0:50FREQUENCY0:100PHASE0:0

Examples Using the 'Util_AmpMod' Process Module

Example: AutoTest/Ut/AmpModulation1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/AmpModulation1.sim
begin {
st% Stim_WhiteNoise < WNoise2.par
Util_AmpMod < AmpMod1.par
Display_Signal
}</pre>
```


Figure 14.2. An amplitude modulated pure tone using the Amplitude modulation utility.

Util_BinSignal: Bin Collection Utility Module File name: UtBinSignal.[ch]

Description

This module generates a binned histogram from the input process. It adds to previous data if it has already been used. It will continue adding to the previous data unless the process is reset - see the section called "Accumulating Data with Process Modules".

Inputs	Arbitrary. This module accepts multiple inputs.
Outputs	Produces an output signal with each channel length defined by the <i>bin_width</i> parameter and
	the length of the original signal. If the <i>bin_width</i> parameter is negative then it will be set to
	the input signal duration by default.
Defense	

Reference

Module Parameters

Example 14.2. Util_BinSignal Parameter File

MODESUM Bining mode ('average' or 'sum').BIN_WIDTH-1Bin width for binned signal (s) (-ve: prev. signal duration).

Table 14.1. Util_BinSignal: Mode options

Mode	Description
average	Each output bin contains the average of the input binned samples, i.e. if the bin consists of 10 input
	samples the total bin sum will be divided by 10.
sum	Each output bin contains the sum of the input binned samples.

Examples Using the 'Util_AmpMod' Process Module

Example: AutoTest/Ut/BinSignal1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/BinSignal1.sim
begin {
st% Stim_PureTone < PTone2.par
repeat 4 {
Util_BinSignal < BinSig1.par
Display_Signal
}</pre>
```

Figure 14.3. Output from the BinSignal utility module using the sum binning mode. The bin width is set to the stimulus sampling interval.

Example: AutoTest/Ut/BinSignal2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/BinSignal2.sim
begin {
   Stim_PureTone < PTone2.par
   repeat 4 {
   Util_BinSignal < BinSig2.par
   Display_Signal
   }
}</pre>
```

Figure 14.4. Output from the BinSignal utility module using the sum binning mode. The bin width is set to half the stimulus sampling interval.

Example: AutoTest/Ut/BinSignal3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/BinSignal3.sim
begin {
   Stim_PureTone < PTone2.par
   repeat 4 {
   Util_BinSignal < BinSig3.par
   Display_Signal
   }
}</pre>
```

Figure 14.5. Output from the BinSignal utility module using the*average* binning mode. The bin width is set to half the stimulus sampling interval.

Util_Compression: Compression Utility Module

File name: UtCompress.[ch]

Description

This module generates compressed output from the input process. It offers several compression functions.

Inputs	Arbitrary single input
Outputs	Produces signal with same dimensions as input signal.
Reference	
See also	Util_HalfWaveRectify

Module Parameters

Example 14.3. Util_Compression Parameter File

g' or 'power').
ary units).
r' mode only).
n module (arbitrary units).

Table 14.2. Util_Compression: Mode options

Mode	Description
log	Logarithmic compression: $y = log10(x)$). In this mode the output is not allowed to fall below the
	MIN_RESPONSE parameter value.
power	Power compression: $y = a x ^{z}$ where z is the exponent parameter and a is the MULTIPLIER .

Examples Using the 'Util_Compression' Process Module

Example: AutoTest/Ut/Compress1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Compress1.sim
begin {
st% Stim_PureTone < PTone2.par
Util_Compression < Compres1.par
Display_Signal
}</pre>
```

Figure 14.6. Output from the Compression utility module, showing *power* compression (see Patterson et al. [27]). The stimulus input is also shown.

Example: AutoTest/Ut/Compress2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Compress2.sim
begin {
  st% Stim_PureTone < PTone2.par
  Util_Compression < Compres2.par
  Display_Signal
}</pre>
```

Figure 14.7. Output from the Compression utility module, showing *log* compression (see Patterson et al. [27]). The stimulus input is also shown.
Utilities

Util_ConvMonaural: Utility Module File name: UtConvMonaural.[ch]

Monaural Conversion

Description

This routine creates a monaural signal from a binaural signal. The resulting output is the sum of the left and right channels.

Inputs	Binaural signal.
Outputs	Produces a monaural signal with the other signal dimensions remaining the same.
Reference	

Module Parameters

This utility has no parameters.

Examples Using the 'Util_ConvMonauralion' Process **Module**

Example: AutoTest/Ut/ConvMonaural1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/ConvMonaural1.sim
begin {
st% Stim_PureTone_Binaural < BPTone2.par
repeat 10 {
Util_ConvMonaural
Display_Signal
}
</pre>
```

Figure 14.8. A binaural signal with the left and right waveforms (top two panels respectively) 180 degress out of phase converted to a monaural signal. The result should be a zero signal (subject to rounding errors).

Util_CreateBinaural: Binaural Output Creation Utility Module

269

File name: UtCreateBinaural.[ch]

Description

This routine creates an interleaved binaural signal from two connected input processes.

InputsExpects two process inputs.OutputsProduces a binaural output.Reference

Module Parameters

This utility has no parameters.

Examples Using the 'Util_CreateBinaural' Process Module

Example: AutoTest/Ut/CreateBinaural1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/CreateBinaural1.sim
begin {
   sl% Stim_PureTone (->cb) < PTone2.par
   s2% Stim_PureTone (->cb) < PTone3.par
   cb% Util_CreateBinaural(s1, s2->)
   Display_Signal
}
```

Figure 14.9. Two pure tones of different frequency and amplitude are combined to create a binaural signal using theUtil_CreateBinaural.

Util_CreateJoined: Signal Join Utility Module

File name: UtCreateJoined.[ch]

Description

This routine creates an output by joining the connected process inputs.

InputsExpects any number of process inputs.OutputsProduces an output signal that has a length which is the sum of the input process signals.Reference

Module Parameters

This utility has no parameters.

Examples Using the 'Util_CreateJoined' Process Module

Example: AutoTest/Ut/CreateJoined1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/CreateJoined1.sim
begin {
    sl% Stim_PureTone (->cb) < PTone2.par
    s2% Stim_PureTone (->cb) < PTone3.par
    s3% Stim_PureTone (->cb) < PTone2.par
    cb% Util_CreateJoined(s1, s2, s3->)
    Display_Signal
}
```

Figure 14.10. Three pure tones with two of different frequency have been joined using the *Util_CreateJoined* utility.

Util_Delay: Signal Delay Utility Module

Description

This module introduces an initial delay in a monaural signal or an interaural time difference (ITD) in a binaural signal. For binaural signals if the delay is positive, then the right (second) channel is delayed relative to the left (first) channel, and vice versus for negative delays. Monaural signals always treat delays as positive values.

Inputs	Arbitrary
Outputs	Produces delayed signal, with an unchanged signal length, i.e. the end of the signal is 'pushed off the end'.
Reference	

Module Parameters

Example 14.4. Util_Delay Parameter File

MODE	SINGLE	Operation mode ('single' or 'linear').
INITIAL_DELAY	0	Initial time delay (s).
FINAL_DELAY	0	Final time delay (not used with 'single' mode).

Table 14.3. Util_Delay: Mode options

Mode	Description
Single	In this mode only the INITIAL_DELAY parameter is used, and this same delay is applied to all
	channels.
Linear	In this mode the delay is different for each channel. Starting from the lowest channel (channel
	index 0) the delay varies linearly from the INITIAL_DELAY value to the FINAL_DELAY value
	for the highest channel.

Examples Using the 'Util_Delay' Process Module

Example: AutoTest/Ut/Delay1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Delay1.sim
begin {
st% Stim_PureTone_Binaural < BPTone1.par
Trans_Gate < Ramp4.par
Util_Delay < Delay1.par
Display_Signal
}</pre>
```

Figure 14.11. The ''Result'' panels show a binaural signal that has had an ITD introduced using.

Example: AutoTest/Ut/Delay2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Delay2.sim
begin {
   Stim_PureTone < PTone7.par
   Trans_Gate < Ramp4.par
   BM_GammaT < GammaTL4.par
   repeat 4 {
   Util_Delay < Delay2.par
   Display_Signal
   }
}</pre>
```

Figure 14.12. The response of a gamma tone filter after it has been processed using *Util_Delay* in the *linear* mode. The legend shows the delay value for each channel.

Util_HalfWaveRectify: Half-wave Rectification Utility Module File name: UtHalfWRectify.[ch]

Description

This module uses the input signal from its process EarObject to generated an output signal that is half-wave rectified.

```
Inputs
             Arbitrary single input.
Outputs
             Produces an output signal with the same dimensions as the input signal.
Reference
```

Module Parameters

This utility has no parameters.

Examples Using the 'Util_HalfWaveRectify' Process Module

Example: AutoTest/Ut/HalfWRectify1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/HalfWRectify1.sim
begin {
st% Stim PureTone
                     < PTone2.par
 Util_HalfWaveRectify
 Display_Signal
}
```


Figure 14.13. A pure tone processed using the *Util_HalfWaveRectify* utility.

Util_IteratedRipple: Iterated Ripple Utility Module

File name: UtlterRipple.[ch]

Description

This module can be used to produce iterated ripple noise (IRN) stimuli. The module processes its input to generate an output signal using the Iterated Ripple Algorithm as described in [33].

To produce IRN stimuli the input should be the Stim_WhiteNoise process module. The **NUM_IT** parameter sets the number of times the noise segment is added. The **GAIN** and **DELAY** parameters respectively set the attenuation of the added noise and the delay before it is added. The **MODE** parameter sets whether the original sample of white noise is added at every iteration (IRSO), or whether the noise that results from each iteration is used as the next sample to be added (IRSS).

This process utility can also be used to apply the Iterated Ripple Algorithm to other signals.

Inputs	Arbitrary single input.
Outputs	Produces an output signal with the same dimensions as the input.
Reference	[33].
See also	Stim_WhiteNoise

Module Parameters

Example 14.5. Util_IteratedRipple Parameter File

2	Number of iterations.
IRSO	Ripple signal mode: 'IRSO' - add original, 'IRSS' - add same.
0	Delay (s).
1	Gain (scalar).
	2 IRSO 0 1

Table 14.4. Util_IteratedRipple: Mode options

Mode	Description
IRSO	Iterated Rippled Signal Add-Original
IRSS	Iterated Rippled signal Add-Same.

Examples Using the 'Util_IteratedRipple' Process Module

Example: AutoTest/Ut/AmpModulation1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/IteratedRipple1.sim
begin {
  st% Stim_WhiteNoise < WNoise1.par
  Util_IteratedRipple < IterRip1.par
  Display_Signal
}</pre>
```


Figure 14.14. The autocorrelation of the above IRN stimulus, showing a pitch percept 200 Hz (5 ms lag). With IRN the pitch percept frequency occurs at the reciprical of the delay.

Util_MathOp: Mathematical Operation Utility Module File name: UtMathOp.[ch]

Description

This utility carries out simple mathematical operations upon it inputs. The operations are done on a sample-by-sample basis.

Inputs	This process requires input signal or multiple processes, depending upon the chosen		
	mathematical operation. For multiple input operations the inputs are expected to similar.		
Outputs	Produces an output signal that has been process according to the chosen operator. The		
	output signal has the same dimensions (length number of channels, etc.) as the input signal.		
Reference	-		

Module Parameters

Example 14.6. Util_MathOp Parameter File

OPERATORSCALEMathematical operator ('add', 'modulus', 'scale', 'sqr' or 'subtract').OPERAND1Operand (only used in scale mode at present).

Table 14.5. Util_N	IathOp: O	perator o	ptions.
--------------------	-----------	-----------	---------

Operation	Description
Add	This operator adds each sample of two processes: {process 1} + {process 2}.
Modulus	This operator finds the modulus of each sample of a process: {process} .
Scale	This operator multiplies each sample of a process by a scaler: {process} * operand.
Sqr	This operator squares each sample of a process: {process} * {process}.
substract	This operator subtracts the samples of two processes: {process 1} - {process 2}.

Examples Using the 'Util_MathOp' Process Module

Example: AutoTest/Ut/MathOp1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/MathOp1.sim
begin {
   sl% Stim_PureTone (->mo) < PTone2.par
   s2% Stim_PureTone (->mo) < PTone3.par
   mo% Util_MathOp (s1, s2->) < MathOp1.par
   Display_Signal
}</pre>
```

Figure 14.15. Two pure tones with different frequencies have been added using the Util_MathOp process.

Example: AutoTest/Ut/MathOp4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/MathOp4.sim
begin {
st% Stim_PureTone < PTone2.par
Util_MathOp < MathOp4.par
Display_Signal
}</pre>
```

Figure 14.16. A pure tone has been squared using the Util_MathOp process.

Utilities

Util_PadSignal: Signal Padding Utility Module

Description

This module produces an output signal that has been padded at the beginning and end of the signal with specified pad values, e.g. silence. Different pad value can be used for the beginning and end of the signal.

Inputs Arbitrary Outputs Produces an output signal, with the addition length as specified by the padding. Reference -

Module Parameters

Example 14.7. Util_PadSignal Parameter File

BEGIN_DURATION	0	The pad duration for the beginning of the signal (s).
BEGIN_VALUE	0	The pad value for the beginning of the signal (units).
END_DURATION	0	The pad duration for the end of the signal (s).
END_VALUE	0	The pad value for the end of the signal (units).

Examples Using the 'Util_PadSignal' Process Module

Example: AutoTest/Ut/PadSignal1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/PadSignal1.sim
begin {
st% Stim_PureTone < PTone6.par
Display_Signal
Util_PadSignal < PadSignal1.par
Display_Signal
}</pre>
```

Figure 14.17. A pure tone padded using the *Util_PadSignal* process.

Util_Pause: Process Pause Utility Module

File name: UtPause.[ch]

Description

This module allows the processing of a simulation to be paused for a period of time **DELAY** rounded to the nearest second, producing a specified message. The alert mode behaves differently for GUI and non-GUI applications: applications compiled with or without graphics support. For GUI applications the alert mode will cause the program to halt and produce an alert window when the **DELAY** is set to zero. Processing will then wait until the Ok button is pressed. For non-GUI applications, the alert mode will cause an audible bell.

Inputs Arbitrary Outputs The input signal is passed as the output signal unchanged. Reference

Module Parameters

Example 14.8. Util_Pause Parameter File

ALERT_MODE	ON	Bell mode ('on' or 'off').
DELAY	-1	Delay time: negative values mean indefinite period (s).
MESSAGE	"Processing paused"	Pause diagnostic message.

Examples Using the 'Util_Pause' Process Module

Example: AutoTest/Ut/Pause1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Pause1.sim
begin {
```

```
Stim_PureTone
              < PTone6.par
Util Pause
               < Pause1.par
Display_Signal
```

}

Util ReduceChannels: Channel Reduction Utility Module File name: UtRedceChans.[ch]

Description

This module reduces multiple channel data to a lower number of channels. The input process channels are divided into the process' output channels. Each sample of the appropriate number of channels of the input signal is summed, and then the average is calculated by dividing by the number of channels summed.

The input channels are divided into the output channels. Therefore the number of output channels must be a multiple of the number of input channels.

Inputs	Arbitrary single input.
Outputs	Produces an output signal with a reduced number of channels, but other dimensions remain
	the same.
Reference	

Module Parameters

Example 14.9. Util_ReduceChannels Parameter File

MODESUMMode - 'average' or simple 'sum'.NUM_CHANNELS1Number of channels signal is to be averaged to.

Table 14.6. Util_ReduceChannels: Mode options.

Mode	Description
average	When combining channels the resulting combination channel is averaged across channel.
Sum	When combining channels the resulting combination channel is simply summed across channel.

Examples Using the 'Util_ReduceChannels' Process Module

Example: AutoTest/Ut/ReduceChannels1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/ReduceChannels1.sim
begin {
   Stim_PureTone < PTone2.par
   Trans_Gate < Ramp2.par
   BM_GammaT < GammaTL1.par
   Util_ReduceChannels < RedceCh1.par
   Display_Signal
}
```

Figure 14.18. ACF input to the Util_ReduceChannels process module.

Figure 14.19. Reduce channels output for above ACF input.

Util_ReduceDT: Sampling Interval/Rate Conversion Utility Module

File name: UtReduceDt.[ch]

Description

This module produces an output signal whose sampling rate is increased by reducing the sampling interval of the input process signal by a specified denominator, i.e. dt->dt/denominator.

InputsArbitrary signal input.OutputsProduces a signal with a smaller sampling interval, hence longer sample length.Reference

Module Parameters

Example 14.10. Util_ReduceDT Parameter File

DENOMINATOR 1 Reduction denominator (integer).

Examples Using the 'Util_ReduceDT' Process Module

Example: AutoTest/Ut/ReduceDT1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/ReduceDT1.sim
begin {
 Stim_PureTone
                 < PTone2.par
 Util_ReduceDT
                 < RedceDt1.par
 Display_Signal
```

}

Pure tone stimulus

The pure tone stimulus is not visibly changed by processing with Util_ReduceDT, however, more sample points have been added.

Util_RefractoryAdjust: Refractory Adjustment Utility Module File name: UtRefractory.[ch]

Description

This module applies a refractory effect adjustment for auditory nerve output. It is normally used to operate on spike probabilities - see [22]. A fixed dead time following a spike is set with length PERIOD, during which no spike events can occur.

Inputs	Arbitrary signal input. This process has the most meaning, however, when used with			
	proabability output, such as from the IHC_Meddis86 process module.			
Outputs	Produces an output signal with the same dimensions as the input signal.			
Reference				
See also	AN_SG_Carney, AN_SG_Simple.			

Module Parameters

Example 14.11. Util_RefractoryAdjust Parameter File

PERIOD 0 Refractory period (s).

Examples Using the 'Util_RefractoryAdjust' Process Module

Example: AutoTest/Ut/RefractoryAdj1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/RefractoryAdj1.sim
begin {
   Stim_PureTone < PTone4.par
   Trans_Gate < Ramp2.par
   IHC_Meddis86 < Meddis86.par
   repeat 10 {
   Util_RefractoryAdjust < Refract1.par
   }
   Display_Signal
}</pre>
```

Figure 14.20. Output from a Meddis '86 IHC, adjusted for refractory effects using the *Util_RefractoryAdjust* utility module.

Util_Sample: Signal Sampling Utility Module

File name: UtSample.[ch]

Description

This module samples a signal at fixed intervals specified by **DT**. It could be used as a crude method to reduce the sampling rate of the input signal.

 Inputs
 Arbitrary signal input.

 Outputs
 Produces an output signal where each channel is sampled at the given sampling interval rate, **DT.**

 Reference
 Image: Comparison of the sample of the sample

Module Parameters

Example 14.12. Util_Sample Parameter File

TIMEOFFSET0Time offset (s).DT-1Sampling interval, dt (s) (-ve assumes prev. signal dt).

Examples Using the 'Util_Sample' Process Module

Example: AutoTest/Ut/Sample1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Sample1.sim
begin {
   Stim_PureTone < PTone2.par
   Util_Sample < Sample1.par
   Display_Signal
}</pre>
```

Figure 14.21. This is a pure tone after processing by the 'Util_Sample' utility module. Note the uneven curve of the sinusoid due to missing intermediary points.

Util_SelectChannels: Channel Selection Utility Module

File name: UtSelectChans.[ch]

Description

This module copies the input signal to the output signal, but copies only the specified input channels or sets the other channels to zero, depending upon the mode: *remove*, *zero* or *expand*. The *selection mode* setting defines which channels are chosen.

Inputs	All inputs allowed
Outputs	The number of output channels depends on the mode used.
Reference	Used in the DvowelIdent application.

Module Parameters

Example 14.13. Util_SelectChannels Parameter File

MODE	REMOVE	Selection mode - 'zero', 'remove' or 'expand'.
SELECTION_MODE	ALL	Channel selection mode ('all', 'middle', 'top', 'botton' or 'user'.
NUM_CHANNELS	0	No. of channels in selection field (This is no longer).

Table 14.7. Util_SelectChans: Mode options

Description
Using the selection array, unselected (zero) channels are not included in the produced output
signal, and the selected channel's samples are multiplied by the value in the selection array. The
number of output channels produced by this process module will be equal to or less than the
number of input channels of the supplying process module.
The number of output channels for this process is the same as the number of input channels as
supplied by the previous process. However, using the selection array, the samples of the output
channels that have not been selected will be set to zero. The selected channel's samples are
multiplied by the value in the selection array.
Using the selection array unselected (zero) channels are not in included in the produced output
signal. For each selected channel the corresponding number copies in the output signal is
defined by the value of the selection variable. For example, a value of 6 in the selection array
for channel 0 will produce six copies of channel 0. Using this mode the number of output
channels produced can be greater or less then the number of input channels of the supplying
process module.

Table 14.8. Util_SelectChans: Selection Mode options

Selection	Description
Mode	
All	This is the default value. All channels are selected, and this means the signal is passed on unchanged.
Highest	Only the highest indexed channel is selected.
Lowest	Only the zero channel is selected.
Middle	Only the middle channel is selected.
User	In this mode an array of real values is supplied as a parameter to the module. Each value in the array corresponds to an input signal channel. Zero values mark a channel as "off". Positive values mark a channel as "on", and in <i>expand</i> operation mode the magnitude of the value defines the number of copies of the channel made.

Examples Using the 'Util_SelectChannels' Process Module

Example: AutoTest/Ut/SelectChannels1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/SelectChannels1.sim
begin {
   Stim_PureTone < PTone5.par
   Trans_Gate < Ramp3.par
   BM_GammaT < GammaTL3.par
   Util_SelectChannels < SelecCh1.par
   Display_Signal
}
```

Figure 14.22. This shows the output from a 10 channel gammatone filter bank with alternate channels removed using *Util_SelectChannels*.

292

Util_ShapePulse: Pulse Shaping Utility Module

File name: UtShapePulse.[ch]

Description

This module turns a train of detected spikes into a pulse train with set **MAGNITUDE** and **DURATION**. For continuous signals, a **THRESHOLD** can be set which will convert positive-going crossings of the threshold into spike events.

InputsArbitrary signal input.OutputsProduces an output signal with the same dimensions as the input signal.Reference

Module Parameters

Example 14.14. Util_ShapePulse Parameter File

THRESHOLD	0	Event threshold (arbitrary units).
DURATION	0.0002	Pulse duration (s).
MAGNITUDE	3.8	Pulse magnitude (arbitrary units).

Examples Using the 'Util_ShapePulse' Process Module

Example: AutoTest/Ut/ShapePulse1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/ShapePulsel.sim
begin {
   Stim_PulseTrain < PulseTr4.par
   repeat 2 {
   Util_ShapePulse < ShapePulse1.par
   }
   Display_Signal
}</pre>
```

Figure 14.23. This routine shows a pulse train stimulus processed using *Util_ShapePulse*. The process is repeated twice: once with the module accumulating the results, then once with the module process being reset just before each time it is called. The two runs are output to the files 'output1.dat' and 'output2.dat' respectively.

Util_SimScript: Simulation Script Interface

File name: UtSimScript.[ch]

Description

This module is used for running simulation processes using the *Simulation script* programming mode see the section called "Using simulation scripts".

When the diagnostics mode is *on*, each time the *simulation* is executed, the process diagnostics will be printed out. However, it is important to note that the diagnostics mode for simulation scripts is overridden by the diagnostics parameter for the main application. This means that when the diagnostics mode for the main application is *off* than even if the simulation script's diagnostic mode is *on* there will no diagnostics output from the simulation run. The parameter file path mode defines the file path for the simulation's parameter files.

Inputs	Arbitrary. This process accepts multiple inputs.
Outputs	The output produced is that of the last process in the simulation
Reference	
See also	Using simulation scripts

Examples Using the 'Util_ReduceChannels' Process Module

Example: AutoTest/Ut/SimScript1.sim

```
# This example simulation script with its associated parameter files is in the
# AutoTest package, which can be downloaded from the DSAM web site.
```

```
# ./Ut/SimScript1.sim
begin {
   Stim_Harmonic < Hrmonic1.par
gstim% Trans_Gate (->sim1, sim2) < Ramp2.par
sim1% Util_SimScript (gstim->cbin) < SimScript2.sim
sim2% Util_SimScript (gstim->cbin) < SimScript2.sim</pre>
```

```
cbin% Util_CreateBinaural(sim1, sim2->)
reset fibres
repeat 500 {
AN_SG_Simple < SpikeGn1.par
fibres% Util_Accumulate
}
Ana_ACF < AutoCorr2.par
Display_Signal < Display1.par</pre>
```

```
}
```

Figure 14.24. Output using the *Util_SimScript* utility module.

Util_Standardise: Signal Standardisation Utility Module

File name: UtStddise.[ch]

Description

This module standardises an input (x_I) with N samples to produce a output with:

$$\sum_{i=1}^{N} x_i = 0, \qquad \sum_{i=1}^{N} \frac{x_i^2}{N} = 1$$

The method used uses the standard deviation and mean of the signal i.e.

s.d. =
$$\sum_{i=1}^{N} \frac{\left(x_i - \overline{x}\right)^2}{N}$$

The standardised values are calculated for each sample x_i ,

$$S_i = \frac{x_i - \overline{x}}{\text{s.d.}}$$

InputsArbitrary signal input.OutputsProduces an output signal with the same dimensions as the input signal.Reference

Module Parameters

This utility has no parameters.

Examples Using the 'Util_Standardise' Process Module

Example: AutoTest/Ut/Standardise1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Standardisel.sim
begin {
st% Stim_StepFun < StepFunl.par
Util_Standardise
Display_Signal</pre>
```

}

Figure 14.25. A step function stimulus, transformed using Util_Standardise.

Util_Strobe: Signal Strobe Utility Module

File name: UtStrobe.[ch]

Description

This module implements strobe criteria for the AIM stabilised auditory image (SAI). The Ana_SAI calls this routine (See [27]). The process monitors activity in each channel of the process' input signal producing strobe pulses according to the required strobe mechanism. The different strobe mechanism modes, set using the **CRITERION** parameter, are described below in Table 14.9, "Util_Strobe: Strobe modes.".

The **STROBE_DIAGNOSTICS** parameter can be 'off', 'screen' or sent to a 'file name'. At present this module's diagnostics consists of the strobe threshold value at each time interval.

Inputs	Arbitrary signal input.
Outputs	Produces an output signal with the same dimensions as the input signal.
Reference	[27]
See also	Ana_SAI

Module Parameters

Example 14.15. Ana_SAI Parameter File

DIAGNOSTICS	OFF	Diagnostic mode ('off', 'screen', 'error' or <file name="">).</file>
INT_MODE	STI	Integration mode: 'STI' - stabilised temporal integration, 'AC' - autocorrelation.
CRITERION	PEAK_SHADOW+	Strobe criterion (mode): 'user ', 'threshold' (0), 'peak' (1), 'peak_shadow-' (3), or 'peak_shadow+' (4/5).
STROBE_DIAGNOSTICS	OFF	Diagnostic mode ('off', 'screen', 'error' or <file name="">).</file>
THRESHOLD	0	Threshold for strobing: 'user', 'threshold' and 'peak' modes only.
THRESHOLD_DECAY	5000	Threshold decay rate (%/s).
STROBE_LAG	0.005	Strobe lag (delay) time (s).
TIMEOUT	0.01	Strobe lag (delay) timeout (s).
NWIDTH	-0.035	Negative width of auditory image (s).
PWIDTH	0.005	Positive width of auditory image (s).
NAP_DECAY	2500	Neural activity pattern (input) decay rate (%/s)
IMAGE_DECAY	0.03	Auditory image decay half-life (s).

Table 14.9. Util_Strobe: Strobe modes.

Mode	Description	Original AIM Criteria
User	This mode expects input from another process. For this mode only the threshold parameter is used, to define the input value above which strobing occurs.	(-)
Threshold	Strobe on every sample above the specified threshold .	1
Peak	Strobe on each peak of the input signal which is above the specified threshold	2
Peak_Shadow-	Avoid strobing on input signal peaks preceded by a larger peak.	3
	An adaptive strobe threshold is set up for each channel of the input signal and its value is set to the height of the first input signal peak when it occurs. Thereafter, the strobe threshold decays exponentially with time in the absence of supra threshold input peaks. The rate of decay is defined by the thresholdDecayRate , which is specified as the half-life period of the process. When an input signal peak next exceeds the strobe threshold, the level of the strobe threshold is reset to the height of the new peak, and the strobe pulse is set at the peak time.	
Peak_Shadow+	Avoid strobing on peaks followed by larger peaks.	4/5
	This strobe mode uses an adaptive threshold similar to the <i>Peak_Shadow</i> mode above. However, instead of assigning the strobe pulse straight away it is 'remembered' as a potential strobe pulse. If another, larger peak occurs within the specified delay period, then that new peak is set as the potential strobe point. If no peaks occur within the delay period, then the strobe pulse is recorded. As a refinement of this process the delayTimeout parameter can be set after which the potential strobe pulse is recorded anyway. If the delayTimeout parameter is set to zero, this strobe mode operates as the original AIM strobe criteria 4, and with non-zero values it operates as strobe	
	criteria 5.	
Delata_Gamma	Not yet implemented	6

Table 14.10.	Util_	Strobe:	Diagnostics	mode options
			0	1

Mode	Description
off	No diagnostics are output.;
screen	Diagnostics from the module are output to the screen.
error	Diagnostics are output to the standard error output stream (stderr on Unix)
<file name=""></file>	Diagnostics are output to the specified file.

Examples Using the 'Util_Strobe' Process Module

Example: AutoTest/Ut/Strobe1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Strobel.sim
begin {
   Util_SimScript < StrobeTestl.sim
   repeat 1 {
   Util_Strobe < Strobel.par
   }
   Display_Signal
}</pre>
```

Figure 14.26. The stimulus and the strobe process response in *user* mode.

Example: AutoTest/Ut/Strobe2.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Strobe2.sim
begin {
   Util_SimScript < StrobeTest1.sim
   repeat 1 {
   Util_Strobe < Strobe2.par
   }
   Display_Signal
}</pre>
```

Figure 14.27. The stimulus and the strobe process response in *threshold* mode (Strobe criteria 1 under the old AIM system).

Example: AutoTest/Ut/Strobe3.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Strobe3.sim
begin {
   Util_SimScript < StrobeTest1.sim
   repeat 1 {
   Util_Strobe < Strobe3.par
   }
   Display_Signal
}</pre>
```

Figure 14.28. The stimulus and the strobe process response in *peak* mode (Strobe criteria 2 under the old AIM system).

Example: AutoTest/Ut/Strobe4.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/StrobeT4.sim
begin {
   Util_SimScript < StrobeTest2.sim
   repeat 1 {
   Util_Strobe < Strobe4.par
   }
   Display_Signal
}</pre>
```

Figure 14.29. The stimulus and the strobe process response in *peak_shadow-* mode (Strobe criteria 3 under the old AIM system).

Example: AutoTest/Ut/Strobe5.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Strobe5.sim
begin {
   Util_SimScript < StrobeTest1.sim
   repeat 1 {
   Util_Strobe < Strobe5.par
   }
   Display_Signal
}</pre>
```

Figure 14.30. The stimulus and the strobe process response in *peak_shadow*+ mode (Strobe criteria 4 under the old AIM system).
Example: AutoTest/Ut/Strobe6.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/Strobe6.sim
begin {
   Util_SimScript < StrobeTest1.sim
   repeat 1 {
   Util_Strobe < Strobe6.par
   }
   Display_Signal
}</pre>
```

Figure 14.31. The stimulus and the strobe process response in *peak_shadow*+ mode, with the time-out set to a non-zero value (Strobe criteria 5 under the old AIM system).

Comments

In this test program, the routine is run six times, using a different *strobe mode* for each run. The data is stored in the files 'output1.dat', 'output2.dat',..., 'output6.dat'. The program also outputs the test stimulus to the file 'stimulus.dat'

Util_SwapLR: Channel Swap Utility Module

File name: UtSwapLR.[ch]

Description

This utility expects binaural input. It produces output with the left and right channels swapped.

```
InputsThis process requires input from a binaural signal.OutputsProduces swapped binaural output signal.Reference-
```

Module Parameters

This utility has no parameters.

Examples Using the 'Util_SwapLR' Process Module

Example: AutoTest/Ut/SwapLR1.sim

This example simulation script with its associated parameter files is in the # AutoTest package, which can be downloaded from the DSAM web site.

```
# ./Ut/SwapLR1.sim
begin {
st% Stim_PureTone_Binaural < BPTone3.par
Display_Signal
Util_SwapLR
Display_Signal
}</pre>
```

Figure 14.32. A binaural signal before (top panel) and after (bottom panel) applying the *Util_SwapLR* process.

Bibliography

- [1] Augustine G.J., Charlton M.P., Smith S. J. (**1985a**) "Calcium entry into voltage-clamped pre-synaptic terminals of squid" *J. Physiol. (London)* [367], 143-162.
- [2] Arle J. E., Kim D. O., (1991) "Neural Modeling of Intrinsic and Spike-Discharge Properties of Cochlear Nucleus Neurons" *Biological Cybernetics* [64], 273-283.
- [3] Beauchamp K., Yuen C., (1979) *Digital Methods for Signal Analysis*, George Allen & Unwin, London. 256-257.
- [4] Beauvois Michael W., Meddis R., (1991) "A Computer Model of Auditory Stream Segregation" The Quarterly Journal of Experimental Psychology [43A], 517-541.
- [5] Carney L. H., (1993) "A model for the responses of low-frequency auditory-nerve fibers in cat" J. Acoust. Soc. Am. [93], 401-417.
- [6] Dallos P., Cheatham M. A., (??) "Non-Linearities in Cochlea Receptor Potentials and their Origins^a)" J. Acoust. Soc. Am. [86], 1790-1796.
- [7] Davis H., (1958) "Transmission and Transduction in the Cochlea" Laryngoscope [68], 359-382.
- [8] Fay Richard R., (**1988**) *Hearing in Vertebrates: a Psychophysics Databook* Fay Richard R., Hill-Fay Associates, Winnetka, Illinois, 443.
- [9] Greenwood D. D., (1990) "A cochlear frequency-position function for several species -- 29 years later" J. Acoust. Soc. Am. [87], 2592-2605.
- [10] Hewitt M. J., Meddis R., (1991a) "An Evaluation of Eight Computer Models of Mammalian Inner Hair-Cell Function" J. Acoust. Soc. Am. [90], 904-917.
- [11] Hewitt M. J., Meddis R., (1993) "Regularity of cochlear nucleus stellate cells: A computational Modeling study" J. of the Acoust. Soc. Am. [93], 3390-3399.
- [12] Geisler C. D., (1987) "Coding of Acoustic Signals on the Auditory Nerve" IEEE Engineering in Medicine and Biology Magazine [June], 22-28.
- [13] Glasberg B. R., Moore B. C. J., (1990) "Derivation of Auditory Filter Shapes from Notched-Noise Data" *Hearing Research* [47], 103-147.
- [14] Hodgkin A. L., Huxley A. F., (1952) "A quantitative description of membrane current and its application to conduction and excitation in nerve" J. Physiol. [117], 500-544.
- [15] Hudspeth A. J., Lewis R. S., (1988) "Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, rana catesbeneiana," J. Physiol. [400], 237-274.
- [16] Kiang N. Y.-S., Watanabe T., Thomas E. C., Clark L. F., (1965) "Discharge Patterns of Single Fibers in the Cat" *Research monograph* [Np. 35], MIT Press, Cambridge, MA, page 26.
- [17] Kidd R. C., Weiss T. F., (**1990**) "Mechanism that degrade timing information in the cochlea" *Hearing Research* [49], 181-208.
- [18] Lopez-Poveda E. A., O'Mard L. P., Meddis R., (1998) "A revised computational inner hair cell model" 102-108. *Psychophysical and Physiological Advances in Hearing* Palmer A. R., Rees A., Summerfield A. Q., Meddis R., Whurr Publishers Ltd., London.
- [19] McGregor R. J., Yuen C., (1987) Neural and Brain Modeling, Academic, San Diego.
- [20] Meddis R., (1988) "Simulation of mechanical to neural transduction in the auditory receptor" J. Acoust. Soc. Am. [79], 702-710.

- [21] Meddis R., (1988) "Simulation of Auditory-Neural Transduction: Further Studies" J. Acoust. Soc. Am. [83], 1056-1063.
- [22] Meddis R., Hewitt M. J., (1991b) "Virtual Pitch and Phase Sensitivity of a Computer Model of the Auditory Periphery: I. Pitch Identification" J. Acoust. Soc. Am. [89], 2866-2882.
- [23] Meddis R., O'Mard L. P., Lopez-Poveda E. A., (2001) "A computational algorithm for computing nonlinear auditory frequency selectivity" J. Acoust. Soc. Am. [109], 2852-2861.
- [24] Mountain D. C., Hubbard A. E., (**1996**) "Computational analysis of hair cell and auditory nerve processes" *Auditory Computation* Hawkins H. L., McMullen T. A., Fay R. R., Springer, New York.
- [25] Palmer A. R., Russel I. J., (1986) "Phase-Locking in the Cochlear Nerve of the Guinea-Pig, and ist Relation to the Receptor Potential of Inner Hair-Cells" *Hearing Research* [24], 1-15.
- [26] Patterson R. D., (1994) "The sound of s sinusoid: Spectral Models" J. Acoust. Soc. Am. [96], 1409-1418.
- [27] Patterson R. D., Allerhand M. H., (1995) "Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform" J. Acoust. Soc. Am. [98], 1890-1894.
- [28] Pickles J. O., (1988) An Introduction to the Physiology of Hearing, Academic, London.
- [29] Rhode W. S., Cooper N. P., (1993) "Two-Tone Suppression and Distortion on the Basilar Membrane in the Hook Region of Cat and Guinea Pig Cochleae" *Hearing Research* [66], 31-45.
- [30] Rothman J. S., Young E. D., Manis P. B., (1993) "Convergence of Auditory Nerve Fibers Onto Bushy Cells in the Ventral Cochlear Nucleus: Implications of a Computational Model" J. of Neurophysiology [70], 2562-2583.
- [31] Shamma S. A., Chadwick R. S., Wilbur W. J., Morrish K. A., Rinzel J., (**1986**) "A biophysical model oc cochlear processing: Intensity dependence of pure tone responses" *J. Acoust. Soc. Am.* [80], 133-145.
- [32] Sumner C., Lopez-Poveda E. A., O'Mard L. P., Meddis R., (2002) "A revised model of the inner-hair cell and auditory-nerve complex" J. Acoust. Soc. Am. [111], 2178-2188.
- [33] Yost W. A., Patterson R. D., Sheft S., (**1996**) "A time domain description for the pitch strength of iterated rippled noise" *J. Acoust. Soc. Am.* [99], 1066-1078.
- [34] Zhang X., Heinz M. G., Bruce I. C., Carney L. H., (2001) "A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression" J. Acoust. Soc. Am. [109], 648-670.

Index

A

Accumulating Data, 36, 259, 262 with process modules, 4, 41 Ana ACF, 22, 24 Ana_Averages, 27 Ana_CCF, 29 Ana Convolution, 28 Ana_FindBin, 31, 33 Ana_FindNextIndex, 32 Ana_FourierT, 34 Ana_Histogram, 36, 55, 56, 56 Ana_Intensity, 40 Ana_ISIH, 41 Ana_SAI, 42, 297 Ana_SpikeRegularity, 53 Ana_SynchIndex, 55 AN_SG_Binomial, 57 AN_SG_Carney, 58 AN_SG_Simple, 60

В

bandwidth mode, 12 BM_Carney, 64 BM_Cooke, 76 BM_DRNL, 84 BM_DRNLT, 95 BM_GammaT, 100 BM_Zhang, 108

С

Cat, 10 CAT, 12 Chinchilla, 10 CUSTOM_ERB, 12

D

DataFile_In/_Out, 131 Display_Signal, 119 Introduction, 13

Ε

ERB, 10, 12 ERBN, 10

F

filter modules, 8 Filt_BandPass, 122 Filt_FIR, 123 Filt_LowPass, 127 Filt_MultiBPass, 125

G

Guinea_Pig, 10 GUINEA_PIG, 12

Η

Human, 10

I

IHCRP_Carney, 136, 181 IHCRP_Meddis, 186 IHCRP_Shamma, 190 IHCRP_Shamma3StateVelIn, 194 IHCRP_Zhang, 198 IHC_Carney, 136, 181, 186, 190, 194, 198 IHC_Cooke91, 145 IHC_Meddis2000, 164, 181, 186, 190, 194, 195, 198 IHC_Meddis86, 150 IHC_Meddis86a, 156, 181, 186, 190, 194, 198 IHC_Zhang, 173, 181, 186, 190, 194, 198 INTERNAL, 12

L

Labels, 6 Linear, 11 LOG, 11

Μ

Macaque, 11

Ν

Neur_ArleKim, 202 Neur_HHuxley, 208 Neur_McGregor, 211 Null, 214

Ρ

Process Modules Getting Results from, 4

R

Repeat Simulation script, 5 reset Simulation script, 6 ResetProcess_EarObject Accumulating Data with Process Modules, 4

S

Segment Mode Processing, 13 Segmented Mode Segmented Mode, 13 Setting Process Parameters, 4 simulation scripts Overview, 4 Single, 11 Stim_Click, 215 Stim_ExpGatedTone, 217 Stim_Harmonic, 220 Stim_PulseTrain, 223 Stim_PureTone, 225 Stim_PureTone_2, 228 Stim_PureTone_AM, 231 Stim_PureTone_Binaural, 233 Stim_PureTone_FM, 235 Stim_PureTone_Multi, 237 Stim_PureTone_MultiPulse, 239 Stim StepFun, 241 Stim_WhiteNoise, 243, 277

Т

Trans_CollectSignals, 246 Trans_Damp, 247 Trans_Gate, 247, 249, 255 Trans_Ramp, 255 Trans_SetDBSPL, 257

U

User, 11 USER, 12 Util Accumulate, 259 Util_AmpMod, 260 Util_BinSignal, 27, 261 Util_Compression, 265 Util_ConvMonaural, 268 Util_CreateBinaural, 269 Util_CreateJoined, 271 Util_Delay, 272 Util_HalfWaveRectify, 265, 275 Util_IteratedRipple, 276 Util_MathOp, 278 Util_PadSignal, 281 Util_Pause, 282 Util_ReduceChannels, 283 Util_ReduceDT, 286 Util_RefractoryAdjust, 57, 287 Util_Sample, 289 Util_SelectChannels, 290 Util_ShapePulse, 293 Util SimScript, 4, 294 Util Standardise, 296 Util_Strobe, 297 Util_SwapLR, 305